1932

Abstract

A brief history of quantum theory is given to illustrate the barriers to progress caused by preconceived ideas. The biases in my own thinking which I had to overcome to approach the right answer for the right reason are discussed. This is followed by a personal autobiography illustrating how I have led a life of serendipity with no real sense of purpose. Chance events have shaped my life. The algorithms for which I am best known are briefly discussed. Then highlights from the many applications of theory to excited states, bonding in ice, spin properties and magnetism, (e,2e) shake-up spectra, and organic reactions are mentioned. This wide range of applications is mostly due to accidental collaboration with colleagues who sought my help. My real interest was in developing methods which could address these problems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-042018-052300
2019-06-14
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/physchem/70/1/annurev-physchem-042018-052300.html?itemId=/content/journals/10.1146/annurev-physchem-042018-052300&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Davidson ER 1960. First excited 1Σg+ state of H2. A double-minimum problem. J. Chem. Phys. 33:1577
    [Google Scholar]
  2. 2.
    Davidson ER 1961. First excited 1Σg+ state of the hydrogen molecule. J. Chem. Phys. 35:1189–202
    [Google Scholar]
  3. 3.
    Davidson ER, Jones LL 1962. Natural expansion of exact wave functions. II. The hydrogen molecule ground state. J. Chem. Phys. 39:2966–71
    [Google Scholar]
  4. 4.
    Stewart RF, Davidson ER, Simpson WT 1965. Coherent x-ray scattering for the hydrogen atom in the hydrogen molecule. J. Chem. Phys. 42:3175–87
    [Google Scholar]
  5. 5.
    Rothenberg S, Davidson ER 1966. Natural orbitals for hydrogen-molecule excited states. J. Chem. Phys. 45:2560–76
    [Google Scholar]
  6. 6.
    Davidson ER 1964. Single-configuration calculations on excited states of helium. J. Chem. Phys. 41:656–58
    [Google Scholar]
  7. 7.
    Davidson ER 1965. Single-configuration calculations on excited states of helium. II. J. Chem. Phys. 42:4199–200
    [Google Scholar]
  8. 8.
    Bender CF, Davidson ER 1966. A natural orbital based energy calculation for helium hydride and lithium hydride. J. Phys. Chem. 70:2675–85
    [Google Scholar]
  9. 9.
    Bender CF, Davidson ER 1967. Correlation energy and molecular properties of hydrogen fluoride. J. Chem. Phys. 47:360–66
    [Google Scholar]
  10. 10.
    Bender CF, Davidson ER 1969. Studies in configuration interaction: the first-row diatomic hydrides. Phys. Rev. 183:23–30
    [Google Scholar]
  11. 11.
    Nesbet RK, Barr TL, Davidson ER 1969. Correlation energy of the neon atom. Chem. Phys. Lett. 4:203–4
    [Google Scholar]
  12. 12.
    Barr TL, Davidson ER 1970. Nature of the configuration-interaction method in ab initio calculations. I. Ne ground state. Phys. Rev. A 1:644–58
    [Google Scholar]
  13. 13.
    Elbert ST, Davidson ER 1974. Evaluation of electron repulsion integrals over gaussian lobe basis functions. J. Comput. Phys. 16:391–95
    [Google Scholar]
  14. 14.
    McMurchie LE, Davidson ER 1978. One- and two-electron integrals over cartesian gaussian functions. J. Comput. Phys. 26:2218–31
    [Google Scholar]
  15. 15.
    McMurchie LE, Davidson ER 1981. Calculation of integrals over ab initio pseudopotentials. J. Comput. Phys. 44:289–301
    [Google Scholar]
  16. 16.
    Davidson ER 1975. Use of double cosets in constructing integrals over symmetry orbitals. J. Chem. Phys. 62:400–3
    [Google Scholar]
  17. 17.
    Davidson ER 1974. Matrix elements for spin-adapted configurations. Int. J. Quantum Chem. 8:83–89
    [Google Scholar]
  18. 18.
