1932

Abstract

Epilepsy is an etiologically heterogeneous condition; however, genetic factors are thought to play a role in most patients. For those with infantile-onset developmental and epileptic encephalopathy (DEE), a genetic diagnosis is now obtained in more than 50% of patients. There is considerable motivation to utilize these molecular diagnostic data to help guide treatment, as children with DEEs often have drug-resistant seizures as well as developmental impairment related to cerebral epileptiform activity. Precision medicine approaches have the potential to dramatically improve the quality of life for these children and their families. At present, treatment can be targeted for patients with diagnoses in many genetic causes of infantile-onset DEE, including genes encoding sodium or potassium channel subunits, tuberous sclerosis, and congenital metabolic diseases. Precision medicine may refer to more intelligent choices of conventional antiseizure medications, repurposed agents previously used for other indications, novel compounds, enzyme replacement, or gene therapy approaches.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-052120-084449
2022-01-06
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/62/1/annurev-pharmtox-052120-084449.html?itemId=/content/journals/10.1146/annurev-pharmtox-052120-084449&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Fisher RS, Acevedo C, Arzimanoglou A, Bogacz A, Cross JH et al. 2014. ILAE official report: a practical clinical definition of epilepsy. Epilepsia 55:475–82
    [Google Scholar]
  2. 2. 
    GBD Neurol. Collab 2019. Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 18:459–80
    [Google Scholar]
  3. 3. 
    Fisher RS, Cross JH, French JA, Higurashi N, Hirsch E et al. 2017. Operational classification of seizure types by the International League Against Epilepsy: position paper of the ILAE Commission for Classification and Terminology. Epilepsia 58:522–30
    [Google Scholar]
  4. 4. 
    Scheffer IE, Berkovic S, Capovilla G, Connolly MB, French J et al. 2017. ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Epilepsia 58:512–21
    [Google Scholar]
  5. 5. 
    Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alfoldi J et al. 2020. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581:434–43
    [Google Scholar]
  6. 6. 
    Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E et al. 2016. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536:285–91
    [Google Scholar]
  7. 7. 
    Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A et al. 2010. A method and server for predicting damaging missense mutations. Nat. Methods 7:248–49
    [Google Scholar]
  8. 8. 
    Grantham R. 1974. Amino acid difference formula to help explain protein evolution. Science 185:862–64
    [Google Scholar]
  9. 9. 
    Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. 2019. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res 47:D886–94
    [Google Scholar]
  10. 10. 
    Dibbens LM, Mullen S, Helbig I, Mefford HC, Bayly MA et al. 2009. Familial and sporadic 15q13.3 microdeletions in idiopathic generalized epilepsy: precedent for disorders with complex inheritance. Hum. Mol. Genet. 18:3626–31
    [Google Scholar]
  11. 11. 
    McDonald-McGinn DM, Hain HS, Emanuel BS, Zackai EH 1999. 22q11.2 Deletion syndrome. GeneReviews MP Adam, HH Ardinger, RA Pagon, SE Wallace Seattle: Univ. Washington
    [Google Scholar]
  12. 12. 
    Scheffer IE, Nabbout R. 2019. SCN1A-related phenotypes: epilepsy and beyond. Epilepsia 60:Suppl. 3S17–24
    [Google Scholar]
  13. 13. 
    Claes L, Del-Favero J, Ceulemans B, Lagae L, Van Broeckhoven C, De Jonghe P. 2001. De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am. J. Hum. Genet. 68:1327–32
    [Google Scholar]
  14. 14. 
    Catterall WA, Kalume F, Oakley JC. 2010. NaV1.1 channels and epilepsy. J. Physiol. 588:1849–59
    [Google Scholar]
  15. 15. 
    Dhifallah S, Lancaster E, Merrill S, Leroudier N, Mantegazza M, Cestele S. 2018. Gain of function for the SCN1A/hNav1.1-L1670W mutation responsible for familial hemiplegic migraine. Front. Mol. Neurosci. 11:232
    [Google Scholar]
  16. 16. 
    Dichgans M, Freilinger T, Eckstein G, Babini E, Lorenz-Depiereux B et al. 2005. Mutation in the neuronal voltage-gated sodium channel SCN1A in familial hemiplegic migraine. Lancet 366:371–77
    [Google Scholar]
  17. 17. 
    Sadleir LG, Mountier EI, Gill D, Davis S, Joshi C et al. 2017. Not all SCN1A epileptic encephalopathies are Dravet syndrome: early profound Thr226Met phenotype. Neurology 89:1035–42
    [Google Scholar]
  18. 18. 
    Shellhaas RA, Wusthoff CJ, Tsuchida TN, Glass HC, Chu CJ et al. 2017. Profile of neonatal epilepsies: characteristics of a prospective US cohort. Neurology 89:893–99
    [Google Scholar]
  19. 19. 
