1932

Abstract

The air–water interface is ubiquitous in nature, as manifested in the form of the surfaces of oceans, lakes, and atmospheric aerosols. The aerosol interface, in particular, can play a crucial role in atmospheric chemistry. The adsorption of atmospheric species onto and into aerosols modifies their concentrations and chemistries. Moreover, the aerosol phase allows otherwise unlikely solution-phase chemistry to occur in the atmosphere. The effect of the air–water interface on these processes is not entirely known. This review summarizes recent theoretical investigations of the interactions of atmosphere species with the air–water interface, including reactant adsorption, photochemistry, and the spectroscopy of reactants at the water surface, with an emphasis on understanding differences between interfacial chemistries and the chemistries in both bulk solution and the gas phase. The results discussed here enable an understanding of fundamental concepts that lead to potential air–water interface effects, providing a framework to understand the effects of water surfaces on our atmosphere.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-042018-052311
2019-06-14
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/physchem/70/1/annurev-physchem-042018-052311.html?itemId=/content/journals/10.1146/annurev-physchem-042018-052311&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    George C, Ammann M, D'Anna B, Donaldson DJ, Nizkorodov SA 2015. Heterogeneous photochemistry in the atmosphere. Chem. Rev. 115:4218–58
    [Google Scholar]
  2. 2.
    Seinfeld JH, Pandis SN 1998. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change New York: John Wiley & Sons88 pp.
  3. 3.
    Tang M, Cziczo DJ, Grassian VH 2016. Interactions of water with mineral dust aerosol: water adsorption, hygroscopicity, cloud condensation, and ice nucleation. Chem. Rev. 116:4205–59
    [Google Scholar]
  4. 4.
    Carslaw KS, Lee LA, Reddington CL, Pringle KJ, Rap A et al. 2013. Large contribution of natural aerosols to uncertainty in indirect forcing. Nature 503:67–71
    [Google Scholar]
  5. 5.
    Stevens B, Feingold G 2009. Untangling aerosol effects on clouds and precipitation in a buffered system. Nature 461:607–13
    [Google Scholar]
  6. 6.
    Finlayson-Pitts BJ, Pitts JN Jr 2000. Homogeneous and heterogeneous chemistry in the stratosphere. Chemistry of the Upper and Lower Atmosphere657–726 San Diego, CA: Academic
    [Google Scholar]
  7. 7.
    Liu P, Harder E, Berne BJ 2005. Hydrogen-bond dynamics in the air−water interface. J. Phys. Chem. B 109:2949–55
    [Google Scholar]
  8. 8.
    Rivera JL, Starr FW, Paricaud P, Cummings PT 2006. Polarizable contributions to the surface tension of liquid water. J. Chem. Phys. 125:094712
    [Google Scholar]
  9. 9.
    Kerbrat M, Pinzer B, Huthwelker T, Gäggeler HW, Ammann M, Schneebeli M 2008. Measuring the specific surface area of snow with X-ray tomography and gas adsorption: comparison and implications for surface smoothness. Atmos. Chem. Phys. 8:1261–75
    [Google Scholar]
  10. 10.
    Zhong J, Zhao Y, Li L, Li H, Francisco JS, Zeng XC 2015. Interaction of the NH2 radical with the surface of a water droplet. J. Am. Chem. Soc. 137:12070–78
    [Google Scholar]
  11. 11.
    Tobias DJ, Stern AC, Baer MD, Levin Y, Mundy CJ 2013. Simulation and theory of ions at atmospherically relevant aqueous liquid-air interfaces. Annu. Rev. Phys. Chem. 64:339–59
    [Google Scholar]
  12. 12.
    Takahashi H, Maruyama K, Karino Y, Morita A, Nakano M et al. 2011. Energetic origin of proton affinity to the air/water interface. J. Phys. Chem. B 115:4745–51
    [Google Scholar]
  13. 13.
    Caleman C, Hub JS, van Maaren PJ, van der Spoel D 2011. Atomistic simulation of ion solvation in water explains surface preference of halides. PNAS 108:6838–42
    [Google Scholar]
  14. 14.
    D'Auria R, Tobias DJ 2009. Relation between surface tension and ion adsorption at the air−water interface: a molecular dynamics simulation study. J. Phys. Chem. A 113:7286–93
    [Google Scholar]
  15. 15.
    Horinek D, Herz A, Vrbka L, Sedlmeier F, Mamatkulov SI, Netz RR 2009. Specific ion adsorption at the air/water interface: the role of hydrophobic solvation. Chem. Phys. Lett. 479:173–83
    [Google Scholar]
  16. 16.
    Enami S, Hoffmann MR, Colussi AJ 2010. Proton availability at the air/water interface. J. Phys. Chem. Lett. 1:1599–604
    [Google Scholar]
  17. 17.