    Davidson ER 1975. The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices. J. Comput. Phys. 17:87–94
    [Google Scholar]
  19. 19.
    Davidson ER 1989. Super-matrix methods. Comput. Phys. Comm. 53:49–60
    [Google Scholar]
  20. 20.
    Murray CW, Racine SC, Davidson ER 1992. Improved algorithms for the lowest few eigenvalues and associated eigenvectors of large matrices. J. Comput. Phys. 103:382–89
    [Google Scholar]
  21. 21.
    Davidson ER, Thompson WJ 1993. Monster matrices: their eigenvalues and eigenvectors. Comput. Phys. 7:519–22
    [Google Scholar]
  22. 22.
    Davidson ER 1973. Spin-restricted open-shell self-consistent-field theory. Chem. Phys. Lett. 21:565–67
    [Google Scholar]
  23. 23.
    Davidson ER, Stenkamp LZ 1976. SCF methods for excited states. Int. J. Quantum Chem. 10:21–31
    [Google Scholar]
  24. 24.
    Hsu HL, Davidson ER, Pitzer RM 1976. An SCF method for hole states. J. Chem. Phys. 65:609–13
    [Google Scholar]
  25. 25.
    Jackels CF, Davidson ER 1974. Equivalence restricted open-shell SCF theory. Int. J. Quantum Chem. 8:707–14
    [Google Scholar]
  26. 26.
    Feller D, Davidson ER 1981. An approximation to frozen natural orbitals through the use of the Hartree–Fock exchange potential. J. Chem. Phys. 74:3977–79
    [Google Scholar]
  27. 27.
    Langhoff SR, Davidson ER 1974. Configuration interaction calculation on the nitrogen molecule. Int. J. Quantum Chem. 8:61–72
    [Google Scholar]
  28. 28.
    Davidson ER, Silver DW 1977. Size consistency in the dilute helium gas electronic structure. Chem. Phys. Lett. 52:403–6
    [Google Scholar]
  29. 29.
    Davidson ER, Feller D 1986. Basis set selection for molecular calculations. Chem. Rev. 86:681–96
    [Google Scholar]
  30. 30.
    Feller D, Boyle CM, Davidson ER 1987. One-electron properties of several small molecules using near Hartree–Fock limit basis sets. J. Chem. Phys. 86:3424–40
    [Google Scholar]
  31. 31.
    Davidson ER 1996. Comment on “Comment on Dunning's correlation-consistent basis sets. Chem. Phys. Lett. 260:514–18
    [Google Scholar]
  32. 32.
    Davidson ER, Katriel J 1986. On the completeness of certain sets of functions in L2(0,∞). J. Phys. A Math. Gen. 19:L5–7
    [Google Scholar]
  33. 33.
    Nitzsche LE, Davidson ER 1978. A perturbation theory calculation on the 1ππ* state of formamide. J. Chem. Phys. 68:3103–9
    [Google Scholar]
  34. 34.
    Davidson ER, Bender CF 1978. Perturbation theory for multiconfiguration reference states. Chem. Phys. Lett. 59:369–74
    [Google Scholar]
  35. 35.
    Davidson ER, McMurchie LE, Day SJ 1981. The BK method: application to methylene. J. Chem. Phys. 74:5491–96
    [Google Scholar]
  36. 36.
    Davidson ER, Ishikawa Y, Malli GL 1981. Validity of first-order perturbation theory for relativistic energy corrections. Chem. Phys. Lett. 84:226–27
    [Google Scholar]
  37. 37.
    Phillips P, Davidson ER 1982. Many-body perturbation theory and phosphorescence: application to CH2. J. Chem. Phys. 76:516–24
    [Google Scholar]
  38. 38.
    Cave RJ, Davidson ER 1988. Hylleraas variational perturbation theory: application to correlation problems in molecular systems. J. Chem. Phys. 88:5770–78
    [Google Scholar]
  39. 39.
    Cave RJ, Davidson ER 1988. Quasidegenerate variational perturbation theory and the calculation of first-order properties from variational perturbation theory wave functions. J. Chem. Phys. 89:6798–814
    [Google Scholar]
  40. 40.
