1932

Abstract

This review describes some important physical characteristics of the pathways (i.e., dynamical processes) by which molecular, nanoscale, and micrometer-scale self-assembly occurs. We highlight the existence of features of self-assembly pathways that are common to a wide range of physical systems, even though those systems may differ with respect to their microscopic details. We summarize some existing theoretical descriptions of self-assembly pathways and highlight areas—notably, the description of self-assembly pathways that occur far from equilibrium—that are likely to become increasingly important.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-040214-121215
2015-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/physchem/66/1/annurev-physchem-040214-121215.html?itemId=/content/journals/10.1146/annurev-physchem-040214-121215&mimeType=html&fmt=ahah

Literature Cited

  1. Glotzer SC, Solomon MJ. 1.  2007. Anisotropy of building blocks and their assembly into complex structures. Nat. Mater. 6:557–62 [Google Scholar]
  2. Barth JV, Costantini G, Kern K. 2.  2005. Engineering atomic and molecular nanostructures at surfaces. Nature 437:671–79 [Google Scholar]
  3. Whitesides GM, Grzybowski B. 3.  2002. Self-assembly at all scales. Science 295:2418–21 [Google Scholar]
  4. Blake AJ, Champness NR, Hubberstey P, Li WS, Withersby MA, Schröder M. 4.  1999. Inorganic crystal engineering using self-assembly of tailored building blocks. Coord. Chem. Rev. 183:117–38 [Google Scholar]
  5. Leunissen ME, Christova CG, Hynninen AP, Royall CP, Campbell AI. 5.  et al. 2005. Ionic colloidal crystals of oppositely charged particles. Nature 437:235–40 [Google Scholar]
  6. Zhang ZL, Keys AS, Chen T, Glotzer SC. 6.  2005. Self-assembly of patchy particles into diamond structures through molecular mimicry. Langmuir 21:11547–51 [Google Scholar]
  7. Nykypanchuk D, Maye MM, van der Lelie D, Gang O. 7.  2008. DNA-guided crystallization of colloidal nanoparticles. Nature 451:549–52 [Google Scholar]
  8. Blunt MO, Russell JC, del Carmen Giménez-López M, Garrahan JP, Lin X. 8.  et al. 2008. Random tiling and topological defects in a two-dimensional molecular network. Science 322:1077–81 [Google Scholar]
  9. Chen Q, Bae SC, Granick S. 9.  2011. Directed self-assembly of a colloidal kagome lattice. Nature 469:381–84 [Google Scholar]
  10. Zlotnick A. 10.  2005. Theoretical aspects of virus capsid assembly. J. Mol. Recognit. 18:479–90 [Google Scholar]
  11. Hagan MF, Chandler D. 11.  2006. Dynamic pathways for viral capsid assembly. Biophys. J. 91:42–54 [Google Scholar]
  12. Rothemund PW. 12.  2006. Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302 [Google Scholar]
  13. Andersen ES, Dong M, Nielsen MM, Jahn K, Subramani R. 13.  et al. 2009. Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459:73–76 [Google Scholar]
  14. Nam KT, Shelby SA, Choi PH, Marciel AB, Chen R. 14.  et al. 2010. Free-floating ultrathin two-dimensional crystals from sequence-specific peptoid polymers. Nat. Mater. 9:454–60 [Google Scholar]
  15. Gibaud T, Barry E, Zakhary MJ, Henglin M, Ward A. 15.  et al. 2012. Reconfigurable self-assembly through chiral control of interfacial tension. Nature 481:348–51 [Google Scholar]