    Palmer EE, Schofield D, Shrestha R, Kandula T, Macintosh R et al. 2018. Integrating exome sequencing into a diagnostic pathway for epileptic encephalopathy: evidence of clinical utility and cost effectiveness. Mol. Genet. Genom. Med. 6:186–99
    [Google Scholar]
  20. 20. 
    McTague A, Howell KB, Cross JH, Kurian MA, Scheffer IE. 2016. The genetic landscape of the epileptic encephalopathies of infancy and childhood. Lancet Neurol 15:304–16
    [Google Scholar]
  21. 21. 
    Burgess R, Wang S, McTague A, Boysen KE, Yang X et al. 2019. The genetic landscape of epilepsy of infancy with migrating focal seizures. Ann. Neurol. 86:821–31
    [Google Scholar]
  22. 22. 
    Takata A, Nakashima M, Saitsu H, Mizuguchi T, Mitsuhashi S et al. 2019. Comprehensive analysis of coding variants highlights genetic complexity in developmental and epileptic encephalopathy. Nat. Commun. 10:2506
    [Google Scholar]
  23. 23. 
    Scheffer IE, Liao J. 2019. When monogenic isn't monogenic—unravelling the oligogenic architecture of the developmental and epileptic encephalopathies. Epilepsy Curr 19:417–19
    [Google Scholar]
  24. 24. 
    LaRoche SM, Helmers SL. 2004. The new antiepileptic drugs: clinical applications. JAMA 291:615–20
    [Google Scholar]
  25. 25. 
    Chen Z, Brodie MJ, Liew D, Kwan P. 2018. Treatment outcomes in patients with newly diagnosed epilepsy treated with established and new antiepileptic drugs: a 30-year longitudinal cohort study. JAMA Neurol 75:279–86
    [Google Scholar]
  26. 26. 
    Kwan P, Arzimanoglou A, Berg AT, Brodie MJ, Hauser WA et al. 2010. Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia 51:1069–77
    [Google Scholar]
  27. 27. 
    Picot MC, Baldy-Moulinier M, Daures JP, Dujols P, Crespel A 2008. The prevalence of epilepsy and pharmacoresistant epilepsy in adults: a population-based study in a Western European country. Epilepsia 49:1230–38
    [Google Scholar]
  28. 28. 
    Kossoff EH, Zupec-Kania BA, Auvin S, Ballaban-Gil KR, Bergqvist AGC et al. 2018. Optimal clinical management of children receiving dietary therapies for epilepsy: updated recommendations of the International Ketogenic Diet Study Group. Epilepsia Open 3:175–92
    [Google Scholar]
  29. 29. 
    Rudy L, Carmen R, Daniel R, Artemio R, Moises RO 2020. Anticonvulsant mechanisms of the ketogenic diet and caloric restriction. Epilepsy Res 168:106499
    [Google Scholar]
  30. 30. 
    Jobst BC, Cascino GD. 2015. Resective epilepsy surgery for drug-resistant focal epilepsy: a review. JAMA 313:285–93
    [Google Scholar]
  31. 31. 
    Gaillard WD, Jette N, Arnold ST, Arzimanoglou A, Braun KPJ et al. 2020. Establishing criteria for pediatric epilepsy surgery center levels of care: report from the ILAE Pediatric Epilepsy Surgery Task Force. Epilepsia 61:2629–42
    [Google Scholar]
  32. 32. 
    Geller EB, Skarpaas TL, Gross RE, Goodman RR, Barkley GL et al. 2017. Brain-responsive neurostimulation in patients with medically intractable mesial temporal lobe epilepsy. Epilepsia 58:994–1004
    [Google Scholar]
  33. 33. 
    Boon P, Raedt R, de Herdt V, Wyckhuys T, Vonck K 2009. Electrical stimulation for the treatment of epilepsy. Neurotherapeutics 6:218–27
    [Google Scholar]
  34. 34. 
    Salanova V, Sperling MR, Gross RE, Irwin CP, Vollhaber JA et al. 2021. The SANTE study at 10 years of follow-up: effectiveness, safety, and sudden unexpected death in epilepsy. Epilepsia 62:61306–17
    [Google Scholar]
  35. 35. 
    Rinaldi C, Wood MJA. 2018. Antisense oligonucleotides: the next frontier for treatment of neurological disorders. Nat. Rev. Neurol. 14:9–21
    [Google Scholar]
  36. 36. 
    Lim CX, Ricos MG, Dibbens LM, Heron SE. 2016. KCNT1 mutations in seizure disorders: the phenotypic spectrum and functional effects. J. Med. Genet. 53:217–25
    [Google Scholar]
  37. 37. 