    Murray C, Davidson ER 1991. Perturbation theory for open shell systems. Chem. Phys. Lett. 187:451–54
    [Google Scholar]
  41. 41.
    Murray C, Racine SC, Davidson ER 1992. Calculations on model systems using quasi-degenerate variational perturbation theory with an average pair correction. Int. J. Quant. Chem. 42:273–85
    [Google Scholar]
  42. 42.
    Kozlowski PM, Davidson ER 1994. Considerations in constructing a multireference second-order perturbation theory. J. Chem. Phys. 100:3672–82
    [Google Scholar]
  43. 43.
    Jarzęcki AA, Davidson ER 1998. Does unrestricted Møller–Plesset perturbation theory for low spin converge when the system has a triplet ground state. J. Phys. Chem. A 102:4742–46
    [Google Scholar]
  44. 44.
    Staroverov VN, Davidson ER 1998. The reduced model space method in multireference second-order perturbation theory. Chem. Phys. Lett. 296:435–44
    [Google Scholar]
  45. 45.
    Davidson ER, Hagstrom SA, Chakravorty SJ, Umar VM, Fischer CF 1991. Ground-state correlation energies for two- to ten-electron atomic ions. Phys. Rev. A 44:7071–83
    [Google Scholar]
  46. 46.
    Chakravorty SJ, Gwaltney SR, Davidson ER, Parpia FA, Fischer CF 1993. Ground-state correlation energies for atomic ions with 3 to 18 electrons. Phys. Rev. A 47:3649–70
    [Google Scholar]
  47. 47.
    Chakravorty SJ, Davidson ER 1996. Refinement of the asymptotic Z expansion for the ground-state correlation energies of atomic ions. J. Phys. Chem. 100:6167–72
    [Google Scholar]
  48. 48.
    Jarzęcki AA, Davidson ER 1998. Ground-state energies of isoelectronic atomic series from density-functional theory: exploring the accuracy of density functionals. Phys. Rev. A 58:1902–9
    [Google Scholar]
  49. 49.
    Jarzęcki AA, Davidson ER 2000. Kinetic and potential energy of isoelectronic atomic ions from density-functional theory compared with exact values. Mol. Phys. 98:161089–97
    [Google Scholar]
  50. 50.
    McMurchie LE, Davidson ER 1977. Configuration interaction calculations on the planar 1(π,π*) state of ethylene. J. Chem. Phys. 66:2959–71
    [Google Scholar]
  51. 51.
    Davidson ER 1996. The spatial extent of the V state of ethylene and its relation to dynamic correlation in the Cope rearrangement. J. Phys. Chem. 100:6161–66
    [Google Scholar]
  52. 52.
    McMurchie LE, Davidson ER 1977. Singlet Rydberg states of ethylene. J. Chem. Phys. 67:5613–18
    [Google Scholar]
  53. 53.
    Feller D, Peterson KA, Davidson ER 2014. A systematic approach to the excited states of ethylene using configuration interaction and coupled cluster techniques. J. Chem. Phys. 141:104302
    [Google Scholar]
  54. 54.
    Davidson ER, Jarzęcki AA 1998. Zero point corrections to vertical excitation energies. Chem. Phys. Lett. 285:155–59
    [Google Scholar]
  55. 55.
    Langhoff SR, Elbert ST, Jackels CF, Davidson ER 1974. The 1A1π→π* state of formaldehyde. Chem. Phys. Lett. 29:247–49
    [Google Scholar]
  56. 56.
    Nitzsche LE, Davidson ER 1978. Ab initio studies of the 3* States of glyoxal and methyl glyoxal. Chem. Phys. Lett. 58:171–74
    [Google Scholar]
  57. 57.
    Davidson ER, Nitzsche LE 1979. Vertical excitation energy to the lowest 1ππ* state of acrolein. J. Am. Chem. Soc. 101:6524–26
    [Google Scholar]
  58. 58.
