1932

Abstract

Photoexcited molecules convert light into chemical and mechanical energy through changes in electronic and nuclear structure that take place on femtosecond timescales. Gas phase ultrafast electron diffraction (GUED) is an ideal tool to probe the nuclear geometry evolution of the molecules and complements spectroscopic methods that are mostly sensitive to the electronic state. GUED is a weak and passive probing tool that does not alter the molecular properties during the probing process and is sensitive to the spatial distribution of charge in the molecule, including both electrons and nuclei. Improvements in temporal resolution have enabled GUED to capture coherent nuclear motions in molecules in the excited and ground electronic states with femtosecond and subangstrom resolution. Here we present the basic theory of GUED and explain what information is encoded in the diffraction signal, review how GUED has been used to observe coherent structural dynamics in recent experiments, and discuss the advantages and limitations of the method.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-082720-010539
2022-04-20
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/physchem/73/1/annurev-physchem-082720-010539.html?itemId=/content/journals/10.1146/annurev-physchem-082720-010539&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Polli D, Altoè P, Weingart O, Spillane KM, Manzoni C et al. 2010. Conical intersection dynamics of the primary photoisomerization event in vision. Nature 467:440–43
    [Google Scholar]
  2. 2. 
    Cheng Y-C, Fleming GR. 2009. Dynamics of light harvesting in photosynthesis. Annu. Rev. Phys. Chem. 60:241–62
    [Google Scholar]
  3. 3. 
    Havinga E, Schlatmann JLMA. 1961. Remarks on the specificities of the photochemical and thermal transformations in the vitamin D field. Tetrahedron 16:146–52
    [Google Scholar]
  4. 4. 
    Schreier WJ, Schrader TE, Koller FO, Gilch P, Crespo-Hernández CE et al. 2007. Thymine dimerization in DNA is an ultrafast photoreaction. Science 315:625–29
    [Google Scholar]
  5. 5. 
    Wolf TJA, Myhre RH, Cryan JP, Coriani S, Squibb RJ et al. 2017. Probing ultrafast ππ* /* internal conversion in organic chromophores via K-edge resonant absorption. Nat. Commun. 8:29
    [Google Scholar]
  6. 6. 
    Zewail AH. 2000. Femtochemistry: atomic-scale dynamics of the chemical bond using ultrafast lasers (Nobel lecture). Angew. Chem. Int. Ed. 39:2586–631
    [Google Scholar]
  7. 7. 
    Stolow A, Bragg AE, Neumark DM. 2004. Femtosecond time-resolved photoelectron spectroscopy. Chem. Rev. 104:1719–58
    [Google Scholar]
  8. 8. 
    Krausz F, Ivanov M. 2009. Attosecond physics. Rev. Mod. Phys. 81:163–234
    [Google Scholar]
  9. 9. 
    Minitti MP, Budarz JM, Kirrander A, Robinson JS, Ratner D et al. 2015. Imaging molecular motion: femtosecond X-ray scattering of an electrocyclic chemical reaction. Phys. Rev. Lett. 114:255501
    [Google Scholar]
  10. 10. 
    Yang J, Guehr M, Shen X, Li R, Vecchione T et al. 2016. Diffractive imaging of coherent nuclear motion in isolated molecules. Phys. Rev. Lett. 117:153002Proof-of-principle GUED experiment that captured a vibrational wave packet with atomic resolution.
    [Google Scholar]
  11. 11. 
    Ischenko AA, Golubkov VV, Spiridonov VP, Zgurskii AV, Akhmanov AS et al. 1983. A stroboscopical gas-electron diffraction method for the investigation of short-lived molecular species. Appl. Phys. B 32:161–63
    [Google Scholar]
  12. 12. 
    Mitzel NW, Rankin DWH. 2003. SARACEN – molecular structures from theory and experiment: the best of both worlds. Dalton Trans. 19:3650–62
    [Google Scholar]
  13. 13. 
    Ewbank JD, Luo JY, English JT, Liu R, Faust WL, Schafer L. 1993. Time-resolved gas electron diffraction study of the 193-nm photolysis of 1,2-dichloroethenes. J. Phys. Chem. 97:8745–51
    [Google Scholar]
  14. 14. 
    Williamson JC, Cao J, Ihee H, Frey H, Zewail AH. 1997. Clocking transient chemical changes by ultrafast electron diffraction. Nature 386:15962
    [Google Scholar]
  15. 15. 
    Ihee H, Lobastov VA, Gomez UM, Goodson BM, Srinivasan R et al. 2001. Direct imaging of transient molecular structures with ultrafast diffraction. Science 291:458–62
    [Google Scholar]
  16. 16. 
    Hensley CJ, Yang J, Centurion M 2012. Imaging of isolated molecules with ultrafast electron pulses. Phys. Rev. Lett. 109:133202
    [Google Scholar]
  17. 17. 
