1932

Abstract

Enzyme cascades are plentiful in nature, but they also have potential in artificial applications due to the possibility of using the target substrate in biofuel cells, electrosynthesis, and biosensors. Cascade reactions from enzymes or hybrid bioorganic catalyst systems exhibit extended substrate range, reaction depth, and increased overall performance. This review addresses the strategies of cascade biocatalysis and bioelectrocatalysis for () CO fixation, () high value-added product formation, () sustainable energy sources via deep oxidation, and () cascaded electrochemical enzymatic biosensors. These recent updates in the field provide fundamental concepts, designs of artificial electrocatalytic oxidation-reduction pathways (using a flexible setup involving organic catalysts and engineered enzymes), and advances in hybrid cascaded sensors for sensitive analyte detection.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-090519-050109
2021-04-20
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/physchem/72/1/annurev-physchem-090519-050109.html?itemId=/content/journals/10.1146/annurev-physchem-090519-050109&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Stryer L. 1995. Biochemistry New York: W.H. Freeman. , 9th ed..
  2. 2. 
    Yuan M, Minteer SD. 2019. Redox polymers in electrochemical systems: from methods of mediation to energy storage. Curr. Opin. Electrochem. 15:1–6
    [Google Scholar]
  3. 3. 
    Milton RD, Minteer SD. 2017. Direct enzymatic bioelectrocatalysis: differentiating between myth and reality. J. R. Soc. Interface 14:20170253
    [Google Scholar]
  4. 4. 
    Nguyen HH, Lee SH, Lee UJ, Fermin CD, Kim M. 2019. Immobilized enzymes in biosensor applications. Materials 12:121
    [Google Scholar]
  5. 5. 
    Rocchitta G, Spanu A, Babudieri S, Latte G, Madeddu G et al. 2016. Enzyme biosensors for biomedical applications: strategies for safeguarding analytical performances in biological fluids. Sensors 16:780
    [Google Scholar]
  6. 6. 
    Hickey DP, Reid RC, Milton RD, Minteer SD. 2016. A self-powered amperometric lactate biosensor based on lactate oxidase immobilized in dimethylferrocene-modified LPEI. Biosens. Bioelectron. 77:26–31
    [Google Scholar]
  7. 7. 
    Reginald SS, Lee H, Lee YS, Yasin M, Chang IS. 2020. Dissolved carbon monoxide concentration monitoring platform based on direct electrical connection of CO dehydrogenase with electrically accessible surface structure. Bioresour. Technol. 297:122436
    [Google Scholar]
  8. 8. 
    Leech D, Kavanagh P, Schuhmann W. 2012. Enzymatic fuel cells: recent progress. Electrochim. Acta 84:223–34
    [Google Scholar]
  9. 9. 
    Squadrito G, Cristiani P 2016. Microbial and enzymatic fuel cells. Compendium of Hydrogen Energy, Vol. 3: Hydrogen Energy Conversion F Barbir, A Basile, TN Veziroğlu 147–73 Cambridge, UK: Woodhead Publ.
    [Google Scholar]
  10. 10. 
    Xiao X, Xia HQ, Wu R, Bai L, Yan L et al. 2019. Tackling the challenges of enzymatic (bio)fuel cells. Chem. Rev. 119:9509–58
    [Google Scholar]
  11. 11. 
    Arechederra RL, Treu BL, Minteer SD. 2007. Development of glycerol/O2 biofuel cell. J. Power Sourc. 173:156–61
    [Google Scholar]
  12. 12. 
    Milton RD, Hickey DP, Abdellaoui S, Lim K, Wu F et al. 2015. Rational design of quinones for high power density biofuel cells. Chem. Sci. 6:4867–75
    [Google Scholar]
  13. 13. 
    Wu RR, Ma CL, Zhu ZG. 2020. Enzymatic electrosynthesis as an emerging electrochemical synthesis platform. Curr. Opin. Electrochem. 19:1–7
    [Google Scholar]
  14. 14. 