    Rawlings DC, Davidson ER, Gouterman M 1984. Theoretical investigations of electronic states of porphyrins. II. Normal and hyper phosphorus porphyrins. Int. J. Quantum Chem. 26:251–74
    [Google Scholar]
  59. 59.
    Rawlings DC, Gouterman M, Davidson ER, Feller D 1985. Theoretical investigations of the electronic states of porphyrins. III. Low-lying electronic states of porphinatoiron(II). Int. J. Quantum Chem. 28:773–96
    [Google Scholar]
  60. 60.
    Rawlings DC, Gouterman M, Davidson ER, Feller D 1985. Theoretical investigations of Fe porphyrins. V. Low-lying electronic states of bisammineporphinatorion(III). Int. J. Quantum Chem. 28:823–42
    [Google Scholar]
  61. 61.
    Jackels CF, Davidson ER 1976. The two lowest energy 2A′ states of NO2. J. Chem. Phys. 64:2908–17
    [Google Scholar]
  62. 62.
    Davidson ER 1977. Global topology of triatomic potential surfaces. J. Am. Chem. Soc. 99:397–402
    [Google Scholar]
  63. 63.
    Martin RL, Davidson ER 1978. Electronic structure of the sodium trimer. Mol. Phys. 35:1713–29
    [Google Scholar]
  64. 64.
    Davidson ER, Morokuma K 1984. On the proton field gradient of ice Ih. Chem. Phys. Lett. 111:7–10
    [Google Scholar]
  65. 65.
    Yoon BJ, Morokuma K, Davidson ER 1985. Structure of ice Ih. Ab initio two- and three-body water–water potentials and geometry optimization. J. Chem. Phys. 83:1223–31
    [Google Scholar]
  66. 66.
    White JC, Davidson ER 1990. An analysis of the hydrogen bond in ice. J. Chem. Phys. 93:8029–35
    [Google Scholar]
  67. 67.
    Ghanty TK, Staroverov VN, Koren PR, Davidson ER 2000. Is the hydrogen bond in water dimer and ice covalent. ? J. Am. Chem. Soc. 122:1210–14
    [Google Scholar]
  68. 68.
    Chakravorty SJ, Davidson ER 1993. The water dimer: correlation energy calculations. J. Phys. Chem. 97:6373–83
    [Google Scholar]
  69. 69.
    Racine SC, Davidson ER 1993. Electron correlation contribution to the hydrogen bond in hydrogen fluoride dimer. J. Phys. Chem. 97:6367–72
    [Google Scholar]
  70. 70.
    White JC, Davidson ER 1993. Comparison of ab initio and multipole determinations of the electrostatic interaction of acetamide dimers. J. Mol. Struct. THEOCHEM 282:19–31
    [Google Scholar]
  71. 71.
    Kunze KL, Davidson ER 1992. Energetics and electronic structure of chromium hexacarbonyl. J. Phys. Chem. 96:2129–41
    [Google Scholar]
  72. 72.
    Davidson ER, Kunze KL, Machado FBC, Chakravorty SJ 1993. The transition metal–carbonyl bond. Acc. Chem. Res. 26:628–35
    [Google Scholar]
  73. 73.
    Langhoff SR, Davidson ER 1976. Ab initio evaluation of the fine structure and radiative lifetime of the 3A2(n→π*) state of formaldehyde. J. Chem. Phys. 64:4699–710
    [Google Scholar]
  74. 74.
    Langhoff SR, Elbert ST, Davidson ER 1973. A configuration interaction study of the spin dipole-dipole parameters for formaldehyde and methylene. Int. J. Quantum Chem. 7:999–1019
    [Google Scholar]
  75. 75.
    Davidson ER, Ellenbogen JC, Langhoff SR 1980. An ab initio calculation of the zero-field splitting parameters of the 3A″ state of formaldehyde. J. Chem. Phys. 73:865–69
    [Google Scholar]
  76. 76.
    Feller D, Davidson ER 1984. Ab initio configuration interaction calculations of the hyperfine structure in small radicals. J. Chem. Phys. 80:1006–17
    [Google Scholar]
  77. 77.
