1932

Abstract

Revealing the intrinsic relationships between the structure, properties, and performance of the electrochemical interface is a long-term goal in the electrochemistry and surface science communities because it could facilitate the rational design of electrochemical devices. Achieving this goal requires in situ characterization techniques that provide rich chemical information and high spatial resolution. Electrochemical tip-enhanced Raman spectroscopy (EC-TERS), which provides molecular fingerprint information with nanometer-scale spatial resolution, is a promising technique for achieving this goal. Since the first demonstration of this technique in 2015, EC-TERS has been developed for characterizing various electrochemical processes at the nanoscale and molecular level. Here, we review the development of EC-TERS over the past 5 years. We discuss progress in addressing the technical challenges, including optimizing the EC-TERS setup and solving tip-related issues, and provide experimental guidelines. We also survey the important applications of EC-TERS for probing molecular protonation, molecular adsorption, electrochemical reactions, and photoelectrochemical reactions. Finally, we discuss the opportunities and challenges in the future development of this young technique.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-061020-053442
2021-04-20
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/physchem/72/1/annurev-physchem-061020-053442.html?itemId=/content/journals/10.1146/annurev-physchem-061020-053442&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Bard AJ, Faulkner LR. 2001. Electrochemical Methods: Fundamentals and Applications New York: John Wiley & Sons
  2. 2. 
    Kuwana T, Darlington RK, Leedy DW. 1964. Electrochemical studies using conducting glass indicator electrodes. Anal. Chem. 36:2023–25
    [Google Scholar]
  3. 3. 
    Mizoguchi T, Adams RN. 1962. Anodic oxidation studies of N,N-dimethylaniline. I. Voltammetric and spectroscopic investigations at platinum electrodes. J. Am. Chem. Soc. 84:2058–61
    [Google Scholar]
  4. 4. 
    Mark HB, Pons BS. 1966. An in situ spectrophotometric method for observing the infrared spectra of species at the electrode surface during electrolysis. Anal. Chem. 38:119–21
    [Google Scholar]
  5. 5. 
    Fleischmann M, Hendra PJ, McQuillan AJ. 1974. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26:163–66
    [Google Scholar]
  6. 6. 
    Guyot-Sionnest P, Tadjeddine A. 1990. Spectroscopic investigations of adsorbates at the metal-electrolyte interface using sum frequency generation. Chem. Phys. Lett. 172:341–45
    [Google Scholar]
  7. 7. 
    Tourillon G, Dartyge E, Dexpert H, Fontaine A, Jucha A et al. 1985. Electrochemical inclusion of metallic clusters in organic conducting polymers: an in situ dispersive X-ray absorption study. Surf. Sci. 156:536–47
    [Google Scholar]
  8. 8. 
    Antonio MR, Soderholm L, Song I. 1997. Design of spectroelectrochemical cell for in situ X-ray absorption fine structure measurements of bulk solution species. J. Appl. Electrochem. 27:784–92
    [Google Scholar]
  9. 9. 
    Fleischmann M, Oliver A, Robinson J. 1986. In situ X-ray diffraction studies of electrode solution interfaces. Electrochim. Acta 31:899–906
    [Google Scholar]
  10. 10. 
    Masuda T, Kondo T. 2019. New sights into the electrochemical interface provided by in situ X-ray absorption fine structure and surface X-ray scattering. Curr. Opin. Electrochem. 14:81–88
    [Google Scholar]
  11. 11. 
    Turrell G, Corset J. 1996. Raman Spectroscopy: Development and Applications London: Academic
  12. 12. 
    Smith E, Dent G. 2005. Modern Raman SpectroscopyA Practical Approach Chichester, UK: John Wiley & Sons
    [Google Scholar]
  13. 13. 
    Jeanmaire DL, Van Duyne RP. 1977. Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interfacial Electrochem. 84:1–20
    [Google Scholar]
  14. 14. 
    Albrecht MG, Creighton JA. 1977. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 99:5215–17
    [Google Scholar]
  15. 15. 