    Levin Y 2009. Polarizable ions at interfaces. Phys. Rev. Lett. 102:147803
    [Google Scholar]
  18. 18.
    Levin Y, dos Santos AP, Diehl A 2009. Ions at the air-water interface: An end to a hundred-year-old mystery. ? Phys. Rev. Lett. 103:257802
    [Google Scholar]
  19. 19.
    Zhao Y, Li H, Zeng XC 2013. First-principles molecular dynamics simulation of atmospherically relevant anion solvation in supercooled water droplet. J. Am. Chem. Soc. 135:15549–58
    [Google Scholar]
  20. 20.
    Mucha M, Frigato T, Levering LM, Allen HC, Tobias DJ et al. 2005. Unified molecular picture of the surfaces of aqueous acid, base, and salt solutions. J. Phys. Chem. B 109:7617–23
    [Google Scholar]
  21. 21.
    Duignan TT, Parsons DF, Ninham BW 2015. Hydronium and hydroxide at the air–water interface with a continuum solvent model. Chem. Phys. Lett. 635:1–12
    [Google Scholar]
  22. 22.
    Wick CD 2012. Hydronium behavior at the air–water interface with a polarizable multistate empirical valence bond model. J. Phys. Chem. C 116:4026–38
    [Google Scholar]
  23. 23.
    Jagoda-Cwiklik B, Cwiklik L, Jungwirth P 2011. Behavior of the Eigen form of hydronium at the air/water interface. J. Phys. Chem. A 115:5881–86
    [Google Scholar]
  24. 24.
    Lu JR, Thomas RK, Penfold J 2000. Surfactant layers at the air/water interface: structure and composition. Adv. Colloid Interface Sci. 84:143–304
    [Google Scholar]
  25. 25.
    Prosser AJ, Franses EI 2001. Adsorption and surface tension of ionic surfactants at the air–water interface: review and evaluation of equilibrium models. Colloids Surfaces A Physicochem. Eng. Aspects 178:1–40
    [Google Scholar]
  26. 26.
    Penfold J, Thomas RK 2010. Mixed surfactants at the air-water interface. Annu. Rep. Sect. C Phys. Chem. 106:14–35
    [Google Scholar]
  27. 27.
    Svitova TF, Wetherbee MJ, Radke CJ 2003. Dynamics of surfactant sorption at the air/water interface: continuous-flow tensiometry. J. Colloid Interface Sci. 261:170–79
    [Google Scholar]
  28. 28.
    Khurana E, Nielsen SO, Klein ML 2006. Gemini surfactants at the air/water interface: a fully atomistic molecular dynamics study. J. Phys. Chem. B 110:22136–42
    [Google Scholar]
  29. 29.
    Benichou E, Bruyère A, Forel E, Bonhomme O, Brevet P-F 2015. Molecular organization and phase transition at the air-water interface investigated by second-harmonic generation. Proc. SPIE 9360:93600T
    [Google Scholar]
  30. 30.
    Zhang W-k, Zheng D-s, Xu Y-y, Bian H-t, Guo Y, Wang H-f 2005. Reconsideration of second-harmonic generation from isotropic liquid interface: Broken Kleinman symmetry of neat air/water interface from dipolar contribution. J. Chem. Phys. 123:224713
    [Google Scholar]
  31. 31.
    Sahu K, Eisenthal KB, McNeill VF 2011. Competitive adsorption at the air–water interface: a second harmonic generation study. J. Phys. Chem. C 115:9701–5
    [Google Scholar]
  32. 32.
    Biesinger MC, Brown C, Mycroft JR, Davidson RD, McIntyre NS 2004. X-ray photoelectron spectroscopy studies of chromium compounds. Surf. Interface Anal. 36:1550–63
    [Google Scholar]
  33. 33.
    Beloqui Redondo A, Jordan I, Ziazadeh I, Kleibert A, Giorgi JB et al. 2015. Nanoparticle-induced charge redistribution of the air–water interface. J. Phys. Chem. C 119:2661–68
    [Google Scholar]
  34. 34.
    Sun Q, Guo Y 2016. Vibrational sum frequency generation spectroscopy of the air/water interface. J. Mol. Liquids 213:28–32
    [Google Scholar]
  35. 35.
    Okuno M, Ishibashi T-A 2015. Heterodyne-detected achiral and chiral vibrational sum frequency generation of proteins at air/water interface. J. Phys. Chem. C 119:9947–54
    [Google Scholar]
  36. 36.
    Rao Y, Turro NJ, Eisenthal KB 2010. Solvation dynamics at the air/water interface with time-resolved sum-frequency generation. J. Phys. Chem. C 114:17703–8
    [Google Scholar]
  37. 37.