    Yang J, Beck J, Uiterwaal CJ, Centurion M. 2015. Imaging of alignment and structural changes of carbon disulfide molecules using ultrafast electron diffraction. Nat. Commun. 6:8172
    [Google Scholar]
  18. 18. 
    Germán S, Miller RJD 2011. Femtosecond electron diffraction: heralding the era of atomically resolved dynamics. Rep. Prog. Phys. 74:096101
    [Google Scholar]
  19. 19. 
    Siwick BJ, Dwyer JR, Jordan RE, Miller RJD 2003. An atomic-level view of melting using femtosecond electron diffraction. Science 302:1382–85
    [Google Scholar]
  20. 20. 
    Weathersby SP, Brown G, Centurion M, Chase TF, Coffee R et al. 2015. Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory. Rev. Sci. Instrum. 86:073702
    [Google Scholar]
  21. 21. 
    Shen X, Nunes JPF, Yang J, Jobe RK, Li RK et al. 2019. Femtosecond gas-phase mega-electron-volt ultrafast electron diffraction. Struct. Dyn. 6:054305
    [Google Scholar]
  22. 22. 
    Yang J, Guehr M, Vecchione T, Robinson MS, Li R et al. 2016. Diffractive imaging of a rotational wavepacket in nitrogen molecules with femtosecond megaelectronvolt electron pulses. Nat. Commun 7:11232First demonstration of 200-femtosecond resolution in a GUED instrument.
    [Google Scholar]
  23. 23. 
    Yang J, Zhu X, Wolf TJA, Li Z, Nunes JPF et al. 2018. Imaging CF3I conical intersection and photodissociation dynamics with ultrafast electron diffraction. Science 361:6467Article describes a molecular movie of nonadiabatic molecular dynamics with GUED.
    [Google Scholar]
  24. 24. 
    Wolf TJA, Sanchez DM, Yang J, Parrish RM, Nunes JPF et al. 2019. The photochemical ring-opening of 1,3-cyclohexadiene imaged by ultrafast electron diffraction. Nat. Chem. 11:504–9GUED sheds new light on ring-opening reactions.
    [Google Scholar]
  25. 25. 
    Wilkin KJ, Parrish RM, Yang J, Wolf TJA, Nunes JPF et al. 2019. Diffractive imaging of dissociation and ground-state dynamics in a complex molecule. Phys. Rev. A 100:023402
    [Google Scholar]
  26. 26. 
    Liu Y, Horton SL, Yang J, Nunes JPF, Shen X et al. 2020. Spectroscopic and structural probing of excited-state molecular dynamics with time-resolved photoelectron spectroscopy and ultrafast electron diffraction. Phys. Rev. X 10:021016
    [Google Scholar]
  27. 27. 
    Yang J, Zhu X, Nunes JPF, Yu JK, Parrish RM et al. 2020. Simultaneous observation of nuclear and electronic dynamics by ultrafast electron diffraction. Science 368:885Simultaneous observation of electronic and nuclear dynamics using elastic and inelastic electron scattering.
    [Google Scholar]
  28. 28. 
    Brockway LO. 1936. Electron diffraction by gas molecules. Rev. Mod. Phys. 8:231–66
    [Google Scholar]
  29. 29. 
    Schomaker V, Glauber ROY. 1952. The Born approximation in electron diffraction. Nature 170:290–91
    [Google Scholar]
  30. 30. 
    Glauber R, Schomaker V. 1953. The theory of electron diffraction. Phys. Rev. 89:667–71
    [Google Scholar]
  31. 31. 
    McClelland JJ, Fink M. 1985. Correlation effects in neon studied by elastic and inelastic high-energy electron scattering. Phys. Rev. A 31:1328–35
    [Google Scholar]
  32. 32. 
    Iijima T, Bonham RA, Ando T. 1963. The theory of electron scattering from molecules. 1. Theoretical development. J. Phys. Chem. 67:1472–74
    [Google Scholar]
  33. 33. 
    Shao H-C, Starace AF. 2010. Detecting electron motion in atoms and molecules. Phys. Rev. Lett. 105:263201
    [Google Scholar]
  34. 34. 
    Shao H-C, Starace AF. 2013. Imaging coherent electronic motion in atoms by ultrafast electron diffraction. Phys. Rev. A 88:062711
    [Google Scholar]
  35. 35. 
    Dixit G, Vendrell O, Santra R. 2012. Imaging electronic quantum motion with light. PNAS 109:11636
    [Google Scholar]
  36. 36. 
    Suominen HJ, Kirrander A. 2014. How to observe coherent electron dynamics directly. Phys. Rev. Lett. 112:043002
    [Google Scholar]
  37. 37. 