    Lee YS, Ruff A, Cai R, Lim K, Schuhmann W, Minteer SD. 2020. Electroenzymatic nitrogen fixation using an organic redox polymer-immobilized MoFe protein system. Angew. Chem. Int. Ed. 59:16511–16
    [Google Scholar]
  15. 15. 
    Mohanakrishna G, Kondaveeti S, Desale P, El Mekawy A, Abu-Reesh IM 2019. Enzymatic electrosynthesis toward value addition. Microbial Electrochemical Technology SV Mohan, S Varjani, A Pandey 955–73 Amsterdam: Elsevier
    [Google Scholar]
  16. 16. 
    Yuan M, Sahin S, Cai R, Abdellaoui S, Hickey DP et al. 2018. Creating a low-potential redox polymer for efficient electroenzymatic CO2 reduction. Angew. Chem. Int. Ed. 57:6582–86
    [Google Scholar]
  17. 17. 
    Lee YS, Yuan M, Cai R, Lim K, Minteer SD. 2020. Nitrogenase bioelectrocatalysis: ATP-independent ammonia production using a redox polymer/MoFe protein system. ACS Catal 10:6854–61
    [Google Scholar]
  18. 18. 
    Zhu Z, Sun F, Zhang X, Zhang YH. 2012. Deep oxidation of glucose in enzymatic fuel cells through a synthetic enzymatic pathway containing a cascade of two thermostable dehydrogenases. Biosens. Bioelectron. 36:110–15
    [Google Scholar]
  19. 19. 
    Macazo FC, Minteer SD. 2017. Enzyme cascades in biofuel cells. Curr. Opin. Electrochem. 5:114–20
    [Google Scholar]
  20. 20. 
    Patel RN. 2018. Biocatalysis for synthesis of pharmaceuticals. Bioorg. Med. Chem. 26:1252–74
    [Google Scholar]
  21. 21. 
    Hwang ET, Lee S. 2019. Multienzymatic cascade reactions via enzyme complex by immobilization. ACS Catal 9:4402–25
    [Google Scholar]
  22. 22. 
    Idan O, Hess H. 2013. Origins of activity enhancement in enzyme cascades on scaffolds. ACS Nano 7:8658–65
    [Google Scholar]
  23. 23. 
    Ovádi J, Srere PA. 1996. Metabolic consequences of enzyme interactions. Cell Biochem. Function 14:249–58
    [Google Scholar]
  24. 24. 
    Wheeldon I, Minteer SD, Banta S, Barton SC, Atanassov P, Sigman M. 2016. Substrate channelling as an approach to cascade reactions. Nat. Chem. 8:299–309
    [Google Scholar]
  25. 25. 
    Dunn MF, Niks D, Ngo H, Barends TR, Schlichting I. 2008. Tryptophan synthase: the workings of a channeling nanomachine. Trends Biochem. Sci. 33:254–64
    [Google Scholar]
  26. 26. 
    Miles EW, Rhee S, Davies DR. 1999. The molecular basis of substrate channeling. J. Biol. Chem. 274:12193–96
    [Google Scholar]
  27. 27. 
    Daines AM, Maltman BA, Flitsch SL. 2004. Synthesis and modifications of carbohydrates, using biotransformations. Curr. Opin. Chem. Biol. 8:106–13
    [Google Scholar]
  28. 28. 
    Hickey DP, Gaffney EM, Minteer SD. 2018. Electrometabolic pathways: recent developments in bioelectrocatalytic cascades. Top. Curr. Chem. 376:43
    [Google Scholar]
  29. 29. 
    Franco JH, de Almeida PZ, Abdellaoui S, Hickey DP, Ciancaglini P et al. 2019. Bioinspired architecture of a hybrid bifunctional enzymatic/organic electrocatalyst for complete ethanol oxidation. Bioelectrochemistry 130:107331
    [Google Scholar]
  30. 30. 