    Wolff M, Johannesen KM, Hedrich UBS, Masnada S, Rubboli G et al. 2017. Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders. Brain 140:1316–36
    [Google Scholar]
  38. 38. 
    Dravet C. 2011. The core Dravet syndrome phenotype. Epilepsia 52:Suppl. 23–9
    [Google Scholar]
  39. 39. 
    Cooper MS, McIntosh A, Crompton DE, McMahon JM, Schneider A et al. 2016. Mortality in Dravet syndrome. Epilepsy Res 128:43–47
    [Google Scholar]
  40. 40. 
    Myers KA, Bello-Espinosa LE, Symonds JD, Zuberi SM, Clegg R et al. 2018. Heart rate variability in epilepsy: a potential biomarker of sudden unexpected death in epilepsy risk. Epilepsia 59:1372–80
    [Google Scholar]
  41. 41. 
    De Jonghe P. 2011. Molecular genetics of Dravet syndrome. Dev. Med. Child Neurol. 53:Suppl. 27–10
    [Google Scholar]
  42. 42. 
    Yu FH, Mantegazza M, Westenbroek RE, Robbins CA, Kalume F et al. 2006. Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nat. Neurosci. 9:1142–49
    [Google Scholar]
  43. 43. 
    Brunklaus A, Ellis R, Reavey E, Forbes GH, Zuberi SM. 2012. Prognostic, clinical and demographic features in SCN1A mutation-positive Dravet syndrome. Brain 135:2329–36
    [Google Scholar]
  44. 44. 
    Bayat A, Hjalgrim H, Moller RS. 2015. The incidence of SCN1A-related Dravet syndrome in Denmark is 1:22,000: a population-based study from 2004 to 2009. Epilepsia 56:e36–39
    [Google Scholar]
  45. 45. 
    Symonds JD, Zuberi SM, Stewart K, McLellan A, O'Regan M et al. 2019. Incidence and phenotypes of childhood-onset genetic epilepsies: a prospective population-based national cohort. Brain 142:2303–18
    [Google Scholar]
  46. 46. 
    Quilichini PP, Chiron C, Ben-Ari Y, Gozlan H. 2006. Stiripentol, a putative antiepileptic drug, enhances the duration of opening of GABAA-receptor channels. Epilepsia 47:704–16
    [Google Scholar]
  47. 47. 
    Guerrini R, Tonnelier S, d'Athis P, Rey E, Vincent Jet al 2002. Stiripentol in severe myoclonic epilepsy in infancy (SMEI): a placebo-controlled Italian trial. Epilepsia 43:Suppl. 8155
    [Google Scholar]
  48. 48. 
    Chiron C, Marchand MC, Tran A, Rey E, d'Athis P et al. 2000. Stiripentol in severe myoclonic epilepsy in infancy: a randomised placebo-controlled syndrome-dedicated trial. Lancet 356:1638–42
    [Google Scholar]
  49. 49. 
    Myers KA, Lightfoot P, Patil SG, Cross JH, Scheffer IE. 2018. Stiripentol efficacy and safety in Dravet syndrome: a 12-year observational study. Dev. Med. Child Neurol. 60:574–78
    [Google Scholar]
  50. 50. 
    Yamada M, Suzuki K, Matsui D, Inoue Y, Ohtsuka Y. 2021. Long-term safety and effectiveness of stiripentol in patients with Dravet syndrome: interim report of a post-marketing surveillance study in Japan. Epilepsy Res 170:106535
    [Google Scholar]
  51. 51. 
    Rosati A, Boncristiano A, Doccini V, Pugi A, Pisano T et al. 2019. Long-term efficacy of add-on stiripentol treatment in children, adolescents, and young adults with refractory epilepsies: a single center prospective observational study. Epilepsia 60:2255–62
    [Google Scholar]
  52. 52. 
    Chiron C. 2005. Stiripentol. Expert Opin. Investig. Drugs 14:905–11
    [Google Scholar]
  53. 53. 
    Connolly HM, Crary JL, McGoon MD, Hensrud DD, Edwards BS et al. 1997. Valvular heart disease associated with fenfluramine-phentermine. N. Engl. J. Med. 337:581–88
    [Google Scholar]
  54. 54. 
    Ceulemans B, Boel M, Leyssens K, Van Rossem C, Neels P et al. 2012. Successful use of fenfluramine as an add-on treatment for Dravet syndrome. Epilepsia 53:1131–39
    [Google Scholar]
  55. 55. 
    Schoonjans AS, Lagae L, Ceulemans B. 2015. Low-dose fenfluramine in the treatment of neurologic disorders: experience in Dravet syndrome. Ther. Adv. Neurol. Disord. 8:328–38
    [Google Scholar]
  56. 56. 