    Le Ru EC, Etchegoin PG 2008. Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects Amsterdam: Elsevier
  16. 16. 
    Langer J, de Aberasturi DJ, Aizpurua J, Alvarez-Puebla RA, Auguié B et al. 2020. Present and future of surface-enhanced Raman scattering. ACS Nano 14:28–117
    [Google Scholar]
  17. 17. 
    Wang X, Huang S-C, Hu S, Yan S, Ren B 2020. Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy. Nat. Rev. Phys. 2:253–71
    [Google Scholar]
  18. 18. 
    Cortés E, Etchegoin PG, Le Ru EC, Fainstein A, Vela ME, Salvarezza RC 2010. Monitoring the electrochemistry of single molecules by surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 132:18034–37
    [Google Scholar]
  19. 19. 
    dos Santos DP, Andrade GFS, Temperini MLA, Brolo AG. 2009. Electrochemical control of the time-dependent intensity fluctuations in surface-enhanced Raman scattering (SERS). J. Phys. Chem. C 113:17737–44
    [Google Scholar]
  20. 20. 
    Li J-F, Huang Y-F, Ding Y, Yang Z-L, Li S-B et al. 2010. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464:392–95
    [Google Scholar]
  21. 21. 
    Li J-F, Zhang Y-J, Ding S-Y, Panneerselvam R, Tian Z-Q. 2017. Core–shell nanoparticle-enhanced Raman spectroscopy. Chem. Rev. 117:5002–69
    [Google Scholar]
  22. 22. 
    Dong J-C, Zhang X-G, Briega-Martos V, Jin X, Yang J et al. 2019. In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat. Energy 4:60–67
    [Google Scholar]
  23. 23. 
    Li C-Y, Le J-B, Wang Y-H, Chen S, Yang Z-L et al. 2019. In situ probing electrified interfacial water structures at atomically flat surfaces. Nat. Mater. 18:697–701
    [Google Scholar]
  24. 24. 
    Ji Y, Dong J-C, Kumar VV, Li J-F, Tian Z-Q. 2017. Probing electrochemical interfaces using shell-isolated nanoparticles-enhanced Raman spectroscopy. Curr. Opin. Electrochem. 1:16–21
    [Google Scholar]
  25. 25. 
    Sonnenfeld R, Schardt BC. 1986. Tunneling microscopy in an electrochemical cell: images of Ag plating. Appl. Phys. Lett. 49:1172–74
    [Google Scholar]
  26. 26. 
    Robinson RS. 1988. Real-time scanning tunnelling microscopy of surfaces under active electrochemical control. J. Microsc. 152:541–46
    [Google Scholar]
  27. 27. 
    Itaya K, Tomita E. 1988. Scanning tunneling microscope for electrochemistry - a new concept for the in situ scanning tunneling microscope in electrolyte solutions. Surf. Sci. 201:L507–12
    [Google Scholar]
  28. 28. 
    Manne S, Massie J, Elings VB, Hansma PK, Gewirth AA. 1991. Electrochemistry on a gold surface observed with the atomic force microscope. J. Vac. Sci. Technol. B 9:950–54
    [Google Scholar]
  29. 29. 
    Bard AJ, Fan F-RF, Kwak J, Lev O 1989. Scanning electrochemical microscopy. Introduction and principles. Anal. Chem. 61:132–38
    [Google Scholar]
  30. 30. 
    Hüsser OE, Craston DH, Bard AJ. 1989. Scanning electrochemical microscopy: high-resolution deposition and etching of metals. J. Electrochem. Soc. 136:3222–29
    [Google Scholar]
  31. 31. 
    Bard AJ, Fan F-RF, Pierce DT, Unwin PR, Wipf DO, Zhou F. 1991. Chemical imaging of surfaces with the scanning electrochemical microscope. Science 254:68–74
    [Google Scholar]
  32. 32. 