  16. Stannard A, Russell JC, Blunt MO, Salesiotis C, del Carmen Giménez-López M. 16.  et al. 2012. Broken symmetry and the variation of critical properties in the phase behaviour of supramolecular rhombus tilings. Nat. Chem. 4:112–17 [Google Scholar]
  17. Winfree E, Liu F, Wenzler LA, Seeman NC. 17.  1998. Design and self-assembly of two-dimensional DNA crystals. Nature 394:539–44 [Google Scholar]
  18. Park SY, Lytton-Jean AK, Lee B, Weigand S, Schatz GC, Mirkin CA. 18.  2008. DNA-programmable nanoparticle crystallization. Nature 451:553–56 [Google Scholar]
  19. Valignat MP, Theodoly O, Crocker JC, Russel WB, Chaikin PM. 19.  2005. Reversible self-assembly and directed assembly of DNA-linked micrometer-sized colloids. Proc. Natl. Acad. Sci. USA 102:4225–29 [Google Scholar]
  20. Ke Y, Ong LL, Shih WM, Yin P. 20.  2012. Three-dimensional structures self-assembled from DNA bricks. Science 338:1177–83 [Google Scholar]
  21. Pawar AB, Kretzschmar I. 21.  2010. Fabrication, assembly, and application of patchy particles. Macromol. Rapid Commun. 31:150–68 [Google Scholar]
  22. Kraft DJ, Groenewold J, Kegel WK. 22.  2009. Colloidal molecules with well-controlled bond angles. Soft Matter 5:3823–26 [Google Scholar]
  23. Jiang S, Chen Z, Tripathy M, Luijten E, Schweizer KS, Granick S. 23.  2010. Janus particle synthesis and assembly. Adv. Mater. 22:1060–71 [Google Scholar]
  24. Rossi L, Sacanna S, Irvine WTM, Chaikin PM, Pine DJ, Philipse AP. 24.  2011. Cubic crystals from cubic colloids. Soft Matter 7:4139–42 [Google Scholar]
  25. Sacanna S, Korpics M, Rodriguez K, Colón-Meléndez L, Kim SH. 25.  et al. 2013. Shaping colloids for self-assembly. Nat. Commun. 4:1688 [Google Scholar]
  26. Yau ST, Vekilov PG. 26.  2001. Direct observation of nucleus structure and nucleation pathways in apoferritin crystallization. J. Am. Chem. Soc. 123:1080–89 [Google Scholar]
  27. Zheng H, Smith RK, Jun YW, Kisielowski C, Dahmen U, Alivisatos AP. 27.  2009. Observation of single colloidal platinum nanocrystal growth trajectories. Science 324:1309–12 [Google Scholar]
  28. Li D, Nielsen MH, Lee JR, Frandsen C, Banfield JF, De Yoreo JJ. 28.  2012. Direction-specific interactions control crystal growth by oriented attachment. Science 336:1014–18 [Google Scholar]
  29. Turchanin A, Weber D, Buenfeld M, Kisielowski C, Fistul MV. 29.  et al. 2011. Conversion of self-assembled monolayers into nanocrystalline graphene: structure and electric transport. ACS Nano 5:3896–904 [Google Scholar]
  30. Zhang X, Xie Y. 30.  2013. Recent advances in free-standing two-dimensional crystals with atomic thickness: design, assembly and transfer strategies. Chem. Soc. Rev. 42:8187–99 [Google Scholar]
  31. Nielsen MH, Li D, Zhang H, Aloni S, Han T. 31.  et al. 2014. Investigating processes of nanocrystal formation and transformation via liquid cell TEM. Microsc. Microanal. 20:425–36 [Google Scholar]
  32. Chung S, Shin S, Bertozzi C, De Yoreo J. 32.  2010. Self-catalyzed growth of S layers via an amorphous-to-crystalline transition limited by folding kinetics. Proc. Natl. Acad. Sci. USA 107:16536–41 [Google Scholar]
  33. Rapaport D. 33.  2012. Molecular dynamics simulation of reversibly self-assembling shells in solution using trapezoidal particles. Phys. Rev. E 86:051917 [Google Scholar]
  34. Grünwald M, Geissler PL. 34.  2014. Patterns without patches: hierarchical self-assembly of complex structures from simple building blocks. ACS Nano 8:5891–97 [Google Scholar]