    Lagae L, Sullivan J, Knupp K, Laux L, Polster T et al. 2019. Fenfluramine hydrochloride for the treatment of seizures in Dravet syndrome: a randomised, double-blind, placebo-controlled trial. Lancet 394:2243–54
    [Google Scholar]
  57. 57. 
    Nabbout R, Mistry A, Zuberi S, Villeneuve N, Gil-Nagel A et al. 2020. Fenfluramine for treatment-resistant seizures in patients with Dravet syndrome receiving stiripentol-inclusive regimens: a randomized clinical trial. JAMA Neurol 77:300–8
    [Google Scholar]
  58. 58. 
    Lai WW, Galer BS, Wong PC, Farfel G, Pringsheim M et al. 2020. Cardiovascular safety of fenfluramine in the treatment of Dravet syndrome: Analysis of an ongoing long-term open-label safety extension study. Epilepsia 61:2386–95
    [Google Scholar]
  59. 59. 
    Martin P, de Witte PAM, Maurice T, Gammaitoni A, Farfel G, Galer B 2020. Fenfluramine acts as a positive modulator of sigma-1 receptors. Epilepsy Behav 105:106989
    [Google Scholar]
  60. 60. 
    Young S. 2013. Marijuana stops child's severe seizures. CNN Aug. 7. https://www.cnn.com/2013/08/07/health/charlotte-child-medical-marijuana/index.html
    [Google Scholar]
  61. 61. 
    Devinsky O, Marsh E, Friedman D, Thiele E, Laux L et al. 2016. Cannabidiol in patients with treatment-resistant epilepsy: an open-label interventional trial. Lancet Neurol 15:270–78
    [Google Scholar]
  62. 62. 
    Devinsky O, Cross JH, Laux L, Marsh E, Miller I et al. 2017. Trial of cannabidiol for drug-resistant seizures in the Dravet syndrome. N. Engl. J. Med. 376:2011–20
    [Google Scholar]
  63. 63. 
    Coppola G, Capovilla G, Montagnini A, Romeo A, Spano M et al. 2002. Topiramate as add-on drug in severe myoclonic epilepsy in infancy: an Italian multicenter open trial. Epilepsy Res 49:45–48
    [Google Scholar]
  64. 64. 
    Devinsky O, Patel AD, Thiele EA, Wong MH, Appleton R et al. 2018. Randomized, dose-ranging safety trial of cannabidiol in Dravet syndrome. Neurology 90:e1204–11
    [Google Scholar]
  65. 65. 
    Franco V, Bialer M, Perucca E. 2021. Cannabidiol in the treatment of epilepsy: current evidence and perspectives for further research. Neuropharmacology 185:108442
    [Google Scholar]
  66. 66. 
    Devinsky O, Thiele EA, Wright S, Checketts D, Morrison G et al. 2020. Cannabidiol efficacy independent of clobazam: meta-analysis of four randomized controlled trials. Acta Neurol. Scand. 142:531–40
    [Google Scholar]
  67. 67. 
    Guerrini R, Dravet C, Genton P, Belmonte A, Kaminska A, Dulac O. 1998. Lamotrigine and seizure aggravation in severe myoclonic epilepsy. Epilepsia 39:508–12
    [Google Scholar]
  68. 68. 
    Chiron C, Dulac O. 2011. The pharmacologic treatment of Dravet syndrome. Epilepsia 52:Suppl. 272–75
    [Google Scholar]
  69. 69. 
    Dalic L, Mullen SA, Roulet Perez E, Scheffer I 2015. Lamotrigine can be beneficial in patients with Dravet syndrome. Dev. Med. Child Neurol. 57:200–2
    [Google Scholar]
  70. 70. 
    Cross JH, Caraballo RH, Nabbout R, Vigevano F, Guerrini R, Lagae L 2019. Dravet syndrome: treatment options and management of prolonged seizures. Epilepsia 60:Suppl. 3S39–48
    [Google Scholar]
  71. 71. 
    Han Z, Chen C, Christiansen A, Ji S, Lin Q et al. 2020. Antisense oligonucleotides increase Scn1a expression and reduce seizures and SUDEP incidence in a mouse model of Dravet syndrome. Sci. Transl. Med. 12:eaaz6100
    [Google Scholar]
  72. 72. 
    Griffin AL, Jaishankar P, Grandjean JM, Olson SH, Renslo AR, Baraban SC. 2019. Zebrafish studies identify serotonin receptors mediating antiepileptic activity in Dravet syndrome. Brain Commun 1:fcz008
    [Google Scholar]
  73. 73. 
    Griffin A, Hamling KR, Knupp K, Hong S, Lee LP, Baraban SC 2017. Clemizole and modulators of serotonin signalling suppress seizures in Dravet syndrome. Brain 140:669–83
    [Google Scholar]
  74. 74. 