    Bennett K, Kowalewski M, Rouxel JR, Mukamel S. 2018. Monitoring molecular nonadiabatic dynamics with femtosecond X-ray diffraction. PNAS 115:653847
    [Google Scholar]
  38. 38. 
    Moreno Carrascosa A, Yang M, Yong H, Ma L, Kirrander A et al. 2021. Mapping static core-holes and ring-currents with X-ray scattering. Faraday Discuss 228:60–81
    [Google Scholar]
  39. 39. 
    Mott NF, Bragg WL. 1930. The scattering of electrons by atoms. Proc. R. Soc. Lond. A 127:658–65
    [Google Scholar]
  40. 40. 
    Bethe H. 1930. Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie [On the theory of the passage of fast corpuscular rays through matter]. Ann. Physik 397:325–400
    [Google Scholar]
  41. 41. 
    Debye P. 1915. Zerstreuung von Röntgenstrahlen [X-ray scattering. ]. Ann. Physik 351:809–23
    [Google Scholar]
  42. 42. 
    Prince E. 2004. International Tables for Crystallography, Volume C: Mathematical, Physical and Chemical Tables Dordrecht, Neth.: Kluwer Academic, 3rd ed..
  43. 43. 
    Salvat F, Jablonski A, Powell CJ. 2005. elsepa—Dirac partial-wave calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules. Comput. Phys. Commun. 165:157–90
    [Google Scholar]
  44. 44. 
    McClelland JJ, Fink M. 1985. Electron correlation and binding effects in measured electron-scattering cross sections of CO2. Phys. Rev. Lett. 54:2218–21
    [Google Scholar]
  45. 45. 
    Breitenstein M, Endesfelder A, Meyer H, Schweig A, Zittlau W. 1983. Electron-correlation effects in electron-scattering cross-section calculations of N2. Chem. Phys. Lett. 97:403–9
    [Google Scholar]
  46. 46. 
    Breitenstein M, Mawhorter RJ, Meyer H, Schweig A 1984. Theoretical study of potential-energy differences from high-energy electron scattering cross sections of CO2. Phys. Rev. Lett. 53:2398–401
    [Google Scholar]
  47. 47. 
    Schafer L, Yates AC, Bonham RA. 1971. New values for the partial wave electron scattering factor for the elements 1 ≤ Z ≤ 57 and 72 ≤ Z ≤ 90 for incident electron energies of 10, 40, 70, and 100 keV. J. Chem. Phys. 55:3055–56
    [Google Scholar]
  48. 48. 
    Schäfer L. 1976. Electron diffraction as a tool of structural chemistry. Appl. Spectrosc. 30:123–49
    [Google Scholar]
  49. 49. 
    Srinivasan R, Lobastov VA, Ruan C-Y, Zewail AH. 2003. Ultrafast electron diffraction (UED). Helv. Chim. Acta 86:1761–99Review of the pioneering work of the Zewail group in the development of GUED.
    [Google Scholar]
  50. 50. 
    Simmermacher M, Henriksen NE, Møller KB, Moreno Carrascosa A, Kirrander A 2019. Electronic coherence in ultrafast X-ray scattering from molecular wave packets. Phys. Rev. Lett. 122:073003
    [Google Scholar]
  51. 51. 
    Xiong Y, Wilkin KJ, Centurion M. 2020. High-resolution movies of molecular rotational dynamics captured with ultrafast electron diffraction. Phys. Rev. Res. 2:043064
    [Google Scholar]
  52. 52. 
    Baskin JS, Zewail AH. 2005. Ultrafast electron diffraction: oriented molecular structures in space and time. ChemPhysChem 6:2261–76Analytical derivation and interpretation of anisotropic GUED diffraction patterns.
    [Google Scholar]
  53. 53. 
    Baskin JS, Zewail AH. 2006. Oriented ensembles in ultrafast electron diffraction. ChemPhysChem 7:1562–74
    [Google Scholar]
  54. 54. 
    Reckenthaeler P, Centurion M, Fuß W, Trushin SA, Krausz F, Fill EE. 2009. Time-resolved electron diffraction from selectively aligned molecules. Phys. Rev. Lett. 102:213001
    [Google Scholar]
  55. 55. 
    Centurion M, Reckenthaeler P, Krausz F, Fill E. 2010. Picosecond electron diffraction from molecules aligned by dissociation. J. Mol. Struct. 978:141–46
    [Google Scholar]
  56. 56. 
    Garcia AG, Nahon L, Powis I 2004. Two-dimensional charged particle image inversion using a polar basis function expansion. Rev. Sci. Instrum. 75:4989–96
    [Google Scholar]
  57. 57. 
    Bartell LS, Gavin RM. 1964. Effects of electron correlation in X-ray and electron diffraction. J. Am. Chem. Soc. 86:3493–98Theory of inelastic electron and X-ray scattering and their relation to electron correlation.