    Knight LB, Steadman J, Feller D, Davidson ER 1984. Experimental evidence for a C2v (2B1) ground-state structure of the methane cation radical: ESR and ab initio CI investigations of CH4+ and CD2H2+ in neon matrices at 4 K. J. Am. Chem. Soc. 106:3700–1
    [Google Scholar]
  78. 78.
    Frey RF, Davidson ER 1988. Potential energy surfaces of CH+4. J. Chem. Phys. 88:1775–85
    [Google Scholar]
  79. 79.
    Engels B, Peyerimhoff SD, Davidson ER 1987. Calculation of hyperfine coupling constraints: an ab initio MRD-CI study for nitrogen to analyze the effects of basis sets and CI parameters. Mol. Phys. 62:109–27
    [Google Scholar]
  80. 80.
    Feller D, Davidson ER 1988. A multireference CI determination of the isotropic hyperfine constants for first row atoms B–F. J. Chem. Phys. 88:7580–87
    [Google Scholar]
  81. 81.
    Knight LB, Rice WE, Moore L, Davidson ER, Dailey RS 1998. Theoretical and electron spin resonance studies of the HH, HD, and DD spin-pair radicals in rare gas matrices: a case of extreme singlet-triplet mixing. J. Chem. Phys. 109:1409–24
    [Google Scholar]
  82. 82.
    Bazante AP, Davidson ER, Bartlett RJ 2015. The benzene radical anion: a computationally demanding prototype for aromatic anions. J. Chem. Phys. 142:204304
    [Google Scholar]
  83. 83.
    Clark AE, Davidson ER 2001. Local spin. J. Chem. Phys. 115:7382–92
    [Google Scholar]
  84. 84.
    Davidson ER, Clark AE 2002. Local spin II. Mol. Phys. 100:373–83
    [Google Scholar]
  85. 85.
    Clark AE, Davidson ER 2002. Model molecular magnets. J. Phys. Chem. A 106:7456–61
    [Google Scholar]
  86. 86.
    Davidson ER, Clark AE 2007. Analysis of wave functions for open-shell molecules. Phys. Chem. Chem. Phys. 9:1881–94
    [Google Scholar]
  87. 87.
    Rehr JJ, Stern EA, Martin RL, Davidson ER 1978. Extended x-ray-absorption fine-structure amplitudes—wave-function relaxation and chemical effects. Phys. Rev. B 17:560–65
    [Google Scholar]
  88. 88.
    Martin RL, Davidson ER 1977. Correlation states in the valence XPS spectrum of ethylene. Chem. Phys. Lett. 51:237–41
    [Google Scholar]
  89. 89.
    Desjardins SJ, Bawagan ADO, Tan KH, Wang Y, Davidson ER 1994. The interesting photon energy dependence of a correlation peak of ethylene. Chem. Phys. Lett. 227:519–26
    [Google Scholar]
  90. 90.
    Desjardins SJ, Bawagan ADO, Liu ZF, Tan KH, Wang Y, Davidson ER 1995. Correlation states of ethylene. J. Chem. Phys. 102:6385–99
    [Google Scholar]
  91. 91.
    Hollebone BP, Neville JJ, Zheng Y, Brion CE, Wang Y, Davidson ER 1995. Valence electron momentum distributions of ethylene; comparison of EMS measurements with near Hartree-Fock limit, configuration interaction and density functional theory calculations. Chem. Phys. 196:13–35
    [Google Scholar]
  92. 92.
    Davidson ER, Wang YA 1996. Ab initio calculations on excited molecular ions of ethylene and acetylene. Aust. J. Phys. 49:247–60
    [Google Scholar]
  93. 93.
    Davidson ER 1996. Insights into theoretical quantum chemistry from electron momentum spectroscopy. Can. J. Phys. 74:757–62
    [Google Scholar]
  94. 94.