    Nishi T, Kondo S, Miyamoto M, Watanabe S, Hasegawa S et al. 2020. Soticlestat, a novel cholesterol 24-hydroxylase inhibitor shows a therapeutic potential for neural hyperexcitation in mice. Sci. Rep. 10:17081
    [Google Scholar]
  75. 75. 
    Devinsky O, King L, Bluvstein J, Friedman D. 2021. Ataluren for drug-resistant epilepsy in nonsense variant-mediated Dravet syndrome and CDKL5 deficiency disorder. Ann. Clin. Transl. Neurol. 8:3639–44
    [Google Scholar]
  76. 76. 
    Tian C, Wang K, Ke W, Guo H, Shu Y 2014. Molecular identity of axonal sodium channels in human cortical pyramidal cells. Front. Cell Neurosci. 8:297
    [Google Scholar]
  77. 77. 
    Howell KB, McMahon JM, Carvill GL, Tambunan D, Mackay MT et al. 2015. SCN2A encephalopathy: a major cause of epilepsy of infancy with migrating focal seizures. Neurology 85:958–66
    [Google Scholar]
  78. 78. 
    Dhamija R, Wirrell E, Falcao G, Kirmani S, Wong-Kisiel LC. 2013. Novel de novo SCN2A mutation in a child with migrating focal seizures of infancy. Pediatr. Neurol. 49:486–88
    [Google Scholar]
  79. 79. 
    Nakamura K, Kato M, Osaka H, Yamashita S, Nakagawa E et al. 2013. Clinical spectrum of SCN2A mutations expanding to Ohtahara syndrome. Neurology 81:992–98
    [Google Scholar]
  80. 80. 
    Berecki G, Howell KB, Deerasooriya YH, Cilio MR, Oliva MK et al. 2018. Dynamic action potential clamp predicts functional separation in mild familial and severe de novo forms of SCN2A epilepsy. PNAS 115:E5516–25
    [Google Scholar]
  81. 81. 
    Foster LA, Johnson MR, MacDonald JT, Karachunski PI, Henry TR et al. 2017. Infantile epileptic encephalopathy associated with SCN2A mutation responsive to oral mexiletine. Pediatr. Neurol. 66:108–11
    [Google Scholar]
  82. 82. 
    Flor-Hirsch H, Heyman E, Livneh A, Reish O, Watemberg N et al. 2018. Lacosamide for SCN2A-related intractable neonatal and infantile seizures. Epileptic Disord 20:440–46
    [Google Scholar]
  83. 83. 
    Li M, Jancovski N, Jafar-Nehad P, Burbano LE, Rollo B et al. 2020. Antisense oligonucleotide therapy for SCN2A gain-of-function epilepsy. bioRxiv 2020.09.09.289900. https://doi.org/10.1101/2020.09.09.289900
    [Crossref]
  84. 84. 
    Larsen J, Carvill GL, Gardella E, Kluger G, Schmiedel G et al. 2015. The phenotypic spectrum of SCN8A encephalopathy. Neurology 84:480–89
    [Google Scholar]
  85. 85. 
    Zaman T, Abou Tayoun A, Goldberg EM. 2019. A single-center SCN8A-related epilepsy cohort: clinical, genetic, and physiologic characterization. Ann. Clin. Transl. Neurol. 6:1445–55
    [Google Scholar]
  86. 86. 
    Baker EM, Thompson CH, Hawkins NA, Wagnon JL, Wengert ER et al. 2018. The novel sodium channel modulator GS-458967 (GS967) is an effective treatment in a mouse model of SCN8A encephalopathy. Epilepsia 59:1166–76
    [Google Scholar]
  87. 87. 
    Heron SE, Smith KR, Bahlo M, Nobili L, Kahana E et al. 2012. Missense mutations in the sodium-gated potassium channel gene KCNT1 cause severe autosomal dominant nocturnal frontal lobe epilepsy. Nat. Genet. 44:1188–90
    [Google Scholar]
  88. 88. 
    Barcia G, Fleming MR, Deligniere A, Gazula VR, Brown MR et al. 2012. De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy. Nat. Genet. 44:1255–59
    [Google Scholar]
  89. 89. 
    Derry CP, Heron SE, Phillips F, Howell S, MacMahon J et al. 2008. Severe autosomal dominant nocturnal frontal lobe epilepsy associated with psychiatric disorders and intellectual disability. Epilepsia 49:2125–29
    [Google Scholar]
  90. 90. 
    Milligan CJ, Li M, Gazina EV, Heron SE, Nair U et al. 2014. KCNT1 gain of function in 2 epilepsy phenotypes is reversed by quinidine. Ann. Neurol. 75:581–90
    [Google Scholar]
  91. 91. 