    Niaura G, Kuprionis Z, Ignatjev I, Kažemėkaitė M, Valincius G et al. 2008. Probing of lipase activity at air/water interface by sum-frequency generation spectroscopy. J. Phys. Chem. B 112:4094–101
    [Google Scholar]
  38. 38.
    Finlayson-Pitts BJ, Pitts JN 1997. Tropospheric air pollution: ozone, airborne toxics, polycyclic aromatic hydrocarbons, and particles. Science 276:1045
    [Google Scholar]
  39. 39.
    Finlayson-Pitts BJ 2010. Atmospheric chemistry. PNAS 107:6566–67
    [Google Scholar]
  40. 40.
    Mmereki BT, Donaldson DJ, Gilman JB, Eliason TL, Vaida V 2004. Kinetics and products of the reaction of gas-phase ozone with anthracene adsorbed at the air–aqueous interface. Atmos. Environ. 38:6091–103
    [Google Scholar]
  41. 41.
    Dobson CM, Ellison GB, Tuck AF, Vaida V 2000. Atmospheric aerosols as prebiotic chemical reactors. PNAS 97:11864–68
    [Google Scholar]
  42. 42.
    Tervahattu H, Hartonen K, Kerminen V-M, Kupiainen K, Aarnio P et al. 2002. New evidence of an organic layer on marine aerosols. J. Geophys. Res. Atmos. 107:AAC1–8
    [Google Scholar]
  43. 43.
    Vaida V 2011. Perspective: water cluster mediated atmospheric chemistry. J. Chem. Phys. 135:020901
    [Google Scholar]
  44. 44.
    Donaldson DJ, Vaida V 2006. The influence of organic films at the air−aqueous boundary on atmospheric processes. Chem. Rev. 106:1445–61
    [Google Scholar]
  45. 45.
    Ellison GB, Tuck AF, Vaida V 1999. Atmospheric processing of organic aerosols. J. Geophys. Res. Atmos. 104:11633–41
    [Google Scholar]
  46. 46.
    Donaldson DJ, Anderson D 1999. Adsorption of atmospheric gases at the air−water interface. 2. C1−C4 alcohols, acids, and acetone. J. Phys. Chem. A 103:871–76
    [Google Scholar]
  47. 47.
    Mmereki BT, Donaldson DJ 2003. Direct observation of the kinetics of an atmospherically important reaction at the air−aqueous interface. J. Phys. Chem. A 107:11038–42
    [Google Scholar]
  48. 48.
    Donaldson DJ 1999. Adsorption of atmospheric gases at the air−water interface. I. NH3. J. Phys. Chem. A 103:62–70
    [Google Scholar]
  49. 49.
    Kolb CE, Cox RA, Abbatt JPD, Ammann M, Davis EJ et al. 2010. An overview of current issues in the uptake of atmospheric trace gases by aerosols and clouds. Atmos. Chem. Phys. 10:10561–605
    [Google Scholar]
  50. 50.
    Ota ST, Richmond GL 2012. Uptake of SO2 to aqueous formaldehyde surfaces. J. Am. Chem. Soc. 134:9967–77
    [Google Scholar]
  51. 51.
    Codorniu-Hernández E, Kusalik PG 2012. Mobility mechanism of hydroxyl radicals in aqueous solution via hydrogen transfer. J. Am. Chem. Soc. 134:532–38
    [Google Scholar]
  52. 52.
    Shamay ES, Johnson KE, Richmond GL 2011. Dancing on water: the choreography of sulfur dioxide adsorption to aqueous surfaces. J. Phys. Chem. C 115:25304–14
    [Google Scholar]
  53. 53.
    Shamay ES, Valley NA, Moore FG, Richmond GL 2013. Staying hydrated: the molecular journey of gaseous sulfur dioxide to a water surface. Phys. Chem. Chem. Phys. 15:6893–902
    [Google Scholar]
  54. 54.
    Hammerich AD, Buch V 2012. Ab initio molecular dynamics simulations of the liquid/vapor interface of sulfuric acid solutions. J. Phys. Chem. A 116:5637–52
    [Google Scholar]
  55. 55.
    Hammerich AD, Buch V, Mohamed F 2008. Ab initio simulations of sulfuric acid solutions. Chem. Phys. Lett. 460:423–31
    [Google Scholar]
  56. 56.
    Zhong J, Kumar M, Zhu CQ, Francisco JS, Zeng XC 2017. Surprising stability of larger Criegee intermediates on aqueous interfaces. Angew. Chem. Int. Ed. 56:7740–44
    [Google Scholar]
  57. 57.
    Kumar M, Zhong J, Francisco JS, Zeng XC 2017. Criegee intermediate-hydrogen sulfide chemistry at the air/water interface. Chem. Sci. 8:5385–91
    [Google Scholar]
  58. 58.