    Bawagan ADO, Davidson ER 1999. Understanding electron correlation: recent progress in molecular synchrotron photoelectron spectroscopy. Advances in Chemical Physics, Vol. 110 I Prigogine, SA Rice 215–66 New York: Wiley
    [Google Scholar]
  95. 95.
    Koren PR, Chen F, Davidson ER 2001. Theoretical study of the photoelectron spectra of gaseous Cu3Cl3. Mol. Phys. 99:1329–34
    [Google Scholar]
  96. 96.
    Davidson ER, Borden WT 1976. Configuration interaction calculations for 1E′ trimethylenemethane. J. Chem. Phys. 64:663–66
    [Google Scholar]
  97. 97.
    Borden WT, Davidson ER 1977. Effects of electron repulsion in conjugated hydrocarbon diradicals. J. Am. Chem. Soc. 99:4587–94
    [Google Scholar]
  98. 98.
    Borden WT, Davidson ER, Hart P 1978. The potential surfaces for the lowest singlet and triplet states of cyclobutadiene. J. Am. Chem. Soc. 100:388–92
    [Google Scholar]
  99. 99.
    Borden WT, Davidson ER 1981. Theoretical studies of diradicals containing four π electrons. Acc. Chem. Res. 14:69–76
    [Google Scholar]
  100. 100.
    Feller D, Borden WT, Davidson ER 1984. Allylic resonance—when is it unimportant. ? J. Am. Chem. Soc. 106:2513–19
    [Google Scholar]
  101. 101.
    Borden WT, Davidson ER 1996. The importance of including dynamic electron correlation in ab initio calculations. Acc. Chem. Res. 29:67–75
    [Google Scholar]
  102. 102.
    Davidson ER, Borden WT 1983. Symmetry breaking in polyatomic molecules: real and artifactual. J. Phys. Chem. 87:4783–90
    [Google Scholar]
  103. 103.
    Osamura Y, Kato S, Morokuma K, Feller D, Davidson ER, Borden WT 1984. Ab initio calculation of the transition state for the Cope rearrangement. J. Am. Chem. Soc. 106:3362–63
    [Google Scholar]
  104. 104.
    Dupuis M, Murray C, Davidson ER 1991. The Cope rearrangement revisited. J. Am. Chem. Soc. 113:9756–59
    [Google Scholar]
  105. 105.
    Kozlowski PM, Dupuis M, Davidson ER 1995. The Cope rearrangement revisited with multireference perturbation theory. J. Am. Chem. Soc. 117:774–78
    [Google Scholar]
  106. 106.
    Staroverov VN, Davidson ER 2000. The diradical character of the Cope rearrangement transition state. J. Am. Chem. Soc. 122:186–87
    [Google Scholar]
  107. 107.
    Staroverov VN, Davidson ER 2000. Transition regions in the Cope rearrangement of 1,5-hexadiene and its cyano derivatives. J. Am. Chem. Soc. 122:7377–85
    [Google Scholar]
  108. 108.
    Staroverov VN, Davidson ER 2001. The Cope rearrangement in theoretical retrospect. J. Mol. Struct. THEOCHEM 573:81–89
    [Google Scholar]
  109. 109.
    Ohta K, Davidson ER, Morokuma K 1985. Dimerization paths of CH2 and SiH2 fragments in ethylene, disilene, and silaethylene: MCSCF and MR-CI study of least and non-least motion paths. J. Am. Chem. Soc. 107:3466–71
    [Google Scholar]
  110. 110.
    Davidson ER 1970. Uncertainty principle for ensembles. Phys. Rev. A 1:30–32
    [Google Scholar]
  111. 111.
    Davidson ER 1969. Linear inequalities for density matrices. J. Math. Phys. 10:725–34
    [Google Scholar]
  112. 112.
    McRae WB, Davidson ER 1972. Linear inequalities for density matrices. II. J. Math. Phys. 13:1527–38
    [Google Scholar]
  113. 113.
    Davidson ER 2003. Linear inequalities for density matrices: III. Int. J. Quant. Chem. 91:1–4
    [Google Scholar]
  114. 114.