    Amemiya S, Bard AJ, Fan F-RF, Mirkin MV, Unwin PR. 2008. Scanning electrochemical microscopy. Annu. Rev. Anal. Chem. 1:95–131
    [Google Scholar]
  33. 33. 
    Tian ZQ, Li WH, Ren B, Mao BW, Chen JG et al. 1996. Simultaneous STM and Raman measurements on electrochemical interfaces. J. Electroanal. Chem. 401:247–51
    [Google Scholar]
  34. 34. 
    Stöckle RM, Suh YD, Deckert V, Zenobi R. 2000. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem. Phys. Lett. 318:131–36
    [Google Scholar]
  35. 35. 
    Anderson MS. 2000. Locally enhanced Raman spectroscopy with an atomic force microscope. Appl. Phys. Lett. 76:3130–32
    [Google Scholar]
  36. 36. 
    Hayazawa N, Inouye Y, Sekkat Z, Kawata S. 2000. Metallized tip amplification of near-field Raman scattering. Opt. Commun. 183:333–36
    [Google Scholar]
  37. 37. 
    Pettinger B, Picardi G, Schuster R, Ertl G. 2000. Surface enhanced Raman spectroscopy: towards single molecule spectroscopy. Electrochemistry 68:942–49
    [Google Scholar]
  38. 38. 
    Tian ZQ, Ren B 2003. Raman spectroscopy of electrode surfaces. Encyclopedia of Electrochemistry, Vol. 3 AJ Bard, M Stratmann, PR Unwin 576–659 Weinheim, Ger.: Wiley-VCH
    [Google Scholar]
  39. 39. 
    Zeng Z-C, Huang S-C, Wu D-Y, Meng L-Y, Li M-H et al. 2015. Electrochemical tip-enhanced Raman spectroscopy. J. Am. Chem. Soc. 137:11928–31
    [Google Scholar]
  40. 40. 
    Kurouski D, Mattei M, Van Duyne RP. 2015. Probing redox reactions at the nanoscale with electrochemical tip-enhanced Raman spectroscopy. Nano Lett 15:7956–62
    [Google Scholar]
  41. 41. 
    Yokota Y, Hayazawa N, Yang B, Kazuma E, Catalan FCI, Kim Y. 2019. Systematic assessment of benzenethiol self-assembled monolayers on Au(111) as a standard sample for electrochemical tip-enhanced Raman spectroscopy. J. Phys. Chem. C 123:2953–63
    [Google Scholar]
  42. 42. 
    Martín Sabanés N, Driessen LMA, Domke KF 2016. Versatile side-illumination geometry for tip-enhanced Raman spectroscopy at solid/liquid interfaces. Anal. Chem. 88:7108–14
    [Google Scholar]
  43. 43. 
    Chen X, Goubert G, Jiang S, Van Duyne RP. 2018. Electrochemical STM tip-enhanced Raman spectroscopy study of electron transfer reactions of covalently tethered chromophores on Au(111). J. Phys. Chem. C 122:11586–90
    [Google Scholar]
  44. 44. 
    Gjonaj B, Johnson P, Bonn M, Domke KF. 2012. Index mismatch aberration correction over long working distances using spatial light modulation. Appl. Opt. 51:8034–40
    [Google Scholar]
  45. 45. 
    Huang S-C, Ye J-Z, Shen X-R, Zhao Q-Q, Zeng Z-C et al. 2019. Electrochemical tip-enhanced Raman spectroscopy with improved sensitivity enabled by a water immersion objective. Anal. Chem. 91:11092–97
    [Google Scholar]
  46. 46. 
    Zeng Z-C, Hu S, Huang S-C, Zhang Y-J, Zhao W-X et al. 2016. Novel electrochemical Raman spectroscopy enabled by water immersion objective. Anal. Chem. 88:9381–85
    [Google Scholar]
  47. 47. 
    Touzalin T, Joiret S, Lucas IT, Maisonhaute E. 2019. Electrochemical tip-enhanced Raman spectroscopy imaging with 8 nm lateral resolution. Electrochem. Commun. 108:106557
    [Google Scholar]
  48. 48. 