  35. Haji-Akbari A, Engel M, Keys AS, Zheng X, Petschek RG. 35.  et al. 2009. Disordered, quasicrystalline and crystalline phases of densely packed tetrahedra. Nature 462:773–77 [Google Scholar]
  36. Vial S, Nykypanchuk D, Yager KG, Tkachenko AV, Gang O. 36.  2013. Linear mesostructures in DNA–nanorod self-assembly. ACS Nano 7:5437–45 [Google Scholar]
  37. Gibbs JW. 37.  1878. On the equilibrium of heterogeneous substances. Am. J. Sci. 96:441–58 [Google Scholar]
  38. Becker R, Döring W. 38.  1935. The kinetic treatment of nuclear formation in supersaturated vapors. Ann. Phys. 24:719–52 [Google Scholar]
  39. Stranski IN, Totomanow D. 39.  1933. Rate of formation of (crystal) nuclei and the Ostwald step rule. Z. Phys. Chem. 163:399–408 [Google Scholar]
  40. Ostwald W. 40.  1897. Studies on formation and transformation of solid materials. Z. Phys. Chem. 22:289–330 [Google Scholar]
  41. Savage JR, Dinsmore AD. 41.  2009. Experimental evidence for two-step nucleation in colloidal crystallization. Phys. Rev. Lett. 102:198302 [Google Scholar]
  42. Nicolis G, Prigogine I. 42.  1977. Self-Organization in Nonequilibrium Systems New York: Wiley
  43. ten Wolde PR, Frenkel D. 43.  1999. Homogeneous nucleation and the Ostwald step rule. Phys. Chem. Chem. Phys. 1:2191–96 [Google Scholar]
  44. Cardew P, Davey R. 44.  1985. The kinetics of solvent-mediated phase transformations. Proc. R. Soc. Lond. A 398:415–28 [Google Scholar]
  45. Desgranges C, Delhommelle J. 45.  2007. Controlling polymorphism during the crystallization of an atomic fluid. Phys. Rev. Lett. 98:235502 [Google Scholar]
  46. Stauffer D. 46.  1976. Kinetic theory of two-component (“hetero-molecular”) nucleation and condensation. J. Aerosol Sci. 7:319–33 [Google Scholar]
  47. Kremer K. 47.  1978. Multi-dimensional theory of heteromolecular nucleation and condensation. J. Aerosol Sci. 9:243–46 [Google Scholar]
  48. Kim A, Scarlett R, Biancaniello P, Sinno T, Crocker J. 48.  2008. Probing interfacial equilibration in microsphere crystals formed by DNA-directed assembly. Nat. Mater. 8:52–55 [Google Scholar]
  49. Whitesides GM, Boncheva M. 49.  2002. Beyond molecules: self-assembly of mesoscopic and macroscopic components. Proc. Natl. Acad. Sci. USA 99:4769–74 [Google Scholar]
  50. Wilber AW, Doye JP, Louis AA, Noya EG, Miller MA, Wong P. 50.  2007. Reversible self-assembly of patchy particles into monodisperse icosahedral clusters. J. Chem. Phys. 127:085106 [Google Scholar]
  51. Nguyen HD, Reddy VS, Brooks CL. 51.  2007. Deciphering the kinetic mechanism of spontaneous self-assembly of icosahedral capsids. Nano Lett. 7:338–44 [Google Scholar]
  52. Rapaport D. 52.  2008. Role of reversibility in viral capsid growth: a paradigm for self-assembly. Phys. Rev. Lett. 101:186101 [Google Scholar]
  53. Whitelam S, Feng EH, Hagan MF, Geissler PL. 53.  2009. The role of collective motion in examples of coarsening and self-assembly. Soft Matter 5:1251–62 [Google Scholar]
  54. Whitelam S. 54.  2010. Control of pathways and yields of protein crystallization through the interplay of nonspecific and specific attractions. Phys. Rev. Lett. 105:088102 [Google Scholar]
  55. Smit B, Hilbers P, Esselink K. 55.  1993. Computer simulations of surfactant self-assembly. Int. J. Mod. Phys. C 4:393–400 [Google Scholar]