    Belair SD, Hernandez H, Francisco JS 2004. The origin of sticking between a hydroperoxy radical and a water surface. J. Am. Chem. Soc. 126:3024–25
    [Google Scholar]
  59. 59.
    Du S, Francisco JS, Schenter GK, Garrett BC 2009. Interaction of ClO radical with liquid water. J. Am. Chem. Soc. 131:14778–85
    [Google Scholar]
  60. 60.
    Martins-Costa MTC, Anglada JM, Francisco JS, Ruiz-Lopez MF 2012. Reactivity of atmospherically relevant small radicals at the air–water interface. Angew. Chem. Int. Ed. 51:5413–17
    [Google Scholar]
  61. 61.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML 1983. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79:926–35
    [Google Scholar]
  62. 62.
    Abascal JLF, Vega C 2005. A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys. 123:234505
    [Google Scholar]
  63. 63.
    Rick SW 2004. A reoptimization of the five-site water potential (TIP5P) for use with Ewald sums. J. Chem. Phys. 120:6085–93
    [Google Scholar]
  64. 64.
    Kühne TD 2014. Second generation Car–Parrinello molecular dynamics. Wiley Interdiscip. Rev. Comput. Mol. Sci. 4:391–406
    [Google Scholar]
  65. 65.
    Iftimie R, Minary P, Tuckerman ME 2005. Ab initio molecular dynamics: concepts, recent developments, and future trends. PNAS 102:6654–59
    [Google Scholar]
  66. 66.
    Mones L, Jones A, Gotz AW, Laino T, Walker RC et al. 2015. The adaptive buffered force QM/MM method in the CP2K and AMBER software packages. J. Comput. Chem. 36:633–48
    [Google Scholar]
  67. 67.
    Parker CL, Ventura ON, Burt SK, Cachau RE 2003. DYNGA: a general purpose QM-MM-MD program. I. Application to water. Mol. Phys. 101:2659–68
    [Google Scholar]
  68. 68.
    Ensing B, De Vivo M, Liu Z, Moore P, Klein ML 2006. Metadynamics as a tool for exploring free energy landscapes of chemical reactions. Acc. Chem. Res. 39:73–81
    [Google Scholar]
  69. 69.
    Laio A, Gervasio FL 2008. Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep. Prog. Phys. 71:126601
    [Google Scholar]
  70. 70.
    Kumar M, Zhong J, Francisco JS, Zeng XC 2017. Criegee intermediate-hydrogen sulfide chemistry at the air/water interface. Chem. Sci. 8:5385–91
    [Google Scholar]
  71. 71.
    Martins-Costa MT, Anglada JM, Francisco JS, Ruiz-Lopez MF 2012. Reactivity of volatile organic compounds at the surface of a water droplet. J. Am. Chem. Soc. 134:11821–27
    [Google Scholar]
  72. 72.
    Anglada JM, Martins-Costa M, Ruiz-López MF, Francisco JS 2014. Spectroscopic signatures of ozone at the air–water interface and photochemistry implications. PNAS 111:11618–23
    [Google Scholar]
  73. 73.
    Lightfoot PD, Cox RA, Crowley JN, Destriau M, Hayman GD et al. 1992. Organic peroxy radicals: kinetics, spectroscopy and tropospheric chemistry. Atmos. Environ. A. Gen. Top. 26:1805–961
    [Google Scholar]
  74. 74.
    Wallington TJ, Dagaut P, Kurylo MJ 1992. UV absorption cross sections and reaction kinetics and mechanisms for peroxy radicals in the gas phase. Chem. Rev. 92:667–710
    [Google Scholar]
  75. 75.
    Kumar M, Francisco JS 2015. Red-light-induced decomposition of an organic peroxy radical: anew source of the HO2 radical. Angew. Chem. Int. Ed. 54:15711–14
    [Google Scholar]
  76. 76.
    Shi Q, Belair SD, Francisco JS, Kais S 2003. On the interactions between atmospheric radicals and cloud droplets: a molecular picture of the interface. PNAS 100:9686–90
    [Google Scholar]
  77. 77.
    Cantrell CA, Shetter RE, Gilpin TM, Calvert JG 1996. Peroxy radicals measured during Mauna Loa Observatory Photochemistry Experiment 2: The data and first analysis. J. Geophys. Res. Atmos. 101:14643–52
    [Google Scholar]
  78. 78.
    Kanaya Y, Sadanaga Y, Matsumoto J, Sharma UK, Hirokawa J et al. 2000. Daytime HO2 concentrations at Oki Island, Japan, in summer 1998: comparison between measurement and theory. J. Geophys. Res. Atmos. 105:24205–22
    [Google Scholar]
  79. 79.