    Bao Y-F, Cao M-F, Wu S-S, Huang T-X, Zeng Z-C et al. 2020. Atomic force microscopy based top-illumination electrochemical tip-enhanced Raman spectroscopy. Anal. Chem. 92:12548–55
    [Google Scholar]
  49. 49. 
    Ren B, Picardi G, Pettinger B. 2004. Preparation of gold tips suitable for tip-enhanced Raman spectroscopy and light emission by electrochemical etching. Rev. Sci. Instrum. 75:837–41
    [Google Scholar]
  50. 50. 
    Yang B, Kazuma E, Yokota Y, Kim Y. 2018. Fabrication of sharp gold tips by three-electrode electrochemical etching with high controllability and reproducibility. J. Phys. Chem. C 122:16950–55
    [Google Scholar]
  51. 51. 
    Zhang W, Yeo BS, Schmid T, Zenobi R. 2007. Single molecule tip-enhanced Raman spectroscopy with silver tips. J. Phys. Chem. C 111:1733–38
    [Google Scholar]
  52. 52. 
    Yeo B-S, Zhang W, Vannier C, Zenobi R. 2006. Enhancement of Raman signals with silver-coated tips. Appl. Spectrosc. 60:1142–47
    [Google Scholar]
  53. 53. 
    Barrios CA, Malkovskiy AV, Kisliuk AM, Sokolov AP, Foster MD. 2009. Highly stable, protected plasmonic nanostructures for tip enhanced Raman spectroscopy. J. Phys. Chem. C 113:8158–61
    [Google Scholar]
  54. 54. 
    Peng L, Lee H, Teizer W, Liang H. 2009. Nanowear of gold and silver against silicon. Wear 267:1177–80
    [Google Scholar]
  55. 55. 
    Yang L-K, Huang T-X, Zeng Z-C, Li M-H, Wang X et al. 2015. Rational fabrication of a gold-coated AFM TERS tip by pulsed electrodeposition. Nanoscale 7:18225–31
    [Google Scholar]
  56. 56. 
    Huang T-X, Li C-W, Yang L-K, Zhu J-F, Yao X et al. 2018. Rational fabrication of silver-coated AFM TERS tips with a high enhancement and long lifetime. Nanoscale 10:4398–405
    [Google Scholar]
  57. 57. 
    Saito Y, Murakami T, Inouye Y, Kawata S. 2005. Fabrication of silver probes for localized plasmon excitation in near-field Raman spectroscopy. Chem. Lett. 34:920–21
    [Google Scholar]
  58. 58. 
    Brejna PR, Griffiths PR. 2010. Electroless deposition of silver onto silicon as a method of preparation of reproducible surface-enhanced Raman spectroscopy substrates and tip-enhanced Raman spectroscopy tips. Appl. Spectrosc. 64:493–99
    [Google Scholar]
  59. 59. 
    Huang T-X, Huang S-C, Li M-H, Zeng Z-C, Wang X, Ren B 2015. Tip-enhanced Raman spectroscopy: tip-related issues. Anal. Bioanal. Chem. 407:8177–95
    [Google Scholar]
  60. 60. 
    Wang X, Huang S-C, Huang T-X, Su H-S, Zhong J-H et al. 2017. Tip-enhanced Raman spectroscopy for surfaces and interfaces. Chem. Soc. Rev. 46:4020–41
    [Google Scholar]
  61. 61. 
    Chen X, Brasiliense V, Van Duyne RP. 2018. Operando observation of molecular-scale manipulation using electrochemical tip-enhanced Raman spectroscopy. J. Phys. Chem. C 122:24329–33
    [Google Scholar]
  62. 62. 
    Goubert G, Chen X, Jiang S, Van Duyne RP. 2018. In situ electrochemical tip-enhanced Raman spectroscopy with a chemically modified tip. J. Phys. Chem. Lett. 9:3825–28
    [Google Scholar]
  63. 63. 