    Baek J. 2015. A panel cointegration analysis of CO2 emissions, nuclear energy and income in major nuclear generating countries. Appl. Energy 145:133–38
    [Google Scholar]
  31. 31. 
    Agarwal AK, Gautam A, Sharma N, Singh AP. 2019. Introduction of methanol and alternate fuel economy. Methanol and the Alternate Fuel Economy3–6 Singapore: Springer
    [Google Scholar]
  32. 32. 
    Bromberg L, Cheng WK. 2010. Methanol as an alternative transportation fuel in the US: options for sustainable and/or energy-secure transportation Rep., Sloan Automot. Lab., Mass. Inst. Technol. Cambridge, MA:
  33. 33. 
    Lin H, Jin HG, Gao L, Han W. 2010. Economic analysis of coal-based polygeneration system for methanol and power production. Energy 35:858–63
    [Google Scholar]
  34. 34. 
    Kuwabata S, Tsuda R, Yoneyama H. 1994. Electrochemical conversion of carbon-dioxide to methanol with the assistance of formate dehydrogenase and methanol dehydrogenase as biocatalysts. J. Am. Chem. Soc. 116:5437–43
    [Google Scholar]
  35. 35. 
    Wu H, Huang S, Jiang Z. 2004. Effects of modification of silica gel and ADH on enzyme activity for enzymatic conversion of CO2 to methanol. Catal. Today 98:545–52
    [Google Scholar]
  36. 36. 
    Xu SW, Lu Y, Li J, Jiang ZY, Wu H. 2006. Efficient conversion of CO2 to methanol catalyzed by three dehydrogenases co-encapsulated in an alginate-silica (ALG-SiO2) hybrid gel. Ind. Eng. Chem. Res. 45:4567–73
    [Google Scholar]
  37. 37. 
    Sun QY, Jiang YJ, Jiang ZY, Zhang L, Sun XH, Li J. 2009. Green and efficient conversion of CO2 to methanol by biomimetic coimmobilization of three dehydrogenases in protamine-templated titania. Ind. Eng. Chem. Res. 48:4210–15
    [Google Scholar]
  38. 38. 
    Obert R, Dave BC. 1999. Enzymatic conversion of carbon dioxide to methanol: enhanced methanol production in silica sol-gel matrices. J. Am. Chem. Soc. 121:12192–93
    [Google Scholar]
  39. 39. 
    Luo J, Meyer AS, Mateiu RV, Pinelo M. 2015. Cascade catalysis in membranes with enzyme immobilization for multi-enzymatic conversion of CO2 to methanol. New Biotechnol. 32:319–27
    [Google Scholar]
  40. 40. 
    Jiang YJ, Sun QY, Zhang L, Jiang ZY. 2009. Capsules-in-bead scaffold: a rational architecture for spatially separated multienzyme cascade system. J. Mater. Chem. 19:9068–74
    [Google Scholar]
  41. 41. 
    El-Zahab B, Donnelly D, Wang P. 2008. Particle-tethered NADH for production of methanol from CO2 catalyzed by coimmobilized enzymes. Biotechnol. Bioeng. 99:508–14
    [Google Scholar]
  42. 42. 
    Ji X, Su Z, Wang P, Ma G, Zhang S. 2015. Tethering of nicotinamide adenine dinucleotide inside hollow nanofibers for high-yield synthesis of methanol from carbon dioxide catalyzed by coencapsulated multienzymes. ACS Nano 9:4600–10
    [Google Scholar]
  43. 43. 
    Cazelles R, Drone J, Fajula F, Ersen O, Moldovan S, Galarneau A. 2013. Reduction of CO2 to methanol by a polyenzymatic system encapsulated in phospholipids-silica nanocapsules. New J. Chem. 37:3721–30
    [Google Scholar]
  44. 44. 
    Yuan MW, Kummer MJ, Milton RD, Quah T, Minteer SD. 2019. Efficient NADH regeneration by a redox polymer-immobilized enzymatic system. ACS Catal. 9:5486–95
    [Google Scholar]
  45. 45. 