    Torrent-Sucarrat M, Ruiz-Lopez MF, Martins-Costa M, Francisco JS, Anglada JM 2011. Protonation of water clusters induced by hydroperoxyl radical surface adsorption. Chem. Eur. J. 17:5076–85
    [Google Scholar]
  80. 80.
    Martins-Costa MTC, Anglada JM, Francisco JS, Ruiz-Lopez MF 2012. Reactivity of atmospherically relevant small radicals at the air-water interface. Angew. Chem. 124:5509–13
    [Google Scholar]
  81. 81.
    Wood PM 1974. The redox potential of the system oxygen—superoxide. FEBS Lett 44:22–24
    [Google Scholar]
  82. 82.
    Anderson JG, Toohey DW, Brune WH 1991. Free radicals within the Antarctic vortex: the role of CFCs in Antarctic ozone loss. Science 251:39–46
    [Google Scholar]
  83. 83.
    Barrett JW, Solomon PM, de Zafra RL, Jaramillo M, Emmons L, Parrish A 1988. Formation of the Antarctic ozone hole by the CIO dimer mechanism. Nature 336:455–58
    [Google Scholar]
  84. 84.
    Stolarski RS, Krueger AJ, Schoeberl MR, McPeters RD, Newman PA, Alpert JC 1986. Nimbus 7 satellite measurements of the springtime Antarctic ozone decrease. Nature 322:808–11
    [Google Scholar]
  85. 85.
    Thrush B 1988. Causes of ozone depletion. Nature 332:784–85
    [Google Scholar]
  86. 86.
    McKeachie JR, Appel MF, Kirchner U, Schindler RN, Benter T 2004. Observation of a heterogeneous source of OClO from the reaction of ClO radicals on ice. J. Phys. Chem. B 108:16786–97
    [Google Scholar]
  87. 87.
    McGrath MP, Clemitshaw KC, Rowland FS, Hehre WJ 1990. Structures, relative stabilities, and vibrational spectra of isomers of chlorine oxide dimer (Cl2O2): the role of the chlorine oxide dimer in Antarctic ozone depleting mechanisms. J. Phys. Chem. 94:6126–32
    [Google Scholar]
  88. 88.
    Zhu C, Gao Y, Zhong J, Huang Y, Francisco JS, Zeng XC 2016. Communication: interaction of BrO radical with the surface of water. J. Chem. Phys. 145:241102
    [Google Scholar]
  89. 89.
    Behera SN, Sharma M, Aneja VP, Balasubramanian R 2013. Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies. Environ. Sci. Pollut. Res. 20:8092–131
    [Google Scholar]
  90. 90.
    Katata G, Hayashi K, Ono K, Nagai H, Miyata A, Mano M 2013. Coupling atmospheric ammonia exchange process over a rice paddy field with a multi-layer atmosphere–soil–vegetation model. Agric. Forest Meteorol. 180:1–21
    [Google Scholar]
  91. 91.
    Wichink Kruit RJ, Schaap M, Sauter FJ, van Zanten MC, van Pul WAJ 2012. Modeling the distribution of ammonia across Europe including bi-directional surface–atmosphere exchange. Biogeosciences 9:5261–77
    [Google Scholar]
  92. 92.
    Ngugi DK, Brune A 2012. Nitrate reduction, nitrous oxide formation, and anaerobic ammonia oxidation to nitrite in the gut of soil-feeding termites (Cubitermes and Ophiotermes spp.). Environ. Microbiol. 14:860–71
    [Google Scholar]
  93. 93.
    Zhu X, Burger M, Doane TA, Horwath WR 2013. Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability. PNAS 110:6328–33
    [Google Scholar]
  94. 94.
    Anglada JM, Olivella S, Solé A 2014. Unexpected reactivity of amidogen radical in the gas phase degradation of nitric acid. J. Am. Chem. Soc. 136:6834–37
    [Google Scholar]
  95. 95.
    Laszlo B, Alfassi ZB, Neta P, Huie RE 1998. Kinetics and mechanism of the reaction of NH2 with O2 in aqueous solutions. J. Phys. Chem. A 102:8498–504
    [Google Scholar]
  96. 96.
    Kesselmeier J, Staudt M 1999. Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J. Atmos. Chem. 33:23–88
    [Google Scholar]
  97. 97.
    Meller R, Moortgat GK 2000. Temperature dependence of the absorption cross sections of formaldehyde between 223 and 323 K in the wavelength range 225–375 nm. J. Geophys. Res. Atmos. 105:7089–101
    [Google Scholar]
  98. 98.
    Zhou X, Lee Y-N, Newman L, Chen X, Mopper K 1996. Tropospheric formaldehyde concentration at the Mauna Loa Observatory during the Mauna Loa Observatory Photochemistry Experiment 2. J. Geophys. Res. Atmos. 101:14711–19
    [Google Scholar]
  99. 99.