    Borlot F, Abushama A, Morrison-Levy N, Jain P, Puthenveettil Vinayan K et al. 2020. KCNT1-related epilepsy: an international multicenter cohort of 27 pediatric cases. Epilepsia 61:679–92
    [Google Scholar]
  92. 92. 
    Mikati MA, Jiang YH, Carboni M, Shashi V, Petrovski S et al. 2015. Quinidine in the treatment of KCNT1-positive epilepsies. Ann. Neurol. 78:995–99
    [Google Scholar]
  93. 93. 
    Bearden D, Strong A, Ehnot J, DiGiovine M, Dlugos D, Goldberg EM 2014. Targeted treatment of migrating partial seizures of infancy with quinidine. Ann. Neurol. 76:457–61
    [Google Scholar]
  94. 94. 
    Mullen SA, Carney PW, Roten A, Ching M, Lightfoot PA et al. 2018. Precision therapy for epilepsy due to KCNT1 mutations: a randomized trial of oral quinidine. Neurology 90:e67–72
    [Google Scholar]
  95. 95. 
    Weckhuysen S, Mandelstam S, Suls A, Audenaert D, Deconinck T et al. 2012. KCNQ2 encephalopathy: emerging phenotype of a neonatal epileptic encephalopathy. Ann. Neurol. 71:15–25
    [Google Scholar]
  96. 96. 
    Orhan G, Bock M, Schepers D, Ilina EI, Reichel SN et al. 2014. Dominant-negative effects of KCNQ2 mutations are associated with epileptic encephalopathy. Ann. Neurol. 75:382–94
    [Google Scholar]
  97. 97. 
    Pisano T, Numis AL, Heavin SB, Weckhuysen S, Angriman M et al. 2015. Early and effective treatment of KCNQ2 encephalopathy. Epilepsia 56:685–91
    [Google Scholar]
  98. 98. 
    Klotz KA, Lemke JR, Korinthenberg R, Jacobs J 2017. Vitamin B6-responsive epilepsy due to a novel KCNQ2 mutation. Neuropediatrics 48:199–204
    [Google Scholar]
  99. 99. 
    Reid ES, Williams H, Stabej Ple Q, James C, Ocaka L et al. 2016. Seizures due to a KCNQ2 mutation: treatment with vitamin B6. JIMD Rep 27:79–84
    [Google Scholar]
  100. 100. 
    Millichap JJ, Park KL, Tsuchida T, Ben-Zeev B, Carmant L et al. 2016. KCNQ2 encephalopathy: features, mutational hot spots, and ezogabine treatment of 11 patients. Neurol. Genet. 2:e96
    [Google Scholar]
  101. 101. 
    Garin Shkolnik T, Feuerman H, Didkovsky E, Kaplan I, Bergman R et al. 2014. Blue-gray mucocutaneous discoloration: a new adverse effect of ezogabine. JAMA Dermatol 150:984–89
    [Google Scholar]
  102. 102. 
    van Slegtenhorst M, de Hoogt R, Hermans C, Nellist M, Janssen B et al. 1997. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 277:805–8
    [Google Scholar]
  103. 103. 
    Eur. Chromosom. 16 Tuberous Scler. Consort 1993. Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell 75:1305–15
    [Google Scholar]
  104. 104. 
    Crino PB. 2016. The mTOR signalling cascade: paving new roads to cure neurological disease. Nat. Rev. Neurol. 12:379–92
    [Google Scholar]
  105. 105. 
    Northrup H, Krueger DAInt. Tuberous Scler. Complex Consens 2013. Tuberous sclerosis complex diagnostic criteria update: recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference. Pediatr. Neurol 49:243–54
    [Google Scholar]
  106. 106. 
    Webb DW, Fryer AE, Osborne JP. 1991. On the incidence of fits and mental retardation in tuberous sclerosis. J. Med. Genet. 28:395–97
    [Google Scholar]
  107. 107. 
    Thiele EA. 2004. Managing epilepsy in tuberous sclerosis complex. J. Child Neurol. 19:680–86
    [Google Scholar]
  108. 108. 
    French JA, Lawson JA, Yapici Z, Ikeda H, Polster T et al. 2016. Adjunctive everolimus therapy for treatment-resistant focal-onset seizures associated with tuberous sclerosis (EXIST-3): a phase 3, randomised, double-blind, placebo-controlled study. Lancet 388:2153–63
    [Google Scholar]
  109. 109. 
    Overwater IE, Rietman AB, Bindels-de Heus K, Looman CW, Rizopoulos D et al. 2016. Sirolimus for epilepsy in children with tuberous sclerosis complex: a randomized controlled trial. Neurology 87:1011–18
    [Google Scholar]
  110. 110. 