    Chen Z, Jiang S, Kang G, Nguyen D, Schatz GC, Van Duyne RP. 2019. Operando characterization of iron phthalocyanine deactivation during oxygen reduction reaction using electrochemical tip-enhanced Raman spectroscopy. J. Am. Chem. Soc. 141:15684–92
    [Google Scholar]
  64. 64. 
    Jiang S, Chen Z, Chen X, Nguyen D, Mattei M et al. 2019. Investigation of cobalt phthalocyanine at the solid/liquid interface by electrochemical tip-enhanced Raman spectroscopy. J. Phys. Chem. C 123:9852–59
    [Google Scholar]
  65. 65. 
    Schmid T, Yeo B-S, Leong G, Stadler J, Zenobi R. 2009. Performing tip-enhanced Raman spectroscopy in liquids. J. Raman Spectrosc. 40:1392–99
    [Google Scholar]
  66. 66. 
    Kumar N, Su W, Veselý M, Weckhuysen BM, Pollard AJ, Wain AJ. 2018. Nanoscale chemical imaging of solid–liquid interfaces using tip-enhanced Raman spectroscopy. Nanoscale 10:1815–24
    [Google Scholar]
  67. 67. 
    Pourbaix M. 1974. Atlas of Electrochemical Equilibria in Aqueous Solutions Houston, TX: Natl. Assoc. Corros. Eng.
  68. 68. 
    Kumar N, Wondergem CS, Wain AJ, Weckhuysen BM. 2019. In situ nanoscale investigation of catalytic reactions in the liquid phase using zirconia-protected tip-enhanced Raman spectroscopy probes. J. Phys. Chem. Lett. 10:1669–75
    [Google Scholar]
  69. 69. 
    Huang Y-P, Huang S-C, Wang X-J, Bodappa N, Li C-Y et al. 2018. Shell-isolated tip-enhanced Raman and fluorescence spectroscopy. Angew. Chem. Int. Ed. 57:7523–27
    [Google Scholar]
  70. 70. 
    Kelly KL, Coronado E, Zhao LL, Schatz GC. 2003. The optical properties of metal nanoparticles:the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107:668–77
    [Google Scholar]
  71. 71. 
    McFarland AD, Van Duyne RP. 2003. Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett 3:1057–62
    [Google Scholar]
  72. 72. 
    Mock JJ, Smith DR, Schultz S. 2003. Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Lett 3:485–91
    [Google Scholar]
  73. 73. 
    Miller MM, Lazarides AA. 2005. Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment. J. Phys. Chem. B 109:21556–65
    [Google Scholar]
  74. 74. 
    Cui X, Zhang W, Yeo B-S, Zenobi R, Hafner C, Erni D. 2007. Tuning the resonance frequency of Ag-coated dielectric tips. Opt. Express 15:8309–16
    [Google Scholar]
  75. 75. 
    Taguchi A, Hayazawa N, Saito Y, Ishitobi H, Tarun A, Kawata S. 2009. Controlling the plasmon resonance wavelength in metal-coated probe using refractive index modification. Opt. Express 17:6509–18
    [Google Scholar]
  76. 76. 
    Maouli I, Taguchi A, Saito Y, Kawata S, Verma P. 2015. Optical antennas for tunable enhancement in tip-enhanced Raman spectroscopy imaging. Appl. Phys. Express 8:032401
    [Google Scholar]
  77. 77. 
    Zou Y, Steinvurzel P, Yang T, Crozier KB 2009. Surface plasmon resonances of optical antenna atomic force microscope tips. Appl. Phys. Lett. 94:171107
    [Google Scholar]
  78. 78. 
    Vasconcelos TL, Archanjo BS, Oliveira BS, Valaski R, Cordeiro RC et al. 2018. Plasmon-tunable tip pyramids: monopole nanoantennas for near-field scanning optical microscopy. Adv. Opt. Mater. 6:1800528
    [Google Scholar]
  79. 79. 