    Carlier P, Hannachi H, Mouvier G 1986. The chemistry of carbonyl compounds in the atmosphere—a review. Atmos. Environ. 20:2079–99
    [Google Scholar]
  100. 100.
    Merienne MF, Coquart B, Jenouvrier A 1990. Temperature effect on the ultraviolet absorption of CFCl3, CF2Cl2 and N2O. Planet. Space Sci. 38:617–25
    [Google Scholar]
  101. 101.
    Atkinson R 2000. Atmospheric chemistry of VOCs and NOx. Atmos. . Environ 34:2063–101
    [Google Scholar]
  102. 102.
    Anglada JM, Domingo VM 2005. Mechanism for the gas-phase reaction between formaldehyde and hydroperoxyl radical. A theoretical study. J. Phys. Chem. A 109:10786–94
    [Google Scholar]
  103. 103.
    Jayne JT, Duan SX, Davidovits P, Worsnop DR, Zahniser MS, Kolb CE 1992. Uptake of gas-phase aldehydes by water surfaces. J. Phys. Chem. 96:5452–60
    [Google Scholar]
  104. 104.
    Jayne JT, Worsnop DR, Kolb CE, Swartz E, Davidovits P 1996. Uptake of gas-phase formaldehyde by aqueous acid surfaces. J. Phys. Chem. 100:8015–22
    [Google Scholar]
  105. 105.
    Allou L, El Maimouni L, Le Calvé S 2011. Henry's law constant measurements for formaldehyde and benzaldehyde as a function of temperature and water composition. Atmos. Environ. 45:2991–98
    [Google Scholar]
  106. 106.
    Ge X, Wexler AS, Clegg SL 2011. Atmospheric amines—part I. A review. Atmos. Environ. 45:524–46
    [Google Scholar]
  107. 107.
    Lee D, Wexler AS 2013. Atmospheric amines—part III: photochemistry and toxicity. Atmos. Environ. 71:95–103
    [Google Scholar]
  108. 108.
    Laskin A, Laskin J, Nizkorodov SA 2015. Chemistry of atmospheric brown carbon. Chem. Rev. 115:4335–82
    [Google Scholar]
  109. 109.
    Loukonen V, Kurtén T, Ortega IK, Vehkamäki H, Pádua AAH et al. 2010. Enhancing effect of dimethylamine in sulfuric acid nucleation in the presence of water—a computational study. Atmos. Chem. Phys. 10:4961–74
    [Google Scholar]
  110. 110.
    Hallquist M, Wenger JC, Baltensperger U, Rudich Y, Simpson D et al. 2009. The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos. Chem. Phys. 9:5155–236
    [Google Scholar]
  111. 111.
    Hoehn RD, Carignano MA, Kais S, Zhu C, Zhong J et al. 2016. Hydrogen bonding and orientation effects on the accommodation of methylamine at the air-water interface. J. Chem. Phys. 144:214701
    [Google Scholar]
  112. 112.
    Vacha R, Jungwirth P, Chen J, Valsaraj K 2006. Adsorption of polycyclic aromatic hydrocarbons at the air-water interface: molecular dynamics simulations and experimental atmospheric observations. Phys. Chem. Chem. Phys. 8:4461–67
    [Google Scholar]
  113. 113.
    Vácha R, Cwiklik L, Řezáč J, Hobza P, Jungwirth P et al. 2008. Adsorption of aromatic hydrocarbons and ozone at environmental aqueous surfaces. J. Phys. Chem. A 112:4942–50
    [Google Scholar]
  114. 114.
    Gladich I, Shepson P, Szleifer I, Carignano M 2010. Halide and sodium ion parameters for modeling aqueous solutions in TIP5P-Ew water. Chem. Phys. Lett. 489:113–17
    [Google Scholar]
  115. 115.
    Gladich I, Habartová A, Roeselová M 2014. Adsorption, mobility, and self-association of naphthalene and 1-methylnaphthalene at the water–vapor interface. J. Phys. Chem. A 118:1052–66
    [Google Scholar]
  116. 116.
    Haigh JD, Winning AR, Toumi R, Harder JW 2010. An influence of solar spectral variations on radiative forcing of climate. Nature 467:696–99
    [Google Scholar]
  117. 117.
    Shindell DT, Faluvegi G, Koch DM, Schmidt GA, Unger N, Bauer SE 2009. Improved attribution of climate forcing to emissions. Science 326:716
    [Google Scholar]
  118. 118.
    Levy H 1971. Normal atmosphere: large radical and formaldehyde concentrations predicted. Science 173:141
    [Google Scholar]
  119. 119.