    Song JM, Hahn J, Kim SH, Chang MJ 2017. Efficacy of treatments for infantile spasms: a systematic review. Clin. Neuropharmacol. 40:63–84
    [Google Scholar]
  111. 111. 
    Chiron C, Dumas C, Jambaque I, Mumford J, Dulac O. 1997. Randomized trial comparing vigabatrin and hydrocortisone in infantile spasms due to tuberous sclerosis. Epilepsy Res 26:389–95
    [Google Scholar]
  112. 112. 
    Kotulska K, Kwiatkowski DJ, Curatolo P, Weschke B, Riney K et al. 2021. Prevention of epilepsy in infants with tuberous sclerosis complex in the EPISTOP trial. Ann. Neurol. 89:304–14
    [Google Scholar]
  113. 113. 
    Clement JP, Aceti M, Creson TK, Ozkan ED, Shi Y et al. 2012. Pathogenic SYNGAP1 mutations impair cognitive development by disrupting maturation of dendritic spine synapses. Cell 151:709–23
    [Google Scholar]
  114. 114. 
    Vlaskamp DRM, Shaw BJ, Burgess R, Mei D, Montomoli M et al. 2019. SYNGAP1 encephalopathy: a distinctive generalized developmental and epileptic encephalopathy. Neurology 92:e96–107
    [Google Scholar]
  115. 115. 
    Sullivan BJ, Ammanuel S, Kipnis PA, Araki Y, Huganir RL, Kadam SD. 2020. Low-dose perampanel rescues cortical gamma dysregulation associated with parvalbumin interneuron GluA2 upregulation in epileptic Syngap1+/− mice. Biol. Psychiatry 87:829–42
    [Google Scholar]
  116. 116. 
    Mills PB, Struys E, Jakobs C, Plecko B, Baxter P et al. 2006. Mutations in antiquitin in individuals with pyridoxine-dependent seizures. Nat. Med. 12:307–9
    [Google Scholar]
  117. 117. 
    Hunt AD, Stokes J, McCrory WW, Stroud HH. 1954. Pyridoxine dependency: report of a case of intractable convulsions in an infant controlled by pyridoxine. Pediatrics 13:140–45
    [Google Scholar]
  118. 118. 
    Mills PB, Footitt EJ, Mills KA, Tuschl K, Aylett S et al. 2010. Genotypic and phenotypic spectrum of pyridoxine-dependent epilepsy (ALDH7A1 deficiency). Brain 133:2148–59
    [Google Scholar]
  119. 119. 
    Gospe SM Jr 1993. Pyridoxine-dependent epilepsy—ALDH7A1. GeneReviews MP Adam, HH Ardinger, RA Pagon, SE Wallace Seattle: Univ. Washington
    [Google Scholar]
  120. 120. 
    van Karnebeek CD, Hartmann H, Jaggumantri S, Bok LA, Cheng B et al. 2012. Lysine restricted diet for pyridoxine-dependent epilepsy: first evidence and future trials. Mol. Genet. Metab. 107:335–44
    [Google Scholar]
  121. 121. 
    van Karnebeek CD, Stockler-Ipsiroglu S, Jaggumantri S, Assmann B, Baxter P et al. 2014. Lysine-restricted diet as adjunct therapy for pyridoxine-dependent epilepsy: the PDE Consortium Consensus Recommendations. JIMD Rep 15:47–57
    [Google Scholar]
  122. 122. 
    Mercimek-Mahmutoglu S, Cordeiro D, Cruz V, Hyland K, Struys EA et al. 2014. Novel therapy for pyridoxine dependent epilepsy due to ALDH7A1 genetic defect: l-arginine supplementation alternative to lysine-restricted diet. Eur. J. Paediatr. Neurol. 18:741–46
    [Google Scholar]
  123. 123. 
    Coughlin CR 2nd, van Karnebeek CD, Al-Hertani W, Shuen AY, Jaggumantri S et al. 2015. Triple therapy with pyridoxine, arginine supplementation and dietary lysine restriction in pyridoxine-dependent epilepsy: neurodevelopmental outcome. Mol. Genet. Metab. 116:35–43
    [Google Scholar]
  124. 124. 
    Mills PB, Surtees RA, Champion MP, Beesley CE, Dalton N et al. 2005. Neonatal epileptic encephalopathy caused by mutations in the PNPO gene encoding pyridox(am)ine 5′-phosphate oxidase. Hum. Mol. Genet. 14:1077–86
    [Google Scholar]
  125. 125. 
    Mills PB, Camuzeaux SS, Footitt EJ, Mills KA, Gissen P et al. 2014. Epilepsy due to PNPO mutations: genotype, environment and treatment affect presentation and outcome. Brain 137:1350–60
    [Google Scholar]
  126. 126. 