  56. Damasceno PF, Engel M, Glotzer SC. 56.  2012. Predictive self-assembly of polyhedra into complex structures. Science 337:453–57 [Google Scholar]
  57. Zhang Z, Glotzer SC. 57.  2004. Self-assembly of patchy particles. Nano Lett. 4:1407–13 [Google Scholar]
  58. Fusco D, Headd JJ, De Simone A, Wang J, Charbonneau P. 58.  2014. Characterizing protein crystal contacts and their role in crystallization: rubredoxin as a case study. Soft Matter 10:290–302 [Google Scholar]
  59. Bahadur RP, Chakrabarti P, Rodier F, Janin J. 59.  2004. A dissection of specific and non-specific protein-protein interfaces. J. Mol. Biol. 336:943–55 [Google Scholar]
  60. Shen YC, Oxtoby DW. 60.  1996. bcc symmetry in the crystal-melt interface of Lennard-Jones fluids examined through density functional theory. Phys. Rev. Lett. 77:3585–88 [Google Scholar]
  61. ten Wolde PR, Frenkel D. 61.  1997. Enhancement of protein crystal nucleation by critical density fluctuations. Science 277:1975–78 [Google Scholar]
  62. Lutsko JF, Nicolis G. 62.  2006. Theoretical evidence for a dense fluid precursor to crystallization. Phys. Rev. Lett. 96:046102 [Google Scholar]
  63. Lu PJ, Zaccarelli E, Ciulla F, Schofield AB, Sciortino F, Weitz DA. 63.  2008. Gelation of particles with short-range attraction. Nature 453:499–504 [Google Scholar]
  64. Johnston IG, Louis AA, Doye JP. 64.  2010. Modelling the self-assembly of virus capsids. J. Phys. Condens. Matter 22:104101 [Google Scholar]
  65. Sciortino F, Bianchi E, Douglas JF, Tartaglia P. 65.  2007. Self-assembly of patchy particles into polymer chains: a parameter-free comparison between Wertheim theory and Monte Carlo simulation. J. Chem. Phys. 126:194903 [Google Scholar]
  66. Rechtsman MC, Stillinger FH, Torquato S. 66.  2005. Optimized interactions for targeted self-assembly: application to a honeycomb lattice. Phys. Rev. Lett. 95:228301 [Google Scholar]
  67. Rechtsman MC, Stillinger FH, Torquato S. 67.  2006. Designed interaction potentials via inverse methods for self-assembly. Phys. Rev. E 73:011406 [Google Scholar]
  68. Rabani E, Reichman DR, Geissler PL, Brus LE. 68.  2003. Drying-mediated self-assembly of nanoparticles. Nature 426:271–74 [Google Scholar]
  69. Peters B. 69.  2009. Competing nucleation pathways in a mixture of oppositely charged colloids: out-of-equilibrium nucleation revisited. J. Chem. Phys. 131:244103 [Google Scholar]
  70. Tailleur J, Cates M. 70.  2008. Statistical mechanics of interacting run-and-tumble bacteria. Phys. Rev. Lett. 100:218103 [Google Scholar]
  71. Ramaswamy S. 71.  2010. The mechanics and statistics of active matter. Annu. Rev. Condens. Matter Phys. 1:323–45 [Google Scholar]
  72. Grant J, Jack RL, Whitelam S. 72.  2011. Analyzing mechanisms and microscopic reversibility of self-assembly. J. Chem. Phys. 135:214505 [Google Scholar]
  73. Frenkel D, Smit B. 73.  2001. Understanding Molecular Simulation: From Algorithms to Applications New York: Academic
  74. Vega C, Sanz E, Abascal JLF, Noya EG. 74.  2008. Determination of phase diagrams via computer simulation: methodology and applications to water, electrolytes and proteins. J. Phys. Condens. Matter 20:153101 [Google Scholar]
  75. Bruce AD, Wilding NB. 75.  2003. Computational strategies for mapping equilibrium phase diagrams. Adv. Chem. Phys. 127:1–64 [Google Scholar]
  76. Liu J, Luijten E. 76.  2004. Rejection-free geometric cluster algorithm for complex fluids. Phys. Rev. Lett. 92:035504 [Google Scholar]