    Di Carlo P, Brune WH, Martinez M, Harder H, Lesher R et al. 2004. Missing OH reactivity in a forest: evidence for unknown reactive biogenic VOCs. Science 304:722
    [Google Scholar]
  120. 120.
    Hofzumahaus A, Rohrer F, Lu K, Bohn B, Brauers T et al. 2009. Amplified trace gas removal in the troposphere. Science 324:1702
    [Google Scholar]
  121. 121.
    Wennberg PO, Dabdub D 2008. Rethinking ozone production. Science 319:1624
    [Google Scholar]
  122. 122.
    Frost GJ, Vaida V 1995. Atmospheric implications of the photolysis of the ozone-water weakly bound complex. J. Geophys. Res. Atmos. 100:18803–9
    [Google Scholar]
  123. 123.
    Zhang X, He SZ, Chen ZM, Zhao Y, Hua W 2012. Methyl hydroperoxide (CH3OOH) in urban, suburban and rural atmosphere: ambient concentration, budget, and contribution to the atmospheric oxidizing capacity. Atmos. Chem. Phys. 12:8951–62
    [Google Scholar]
  124. 124.
    Martins-Costa M, Anglada JM, Francisco JS, Ruiz-López MF 2017. Impact of cloud water droplets on the OH production rate from peroxide photolysis. Phys. Chem. Chem. Phys. 19:31621–27
    [Google Scholar]
  125. 125.
    Roehl CM, Marka Z, Fry JL, Wennberg PO 2007. Near-UV photolysis cross sections of CH3OOH and HOCH2OOH determined via action spectroscopy. Atmos. Chem. Phys. 7:713–20
    [Google Scholar]
  126. 126.
    Hattori S, Schmidt JA, Johnson MS, Danielache SO, Yamada A et al. 2013. SO2 photoexcitation mechanism links mass-independent sulfur isotopic fractionation in cryospheric sulfate to climate impacting volcanism. PNAS 110:17656–61
    [Google Scholar]
  127. 127.
    Yang Z-Z, He L-N, Zhao Y-N, Yu B 2013. Highly efficient SO2 absorption and its subsequent utilization by weak base/polyethylene glycol binary system. Environ. Sci. Technol. 47:1598–605
    [Google Scholar]
  128. 128.
    Neely RR, Toon OB, Solomon S, Vernier JP, Alvarez C et al. 2013. Recent anthropogenic increases in SO2 from Asia have minimal impact on stratospheric aerosol. Geophys. Res. Lett. 40:999–1004
    [Google Scholar]
  129. 129.
    Tailor R, Abboud M, Sayari A 2014. Supported polytertiary amines: highly efficient and selective SO2 adsorbents. Environ. Sci. Technol. 48:2025–34
    [Google Scholar]
  130. 130.
    Ghozikali MG, Mosaferi M, Safari GH, Jaafari J 2015. Effect of exposure to O3, NO2, and SO2 on chronic obstructive pulmonary disease hospitalizations in Tabriz, Iran. Environ. Sci. Pollut. Res. 22:2817–23
    [Google Scholar]
  131. 131.
    McLinden CA, Fioletov V, Krotkov NA, Li C, Boersma KF, Adams C 2016. A decade of change in NO2 and SO2 over the Canadian Oil Sands as seen from space. Environ. Sci. Technol. 50:331–37
    [Google Scholar]
  132. 132.
    Moin ST, Lim LHV, Hofer TS, Randolf BR, Rode BM 2011. Sulfur dioxide in water: structure and dynamics studied by an ab initio quantum mechanical charge field molecular dynamics simulation. Inorg. Chem. 50:3379–86
    [Google Scholar]
  133. 133.
    Tarbuck TL, Richmond GL 2005. SO2:H2O surface complex found at the vapor/water interface. J. Am. Chem. Soc. 127:16806–7
    [Google Scholar]
  134. 134.
    Yang H, Wright NJ, Gagnon AM, Benny Gerber R, Finlayson-Pitts BJ 2002. An upper limit to the concentration of an SO2 complex at the air–water interface at 298 K: infrared experiments and ab initio calculations. Phys. Chem. Chem. Phys. 4:101832–38
    [Google Scholar]
  135. 135.
    Tarbuck TL, Richmond GL 2006. Adsorption and reaction of CO2 and SO2 at a water surface. J. Am. Chem. Soc. 128:3256–67
    [Google Scholar]
  136. 136.
    Baer M, Mundy CJ, Chang T-M, Tao F-M, Dang LX 2010. Interpreting vibrational sum-frequency spectra of sulfur dioxide at the air/water interface: a comprehensive molecular dynamics study. J. Phys. Chem. B 114:7245–49
    [Google Scholar]
  137. 137.
    Oum KW, Lakin MJ, Finlayson-Pitts BJ 1998. Bromine activation in the troposphere by the dark reaction of O3 with seawater ice. Geophys. Res. Lett. 25:3923–26
    [Google Scholar]
  138. 138.