    Plecko B, Paul K, Mills P, Clayton P, Paschke E et al. 2014. Pyridoxine responsiveness in novel mutations of the PNPO gene. Neurology 82:1425–33
    [Google Scholar]
  127. 127. 
    Pearl PL, Hyland K, Chiles J, McGavin CL, Yu Y, Taylor D 2013. Partial pyridoxine responsiveness in PNPO deficiency. JIMD Rep 9:139–42
    [Google Scholar]
  128. 128. 
    Shiraku H, Nakashima M, Takeshita S, Khoo CS, Haniffa M et al. 2018. PLPBP mutations cause variable phenotypes of developmental and epileptic encephalopathy. Epilepsia Open 3:495–502
    [Google Scholar]
  129. 129. 
    Darin N, Reid E, Prunetti L, Samuelsson L, Husain RA et al. 2016. Mutations in PROSC disrupt cellular pyridoxal phosphate homeostasis and cause vitamin-B6-dependent epilepsy. Am. J. Hum. Genet. 99:1325–37
    [Google Scholar]
  130. 130. 
    Plecko B, Zweier M, Begemann A, Mathis D, Schmitt B et al. 2017. Confirmation of mutations in PROSC as a novel cause of vitamin B6-dependent epilepsy. J. Med. Genet. 54:809–14
    [Google Scholar]
  131. 131. 
    Weiss MJ, Cole DE, Ray K, Whyte MP, Lafferty MA et al. 1988. A missense mutation in the human liver/bone/kidney alkaline phosphatase gene causing a lethal form of hypophosphatasia. PNAS 85:7666–69
    [Google Scholar]
  132. 132. 
    Whyte MP, Greenberg CR, Salman NJ, Bober MB, McAlister WH et al. 2012. Enzyme-replacement therapy in life-threatening hypophosphatasia. N. Engl. J. Med. 366:904–13
    [Google Scholar]
  133. 133. 
    Ishiguro T, Sugiyama Y, Ueda K, Muramatsu Y, Tsuda H et al. 2019. Findings of amplitude-integrated electroencephalogram recordings and serum vitamin B6 metabolites in perinatal lethal hypophosphatasia during enzyme replacement therapy. Brain Dev 41:721–25
    [Google Scholar]
  134. 134. 
    Nagappa M, Bindu PS, Taly AB, Sinha S, Bharath RD. 2015. Child neurology: molybdenum cofactor deficiency. Neurology 85:e175–78
    [Google Scholar]
  135. 135. 
    Abe Y, Aihara Y, Endo W, Hasegawa H, Ichida K et al. 2021. The effect of dietary protein restriction in a case of molybdenum cofactor deficiency with MOCS1 mutation. Mol. Genet. Metab. Rep. 26:100716
    [Google Scholar]
  136. 136. 
    Lee EJ, Dandamudi R, Granadillo JL, Grange DK, Kakajiwala A 2021. Rare cause of xanthinuria: a pediatric case of molybdenum cofactor deficiency B. CEN Case Rep 10:3378–82
    [Google Scholar]
  137. 137. 
    Struys EA, Nota B, Bakkali A, Al Shahwan S, Salomons GS, Tabarki B. 2012. Pyridoxine-dependent epilepsy with elevated urinary α-amino adipic semialdehyde in molybdenum cofactor deficiency. Pediatrics 130:e1716–19
    [Google Scholar]
  138. 138. 
    Hitzert MM, Bos AF, Bergman KA, Veldman A, Schwarz G et al. 2012. Favorable outcome in a newborn with molybdenum cofactor type A deficiency treated with cPMP. Pediatrics 130:e1005–10
    [Google Scholar]
  139. 139. 
    Finkel RS, Mercuri E, Darras BT, Connolly AM, Kuntz NL et al. 2017. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N. Engl. J. Med. 377:1723–32
    [Google Scholar]
  140. 140. 
    Schoch KM, Miller TM. 2017. Antisense oligonucleotides: translation from mouse models to human neurodegenerative diseases. Neuron 94:1056–70
    [Google Scholar]
  141. 141. 
    Benson MD, Waddington-Cruz M, Berk JL, Polydefkis M, Dyck PJ et al. 2018. Inotersen treatment for patients with hereditary transthyretin amyloidosis. N. Engl. J. Med. 379:22–31
    [Google Scholar]
  142. 142. 
    Cirak S, Arechavala-Gomeza V, Guglieri M, Feng L, Torelli S et al. 2011. Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet 378:595–605
    [Google Scholar]
  143. 143. 
    Gross RA, Johnston KC. 2009. Levels of evidence: taking neurology to the next level. Neurology 72:8–10
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-052120-084449
Loading
/content/journals/10.1146/annurev-pharmtox-052120-084449
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error