    Vasconcelos TL, Archanjo BS, Fragneaud B, Oliveira BS, Riikonen J et al. 2015. Tuning localized surface plasmon resonance in scanning near-field optical microscopy probes. ACS Nano 9:6297–304
    [Google Scholar]
  80. 80. 
    Martín Sabanés N, Ohto T, Andrienko D, Nagata Y, Domke KF 2017. Electrochemical TERS elucidates potential-induced molecular reorientation of adenine/Au(111). Angew. Chem. Int. Ed. 56:9796–801
    [Google Scholar]
  81. 81. 
    Mattei M, Kang G, Goubert G, Chulhai DV, Schatz GC et al. 2017. Tip-enhanced Raman voltammetry: coverage dependence and quantitative modeling. Nano Lett 17:590–96
    [Google Scholar]
  82. 82. 
    Zaleski S, Wilson AJ, Mattei M, Chen X, Goubert G et al. 2016. Investigating nanoscale electrochemistry with surface- and tip-enhanced Raman spectroscopy. Acc. Chem. Res. 49:2023–30
    [Google Scholar]
  83. 83. 
    Kang G, Yang M, Mattei MS, Schatz GC, Van Duyne RP. 2019. In situ nanoscale redox mapping using tip-enhanced Raman spectroscopy. Nano Lett 19:2106–13
    [Google Scholar]
  84. 84. 
    Pfisterer JHK, Baghernejad M, Giuzio G, Domke KF. 2019. Reactivity mapping of nanoscale defect chemistry under electrochemical reaction conditions. Nat. Commun. 10:5702
    [Google Scholar]
  85. 85. 
    Huang S-C, Wang X, Zhao Q-Q, Zhu J-F, Li C-W et al. 2020. Probing nanoscale spatial distribution of plasmonically excited hot carriers. Nat. Commun. 11:4211
    [Google Scholar]
  86. 86. 
    Maouli I, Taguchi A, Saito Y, Kawata S, Verma P. 2015. Optical antennas for tunable enhancement in tip-enhanced Raman spectroscopy imaging. Appl. Phys. Express 8:032401
    [Google Scholar]
  87. 87. 
    Hartschuh A, Sánchez EJ, Xie XS, Novotny L. 2003. High-resolution near-field Raman microscopy of single-walled carbon nanotubes. Phys. Rev. Lett. 90:095503
    [Google Scholar]
  88. 88. 
    Tallarida N, Lee J, Apkarian VA. 2017. Tip-enhanced Raman spectromicroscopy on the angstrom scale: bare and CO-terminated Ag tips. ACS Nano 11:11393–401
    [Google Scholar]
  89. 89. 
    Zhang C, Gao B, Chen LG, Meng QS, Yang H et al. 2011. Fabrication of silver tips for scanning tunneling microscope induced luminescence. Rev. Sci. Instrum. 82:083101
    [Google Scholar]
  90. 90. 
    Wickramasinghe HK, Chaigneau M, Yasukuni R, Picardi G, Ossikovski R. 2014. Billion-fold increase in tip-enhanced Raman signal. ACS Nano 8:3421–26
    [Google Scholar]
  91. 91. 
    Pienpinijtham P, Vantasin S, Kitahama Y, Ekgasit S, Ozaki Y. 2016. Nanoscale pH profile at a solution/solid interface by chemically modified tip-enhanced Raman scattering. J. Phys. Chem. C 120:14663–68
    [Google Scholar]
  92. 92. 
    Zong C, Chen C-J, Zhang M, Wu D-Y, Ren B. 2015. Transient electrochemical surface-enhanced Raman spectroscopy: a millisecond time-resolved study of an electrochemical redox process. J. Am. Chem. Soc. 137:11768–74
    [Google Scholar]
  93. 93. 
    Nanda J, Yang G, Hou T, Voylov DN, Li X et al. 2019. Unraveling the nanoscale heterogeneity of solid electrolyte interphase using tip-enhanced Raman spectroscopy. Joule 3:2001–19
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-061020-053442
Loading
/content/journals/10.1146/annurev-physchem-061020-053442
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error