  77. Filion L, Marechal M, van Oorschot B, Pelt D, Smallenburg F, Dijkstra M. 77.  2009. Efficient method for predicting crystal structures at finite temperature: variable box shape simulations. Phys. Rev. Lett. 103:188302 [Google Scholar]
  78. Babu S, Gimel JC, Nicolai T, De Michele C. 78.  2008. The influence of bond rigidity and cluster diffusion on the self-diffusion of hard spheres with square well interaction. J. Chem. Phys. 128:204504 [Google Scholar]
  79. Bhattacharyay A, Troisi A. 79.  2008. Self-assembly of sparsely distributed molecules: an efficient cluster algorithm. Chem. Phys. Lett. 458:210–13 [Google Scholar]
  80. Whitelam S. 80.  2011. Approximating the dynamical evolution of systems of strongly interacting overdamped particles. Mol. Simul. 37:606–12 [Google Scholar]
  81. ten Wolde PR, Chandler D. 81.  2002. Drying-induced hydrophobic polymer collapse. Proc. Natl. Acad. Sci. USA 99:6539–43 [Google Scholar]
  82. Spaeth JR, Kevrekidis IG, Panagiotopoulos AZ. 82.  2011. A comparison of implicit- and explicit-solvent simulations of self-assembly in block copolymer and solute systems. J. Chem. Phys. 134:164902 [Google Scholar]
  83. Roehm D, Kesselheim S, Arnold A. 83.  2014. Hydrodynamic interactions slow down crystallization of soft colloids. Soft Matter 10:5503–9 [Google Scholar]
  84. Radu M, Schilling T. 84.  2014. Solvent hydrodynamics speed up crystal nucleation in suspensions of hard spheres. Europhys. Lett. 105:26001 [Google Scholar]
  85. Allen RJ, Frenkel D, ten Wolde PR. 85.  2006. Simulating rare events in equilibrium or nonequilibrium stochastic systems. J. Chem. Phys. 124:024102 [Google Scholar]
  86. Valeriani C, Sanz E, Frenkel D. 86.  2005. Rate of homogeneous crystal nucleation in molten NaCl. J. Chem. Phys. 122:194501 [Google Scholar]
  87. Sanz E, Valeriani C, Frenkel D, Dijkstra M. 87.  2007. Evidence for out-of-equilibrium crystal nucleation in suspensions of oppositely charged colloids. Phys. Rev. Lett. 99:055501 [Google Scholar]
  88. Mladek BM, Fornleitner J, Martinez-Veracoechea FJ, Dawid A, Frenkel D. 88.  2012. Quantitative prediction of the phase diagram of DNA-functionalized nanosized colloids. Phys. Rev. Lett. 108:268301 [Google Scholar]
  89. Abascal JLF, Vega C. 89.  2005. A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys. 123:234505 [Google Scholar]
  90. Ouldridge TE, Louis AA, Doye JPK. 90.  2010. DNA nanotweezers studied with a coarse-grained model of DNA. Phys. Rev. Lett. 104:178101 [Google Scholar]
  91. Auer S, Frenkel D. 91.  2001. Prediction of absolute crystal-nucleation rate in hard-sphere colloids. Nature 409:1020–23 [Google Scholar]
  92. Whitelam S, Tamblyn I, Haxton TK, Wieland MB, Champness NR. 92.  et al. 2014. Common physical framework explains phase behavior and dynamics of atomic, molecular, and polymeric network formers. Phys. Rev. X 4:011044 [Google Scholar]
  93. Desgranges C, Delhommelle J. 93.  2007. Polymorph selection during the crystallization of Yukawa systems. J. Chem. Phys. 126:054501 [Google Scholar]
  94. Miller WL, Cacciuto A. 94.  2010. Exploiting classical nucleation theory for reverse self-assembly. J. Chem. Phys. 133:234108 [Google Scholar]
  95. Jankowski E, Glotzer SC. 95.  2012. Screening and designing patchy particles for optimized self-assembly propensity through assembly pathway engineering. Soft Matter 8:2852–59 [Google Scholar]