    Davidson ER 2013. Linear inequalities for density matrices: IV factorizations. Comput. Theor. Chem. 1003:28–31
    [Google Scholar]
  115. 115.
    Davidson ER 1976. Reduced Density Matrices in Quantum Chemistry New York: Academic
  116. 116.
    Davidson ER 1995. N-representability of the electron pair density. Chem. Phys. Lett. 246:209–13
    [Google Scholar]
  117. 117.
    Katriel J, Davidson ER 1980. Asymptotic behavior of atomic and molecular wave functions. PNAS 77:4403–6
    [Google Scholar]
  118. 118.
    Davidson ER 1967. Electronic population analysis of molecular wavefunctions. J. Chem. Phys. 46:3320–24
    [Google Scholar]
  119. 119.
    Rawlings DC, Davidson ER 1985. Molecular electron density distributions in position and momentum space. J. Phys. Chem. 89:969–74
    [Google Scholar]
  120. 120.
    Staroverov VN, Davidson ER 2001. Ab initio Compton maps of small molecules. Mol. Phys. 99:175–86
    [Google Scholar]
  121. 121.
    Davidson ER, Chakravorty S 1992. A test of the Hirshfeld definition of atomic charges and moments. Theor. Chim. Acta 83:319–30
    [Google Scholar]
  122. 122.
    Staroverov VN, Davidson ER 2000. Electron distributions in radicals. Int. J. Quantum Chem. 77:316–23
    [Google Scholar]
  123. 123.
    Staroverov VN, Davidson ER 2000. Charge densities for singlet and triplet electron pairs. Int. J. Quantum Chem. 77:651–60
    [Google Scholar]
  124. 124.
    Staroverov VN, Davidson ER 2000. Distribution of effectively unpaired electrons. Chem. Phys. Lett. 330:161–68
    [Google Scholar]
  125. 125.
    Plakhutin BN, Davidson ER 2009. Koopmans’ theorem in the restricted open-shell Hartree–Fock method. 1. A variational approach. J. Phys. Chem. A 113:12386–95
    [Google Scholar]
  126. 126.
    Davidson ER, Plakhutin BN 2010. Koopmans's theorem in the restricted Hartree–Fock method. II. The second canonical set of orbitals and orbital energies. J. Chem. Phys. 132:184110
    [Google Scholar]
  127. 127.
    Plakhutin BN, Davidson ER 2014. Canonical form of the Hartree–Fock orbitals in open-shell systems. J. Chem. Phys. 140:014102
    [Google Scholar]
  128. 128.
    Warner IM, Callis JB, Davidson ER, Gouterman M, Christian GD 1975. Fluorescence analysis: a new approach. Anal. Lett. 8:665–81
    [Google Scholar]
  129. 129.
    Warner IM, Christian GD, Davidson ER, Callis JB 1977. Analysis of multicomponent fluorescence data. Anal. Chem. 49:564–73
    [Google Scholar]
  130. 130.
    Warner IM, Davidson ER, Christian GD 1977. Quantitative analysis of multicomponent fluorescence data by the methods of least squares and non-negative least sum of errors. Anal. Chem. 49:2155–59
    [Google Scholar]
  131. 131.
    Ho C-N, Christian GD, Davidson ER 1978. Application of the method of rank annihilation to quantitative analyses of multicomponent fluorescence data from the video fluorometer. Anal. Chem. 50:1108–13
    [Google Scholar]
  132. 132.
    Appellof CJ, Davidson ER 1981. Strategies for analyzing data from video fluorometric monitoring of liquid chromatographic effluents. Anal. Chem. 53:2053–56
    [Google Scholar]
  133. 133.
    Appellof C, Davidson ER 1983. Three-dimensional rank annihilation for multi-component determinations. Anal. Chim. Acta 146:9–14
    [Google Scholar]
  134. 134.
    Neal SL, Davidson ER, Warner IM 1990. Resolution of severely overlapped spectra from matrix-formatted spectral data using constrained nonlinear optimization. Anal. Chem. 62:658–64
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-042018-052300
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error