    [Google Scholar]
  58. 58. 
    Waller I, Hartree DR, Fowler RH. 1929. On the intensity of total scattering of X-rays. Proc. R. Soc. Lond. A 124:119–42
    [Google Scholar]
  59. 59. 
    Woo YH. 1930. Intensity of total scattering of X-rays by monatomic gases. Nature 126:501–2
    [Google Scholar]
  60. 60. 
    Stapelfeldt H, Seideman T. 2003. Colloquium: aligning molecules with strong laser pulses. Rev. Mod. Phys. 75:543
    [Google Scholar]
  61. 61. 
    Mokhtari A, Cong P, Herek JL, Zewail AH. 1990. Direct femtosecond mapping of trajectories in a chemical reaction. Nature 348:225–27
    [Google Scholar]
  62. 62. 
    Yarkony D, Domcke W, Köppel H. 2004. Conical Intersections: Electronic Structure, Dynamics & Spectroscopy London: World Scientific
  63. 63. 
    Yarkony DR. 1996. Diabolical conical intersections. Rev. Mod. Phys. 68:985–1013
    [Google Scholar]
  64. 64. 
    Dudek RC, Weber PM. 2001. Ultrafast diffraction imaging of the electrocyclic ring-opening reaction of 1,3-cyclohexadiene. J. Phys. Chem. A 105:4167–71
    [Google Scholar]
  65. 65. 
    Xiong Y, Borne K, Moreno Carrascosa A, Saha SK, Wilkin KJ et al. 2021. Strong-field induced fragmentation and isomerization of toluene probed by ultrafast femtosecond electron diffraction and mass spectrometry. Faraday Discuss 228:39–59
    [Google Scholar]
  66. 66. 
    Sanchez A, Amini K, Wang SJ, Steinle T, Belsa B et al. 2021. Molecular structure retrieval directly from laboratory-frame photoelectron spectra in laser-induced electron diffraction. Nat. Commun. 12:1520
    [Google Scholar]
  67. 67. 
    Blaga CI, Xu J, DiChiara AD, Sistrunk E, Zhang K et al. 2012. Imaging ultrafast molecular dynamics with laser-induced electron diffraction. Nature 483:19497
    [Google Scholar]
  68. 68. 
    Wolter B, Pullen MG, Le AT, Baudisch M, Doblhoff-Dier K et al. 2016. Ultrafast electron diffraction imaging of bond breaking in di-ionized acetylene. Science 354:30812
    [Google Scholar]
  69. 69. 
    Qi F, Ma Z, Zhao L, Cheng Y, Jiang W et al. 2020. Breaking 50 femtosecond resolution barrier in MeV ultrafast electron diffraction with a double bend achromat compressor. Phys. Rev. Lett. 124:134803
    [Google Scholar]
  70. 70. 
    Kim HW, Vinokurov NA, Baek IH, Oang KY, Kim MH et al. 2020. Towards jitter-free ultrafast electron diffraction technology. Nat. Photonics 14:245–49
    [Google Scholar]
  71. 71. 
    Maxson J, Cesar D, Calmasini G, Ody A, Musumeci P, Alesini D. 2017. Direct measurement of sub-10 fs relativistic electron beams with ultralow emittance. Phys. Rev. Lett. 118:154802
    [Google Scholar]
  72. 72. 
    Otto MR, René de Cotret LP, Stern MJ, Siwick BJ 2017. Solving the jitter problem in microwave compressed ultrafast electron diffraction instruments: robust sub-50 fs cavity-laser phase stabilization. Struct. Dyn. 4:051101
    [Google Scholar]
  73. 73. 
    Wytrykus D, Centurion M, Reckenthaeler P, Krausz F, Apolonski A, Fill E 2009. Ultrashort pulse electron gun with a MHz repetition rate. Appl. Physics B 96:309–14
    [Google Scholar]
  74. 74. 
    Filippetto D, Qian H. 2016. Design of a high-flux instrument for ultrafast electron diffraction and microscopy. J. Phys. B 49:104003
    [Google Scholar]
  75. 75. 
    Abbamonte P, Abild-Pedersen F, Adams P, Ahmed M, Albert F et al. 2015. New science opportunities enabled by LCLS-II X-ray lasers US Dept. Energy Tech. Rep. SLAC Natl. Accel. Lab. Menlo Park, CA:
  76. 76. 
    van Oudheusden T, Pasmans PLEM, van der Geer SB, de Loos MJ, van der Wiel MJ, Luiten OJ. 2010. Compression of subrelativistic space-charge-dominated electron bunches for single-shot femtosecond electron diffraction. Phys. Rev. Lett. 105:264801
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-082720-010539
Loading
/content/journals/10.1146/annurev-physchem-082720-010539
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error