  96. Klotsa D, Jack RL. 96.  2013. Controlling crystal self-assembly using a real-time feedback scheme. J. Chem. Phys. 138:094502 [Google Scholar]
  97. De Yoreo JJ, Vekilov PG. 97.  2003. Principles of crystal nucleation and growth. Rev. Mineral. Geochem. 54:57–93 [Google Scholar]
  98. Zhang F, Zocher G, Sauter A, Stehle T, Schreiber F. 98.  2011. Novel approach to controlled protein crystallization through ligandation of yttrium cations. J. Appl. Crystallogr. 44:755–62 [Google Scholar]
  99. Oxtoby DW. 99.  1992. Homogeneous nucleation: theory and experiment. J. Phys. Condens. Matter 4:7627–50 [Google Scholar]
  100. Sear RP. 100.  2007. Nucleation: theory and applications to protein solutions and colloidal suspensions. J. Phys. Condens. Matter 19:033101 [Google Scholar]
  101. Ryu S, Cai W. 101.  2010. Validity of classical nucleation theory for Ising models. Phys. Rev. E 81:030601 [Google Scholar]
  102. Winter D, Virnau P, Binder K. 102.  2009. Monte Carlo test of the classical theory for heterogeneous nucleation barriers. Phys. Rev. Lett. 103:225703 [Google Scholar]
  103. Romano F, Sciortino F. 103.  2012. Patterning symmetry in the rational design of colloidal crystals. Nat. Commun. 3:975 [Google Scholar]
  104. Romano F, Sciortino F. 104.  2011. Two dimensional assembly of triblock Janus particles into crystal phases in the two bond per patch limit. Soft Matter 7:5799–804 [Google Scholar]
  105. Vekilov PG. 105.  2005. Two-step mechanism for the nucleation of crystals from solution. J. Cryst. Growth 275:65–76 [Google Scholar]
  106. Chung SY, Kim YM, Kim JG, Kim YJ. 106.  2009. Multiphase transformation and Ostwald's rule of stages during crystallization of a metal phosphate. Nat. Phys. 5:68–73 [Google Scholar]
  107. Liu H, Kumar SK, Douglas JF. 107.  2009. Self-assembly-induced protein crystallization. Phys. Rev. Lett. 103:018101 [Google Scholar]
  108. Hedges LO, Whitelam S. 108.  2011. Limit of validity of Ostwald's rule of stages in a statistical mechanical model of crystallization. J. Chem. Phys. 135:164902 [Google Scholar]
  109. Duff N, Peters B. 109.  2009. Nucleation in a Potts lattice gas model of crystallization from solution. J. Chem. Phys. 131:184101 [Google Scholar]
  110. Shneidman VA. 110.  2003. On the lowest energy nucleation path in a supersaturated lattice gas. J. Stat. Phys. 112:293–318 [Google Scholar]
  111. Villar G, Wilber AW, Williamson AJ, Thiara P, Doye JP. 111.  et al. 2009. Self-assembly and evolution of homomeric protein complexes. Phys. Rev. Lett. 102:118106 [Google Scholar]
  112. Hagan MF. 112.  2014. Modeling viral capsid assembly. Adv. Chem. Phys. 155:1–68 [Google Scholar]
  113. Williamson AJ, Wilber AW, Doye JP, Louis AA. 113.  2011. Templated self-assembly of patchy particles. Soft Matter 7:3423–31 [Google Scholar]
  114. Haxton TK, Whitelam S. 114.  2013. Do hierarchical structures assemble best via hierarchical pathways?. Soft Matter 9:6851–61 [Google Scholar]
  115. Zaccarelli E. 115.  2007. Colloidal gels: equilibrium and non-equilibrium routes. J. Phys. Condens. Matter 19:323101 [Google Scholar]
  116. Meakin P. 116.  1983. Formation of fractal clusters and networks by irreversible diffusion-limited aggregation. Phys. Rev. Lett. 51:1119–22 [Google Scholar]