    Addo PK, Arechederra RL, Waheed A, Shoemaker JD, Sly WS, Minteer SD. 2011. Methanol production via bioelectrocatalytic reduction of carbon dioxide: role of carbonic anhydrase in improving electrode performance. Electrochem. Solid State Lett. 14:E9–13
    [Google Scholar]
  46. 46. 
    Liu J, Cazelles R, Chen ZP, Zhou H, Galarneau A, Antonietti M. 2014. The bioinspired construction of an ordered carbon nitride array for photocatalytic mediated enzymatic reduction. Phys. Chem. Chem. Phys. 16:14699–705
    [Google Scholar]
  47. 47. 
    Grogan G. 2018. Synthesis of chiral amines using redox biocatalysis. Curr. Opin. Chem. Biol. 43:15–22
    [Google Scholar]
  48. 48. 
    Kataoka M, Miyakawa T, Shimizu S, Tanokura M. 2016. Enzymes useful for chiral compound synthesis: structural biology, directed evolution, and protein engineering for industrial use. Appl. Microbiol. Biotechnol. 100:5747–57
    [Google Scholar]
  49. 49. 
    Wang JB, Reetz MT. 2015. Biocatalysis: chiral cascades. Nat. Chem. 7:948–49
    [Google Scholar]
  50. 50. 
    Zhang R, Xu Y, Xiao R 2015. Redesigning alcohol dehydrogenases/reductases for more efficient biosynthesis of enantiopure isomers. Biotechnol. Adv. 33:1671–84
    [Google Scholar]
  51. 51. 
    Rowan AS, Moody TS, Howard RM, Underwood TJ, Miskelly IR et al. 2013. Preparative access to medicinal chemistry related chiral alcohols using carbonyl reductase technology. Tetrahedron Asymmetry 24:1369–81
    [Google Scholar]
  52. 52. 
    Yamada-Onodera K, Nakajima A, Tani Y. 2006. Purification, characterization, and gene cloning of glycerol dehydrogenase from Hansenula ofunaensis, and its expression for production of optically active diol. J. Biosci. Bioeng. 102:545–51
    [Google Scholar]
  53. 53. 
    Yamada-Onodera K, Yamamoto H, Kawahara N, Tani Y. 2002. Expression of the gene of glycerol dehydrogenase from Hansenula polymorpha Dl-1 in Escherichia coli for the production of chiral compounds. Acta Biotechnol 22:355–62
    [Google Scholar]
  54. 54. 
    Naik HG, Yeniad B, Koning CE, Heise A. 2012. Investigation of asymmetric alcohol dehydrogenase (ADH) reduction of acetophenone derivatives: effect of charge density. Org. Biomol. Chem. 10:4961–67
    [Google Scholar]
  55. 55. 
    Mathew S, Yun H. 2012. ω-Transaminases for the production of optically pure amines and unnatural amino acids. ACS Catal 2:993–1001
    [Google Scholar]
  56. 56. 
    Mayol O, Bastard K, Beloti L, Frese A, Turkenburg JP et al. 2019. A family of native amine dehydrogenases for the asymmetric reductive amination of ketones. Nat. Catal. 2:324–33
    [Google Scholar]
  57. 57. 
    Xue YP, Cao CH, Zheng YG. 2018. Enzymatic asymmetric synthesis of chiral amino acids. Chem. Soc. Rev. 47:1516–61
    [Google Scholar]
  58. 58. 
    Koszelewski D, Tauber K, Faber K, Kroutil W. 2010. ω-Transaminases for the synthesis of non-racemic α-chiral primary amines. Trends Biotechnol 28:324–32
    [Google Scholar]
  59. 59. 
    Cassimjee KE, Branneby C, Abedi V, Wells A, Berglund P. 2010. Transaminations with isopropyl amine: equilibrium displacement with yeast alcohol dehydrogenase coupled to in situ cofactor regeneration. Chem. Commun. 46:5569–71
    [Google Scholar]
  60. 60. 