    De Haan DO, Brauers T, Oum K, Stutz J, Nordmeyer T, Finlayson-Pitts BJ 1999. Heterogeneous chemistry in the troposphere: experimental approaches and applications to the chemistry of sea salt particles. Int. Rev. Phys. Chem. 18:343–85
    [Google Scholar]
  139. 139.
    Schmidt JA, Jacob DJ, Horowitz HM, Hu L, Sherwen T et al. 2016. Modeling the observed tropospheric BrO background: Importance of multiphase chemistry and implications for ozone, OH, and mercury. J. Geophys. Res.-Atmos. 121:11819–35
    [Google Scholar]
  140. 140.
    Cao L, Wang CG, Mao M, Grosshans H, Cao NW 2016. Derivation of the reduced reaction mechanisms of ozone depletion events in the Arctic spring by using concentration sensitivity analysis and principal component analysis. Atmos. Chem. Phys. 16:14853–73
    [Google Scholar]
  141. 141.
    Liu Q, Schurter LM, Muller CE, Aloisio S, Francisco JS, Margerum DW 2001. Kinetics and mechanisms of aqueous ozone reactions with bromide, sulfite, hydrogen sulfite, iodide, and nitrite ions. Inorg. Chem. 40:4436–42
    [Google Scholar]
  142. 142.
    Gladich I, Francisco JS, Buszek RJ, Vazdar M, Carignano MA, Shepson PB 2015. Ab initio study of the reaction of ozone with bromide ion. J. Phys. Chem. A 119:4482–88
    [Google Scholar]
  143. 143.
    Haag WR, Hoigne J, Bader H 1984. Improved ammonia oxidation by ozone in the presence of bromide ion during water treatment. Water Res 18:1125–28
    [Google Scholar]
  144. 144.
    Chameides WL, Davis DD 1982. The free-radical chemistry of cloud droplets and its impact upon the composition of rain. J. Geophys. Res. Oceans Atmos. 87:4863–77
    [Google Scholar]
  145. 145.
    Nissenson P, Wingen LM, Hunt SW, Finlayson-Pitts BJ, Dabdub D 2014. Rapid formation of molecular bromine from deliquesced NaBr aerosol in the presence of ozone and UV light. Atmos. Environ. 89:491–506
    [Google Scholar]
  146. 146.
    Clifford D, Donaldson DJ 2007. Direct experimental evidence for a heterogeneous reaction of ozone with bromide at the air-aqueous interface. J. Phys. Chem. A 111:9809–14
    [Google Scholar]
  147. 147.
    Abbatt J, Oldridge N, Symington A, Chukalovskiy V, McWhinney RD et al. 2010. Release of gas-phase halogens by photolytic generation of OH in frozen halide-nitrate solutions: An active halogen formation mechanism. ? J. Phys. Chem. A 114:6527–33
    [Google Scholar]
  148. 148.
    Oldridge NW, Abbatt JPD 2011. Formation of gas-phase bromine from interaction of ozone with frozen and liquid NaCl/NaBr solutions: quantitative separation of surficial chemistry from bulk-phase reaction. J. Phys. Chem. A 115:2590–98
    [Google Scholar]
  149. 149.
    Wren SN, Kahan TF, Jumaa KB, Donaldson DJ 2010. Spectroscopic studies of the heterogeneous reaction between O3(g) and halides at the surface of frozen salt solutions. J. Geophys. Res. Atmos.115
    [Google Scholar]
  150. 150.
    Lee MT, Brown MA, Kato S, Kleibert A, Turler A, Ammann M 2015. Competition between organics and bromide at the aqueous solution-air interface as seen from ozone uptake kinetics and X-ray photoelectron spectroscopy. J. Phys. Chem. A 119:4600–8
    [Google Scholar]
  151. 151.
    Hunt SW, Roeselova M, Wang W, Wingen LM, Knipping EM et al. 2004. Formation of molecular bromine from the reaction of ozone with deliquesced NaBr aerosol: evidence for interface chemistry. J. Phys. Chem. A 108:11559–72
    [Google Scholar]
  152. 152.
    Artiglia L, Edebeli J, Orlando F, Chen S, Lee M-T et al. 2017. A surface-stabilized ozonide triggers bromide oxidation at the aqueous solution-vapour interface. Nat. Commun. 8:700
    [Google Scholar]
  153. 153.
    Martins-Costa MTC, Anglada JM, Ruiz-Lopez MF 2017. Computational insights into the CH3Cl+OH chemical reaction dynamics at the air-water interface. Chem. Phys. Chem. 18:2747–55
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-042018-052311
Loading
/content/journals/10.1146/annurev-physchem-042018-052311
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error