  117. Clouet E, Laé L, Épicier T, Lefebvre W, Nastar M, Deschamps A. 117.  2006. Complex precipitation pathways in multicomponent alloys. Nat. Mater. 5:482–88 [Google Scholar]
  118. Wu KT, Feng L, Sha R, Dreyfus R, Grosberg AY. 118.  et al. 2013. Kinetics of DNA-coated sticky particles. Phys. Rev. E 88:022304 [Google Scholar]
  119. Nguyen TD, Glotzer SC. 119.  2010. Reconfigurable assemblies of shape-changing nanorods. ACS Nano 4:2585–94 [Google Scholar]
  120. Whitelam S, Rogers C, Pasqua A, Paavola C, Trent J, Geissler PL. 120.  2009. The impact of conformational fluctuations on self-assembly: cooperative aggregation of archaeal chaperonin proteins. Nano Lett. 9:292–97 [Google Scholar]
  121. Gebauer D, Völkel A, Cölfen H. 121.  2008. Stable prenucleation calcium carbonate clusters. Science 322:1819–22 [Google Scholar]
  122. Wallace AF, Hedges LO, Fernandez-Martinez A, Raiteri P, Gale JD. 122.  et al. 2013. Microscopic evidence for liquid-liquid separation in supersaturated CaCO3 solutions. Science 341:885–89 [Google Scholar]
  123. Gliko O, Pan W, Katsonis P, Neumaier N, Galkin O. 123.  et al. 2007. Metastable liquid clusters in super- and undersaturated protein solutions. J. Phys. Chem. B 111:3106–14 [Google Scholar]
  124. Sleutel M, van Driessche AE. 124.  2014. Role of clusters in nonclassical nucleation and growth of protein crystals. Proc. Natl. Acad. Sci. USA 111:E546–53 [Google Scholar]
  125. Hänggi P, Talkner P, Borkovec M. 125.  1990. Reaction-rate theory: fifty years after Kramers. Rev. Mod. Phys. 62:251–341 [Google Scholar]
  126. ten Wolde PR, Ruiz-Montero MJ, Frenkel D. 126.  1996. Numerical calculation of the rate of crystal nucleation in a Lennard-Jones system at moderate undercooling. J. Chem. Phys. 104:9932–47 [Google Scholar]
  127. Van Wylen GJ, Sonntag RE, Wylen GJ. 127.  1973. Fundamentals of Classical Thermodynamics New York: Wiley
  128. Hagan MF, Elrad OM, Jack RL. 128.  2011. Mechanisms of kinetic trapping in self-assembly and phase transformation. J. Chem. Phys. 135:104115 [Google Scholar]
  129. Lechner W, Dellago C, Bolhuis PG. 129.  2011. Role of the prestructured surface cloud in crystal nucleation. Phys. Rev. Lett. 106:085701 [Google Scholar]
  130. Sear RP. 130.  2012. The non-classical nucleation of crystals: microscopic mechanisms and applications to molecular crystals, ice and calcium carbonate. Int. Mater. Rev. 57:328–56 [Google Scholar]
  131. Maibaum L. 131.  2008. Phase transformation near the classical limit of stability. Phys. Rev. Lett. 101:256102 [Google Scholar]
  132. Ryu S, Cai W. 132.  2010. Numerical tests of nucleation theories for the Ising models. Phys. Rev. E 82:011603 [Google Scholar]
  133. Prestipino S, Laio A, Tosatti E. 133.  2014. Shape and area fluctuation effects on nucleation theory. J. Chem. Phys. 140:094501 [Google Scholar]
  134. Agarwal V, Peters B. 134.  2013. Solute precipitate nucleation: a review of theory and simulation advances. Adv. Chem. Phys. 155:97–160 [Google Scholar]
  135. Fusco D, Charbonneau P. 135.  2013. Crystallization of asymmetric patchy models for globular proteins in solution. Phys. Rev. E 88:012721 [Google Scholar]
  136. Lutsko J. 136.  2010. Recent developments in classical density functional theory. Adv. Chem. Phys. 144:1–92 [Google Scholar]
  137. Sanders DP, Larralde H, Leyvraz F. 137.  2007. Competitive nucleation and the Ostwald rule in a generalized Potts model with multiple metastable phases. Phys. Rev. B 75:132101 [Google Scholar]
  138. Binder K, Stauffer D. 138.  1976. Statistical theory of nucleation, condensation and coagulation. Adv. Phys. 25:343–96 [Google Scholar]
  139. Zlotnick A, Johnson JM, Wingfield PW, Stahl SJ, Endres D. 139.  1999. A theoretical model successfully identifies features of hepatitis B virus capsid assembly. Biochemistry 38:14644–52 [Google Scholar]
  140. Knowles TPJ, Waudby CA, Devlin GL, Cohen SIA, Aguzzi A. 140.  et al. 2009. An analytical solution to the kinetics of breakable filament assembly. Science 326:1533–37 [Google Scholar]
  141. Miller WL, Cacciuto A. 141.  2009. Hierarchical self-assembly of asymmetric amphiphatic spherical colloidal particles. Phys. Rev. E 80:021404 [Google Scholar]
  142. Jack RL, Hagan MF, Chandler D. 142.  2007. Fluctuation-dissipation ratios in the dynamics of self-assembly. Phys. Rev. E 76:021119 [Google Scholar]
  143. Grant J, Jack RL. 143.  2012. Quantifying reversibility in a phase-separating lattice gas: an analogy with self-assembly. Phys. Rev. E 85:021112 [Google Scholar]
  144. Mezzenga R, Schurtenberger P, Burbidge A, Michel M. 144.  2005. Understanding foods as soft materials. Nat. Mater. 4:729–40 [Google Scholar]
  145. Fortini A, Sanz E, Dijkstra M. 145.  2008. Crystallization and gelation in colloidal systems with short-ranged attractive interactions. Phys. Rev. E 78:041402 [Google Scholar]
  146. Royall CP, Malins A. 146.  2012. The role of quench rate in colloidal gels. Faraday Discuss. 158:301–11 [Google Scholar]
  147. Teece LJ, Faers MA, Bartlett P. 147.  2011. Ageing and collapse in gels with long-range attractions. Soft Matter 7:1341–51 [Google Scholar]
  148. Ku JY, Aruguete DM, Alivisatos AP, Geissler PL. 148.  2010. Self-assembly of magnetic nanoparticles in evaporating solution. J. Am. Chem. Soc. 133:838–48 [Google Scholar]
  149. Scarlett RT, Ung MT, Crocker JC, Sinno T. 149.  2011. A mechanistic view of binary colloidal superlattice formation using DNA-directed interactions. Soft Matter 7:1912–25 [Google Scholar]
  150. Trinkaus H. 150.  1983. Theory of the nucleation of multicomponent precipitates. Phys. Rev. B 27:7372–78 [Google Scholar]
  151. Schmelzer JWP, Abyzov AS, Möller J. 151.  2004. Nucleation versus spinodal decomposition in phase formation processes in multicomponent solutions. J. Chem. Phys. 121:6900–17 [Google Scholar]
  152. Whitelam S, Hedges LO, Schmit JD. 152.  2014. Self-assembly at a nonequilibrium critical point. Phys. Rev. Lett. 112:155504 [Google Scholar]
  153. Sollich P, Wilding NB. 153.  2011. Polydispersity induced solid-solid transitions in model colloids. Soft Matter 7:4472–84 [Google Scholar]
  154. Sear RP. 154.  1998. Phase separation and crystallisation of polydisperse hard spheres. Europhys. Lett. 44:531–35 [Google Scholar]
  155. Lee E, Kim JK, Lee M. 155.  2009. Reversible scrolling of two-dimensional sheets from the self-assembly of laterally grafted amphiphilic rods. Angew. Chem. Int. Ed. Engl. 48:3657–60 [Google Scholar]
  156. Lutsko JF. 156.  2012. A dynamical theory of nucleation for colloids and macromolecules. J. Chem. Phys. 136:034509 [Google Scholar]
/content/journals/10.1146/annurev-physchem-040214-121215
Loading
/content/journals/10.1146/annurev-physchem-040214-121215
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error