    Koszelewski D, Göritzer M, Clay D, Seisser B, Kroutil W. 2010. Synthesis of optically active amines employing recombinant ω-transaminases in E. coli cells. ChemCatChem 2:73–77
    [Google Scholar]
  61. 61. 
    Wang B, Land H, Berglund P. 2013. An efficient single-enzymatic cascade for asymmetric synthesis of chiral amines catalyzed by ω-transaminase. Chem. Commun. 49:161–63
    [Google Scholar]
  62. 62. 
    Chen H, Cai R, Patel J, Dong F, Chen H, Minteer SD. 2019. Upgraded bioelectrocatalytic N2 fixation: from N2 to chiral amine intermediates. J. Am. Chem. Soc. 141:4963–71
    [Google Scholar]
  63. 63. 
    Yin X, Liu Y, Meng L, Zhou H, Wu J, Yang L. 2019. Rational molecular engineering of glutamate dehydrogenases for enhancing asymmetric reductive amination of bulky α-keto acids. Adv. Synth. Catal. 361:803–12
    [Google Scholar]
  64. 64. 
    Zhang J, Zhu T, Wu X, Chen Y. 2013. Enhancement of biocatalytic efficiency by increasing substrate loading: enzymatic preparation of l-homophenylalanine. Appl. Microbiol. Biotechnol. 97:8487–94
    [Google Scholar]
  65. 65. 
    Zhu L, Wu Z, Jin JM, Tang SY. 2016. Directed evolution of leucine dehydrogenase for improved efficiency of l-tert-leucine synthesis. Appl. Microbiol. Biotechnol. 100:5805–13
    [Google Scholar]
  66. 66. 
    Vedha-Peters K, Gunawardana M, Rozzell JD, Novick SJ. 2006. Creation of a broad-range and highly stereoselective d-amino acid dehydrogenase for the one-step synthesis of d-amino acids. J. Am. Chem. Soc. 128:10923–29
    [Google Scholar]
  67. 67. 
    Drauz K, Gröger H, May O 2012. Enzyme Catalysis in Organic Synthesis Weinheim, Ger: Wiley-VCH. , 3rd ed..
  68. 68. 
    Mayol O, David S, Darii E, Debard A, Mariage A et al. 2016. Asymmetric reductive amination by a wild-type amine dehydrogenase from the thermophilic bacteria Petrotoga mobilis. Catal. Sci. Technol. 6:7421–28
    [Google Scholar]
  69. 69. 
    Kim GH, Jeon H, Khobragade TP, Patil MD, Sung S et al. 2019. Glutamate as an efficient amine donor for the synthesis of chiral β- and γ-amino acids using transaminase. ChemCatChem 11:1437–40
    [Google Scholar]
  70. 70. 
    Li H, Liao JC. 2014. Development of an NADPH-dependent homophenylalanine dehydrogenase by protein engineering. ACS Synth. Biol. 3:13–20
    [Google Scholar]
  71. 71. 
    Xu G, Jiang Y, Tao R, Wang S, Zeng H, Yang S. 2016. A recyclable biotransformation system for l-2-aminobutyric acid production based on immobilized enzyme technology. Biotechnol. Lett. 38:123–29
    [Google Scholar]
  72. 72. 
    Xu J-M, Fu F-T, Hu H-F, Zheng Y-G. 2016. A high-throughput screening method for amino acid dehydrogenase. Anal. Biochem. 495:29–31
    [Google Scholar]
  73. 73. 
    Chen H, Prater MB, Cai R, Dong F, Chen H, Minteer SD. 2020. Bioelectrocatalytic conversion from N2 to chiral amino acids in a H2/α-keto acid enzymatic fuel cell. J. Am. Chem. Soc. 142:4028–36
    [Google Scholar]
  74. 74. 
    Ahmad AL, Low EM, Abd Shukor SR 2013. Immobilization of phenylalanine dehydrogenase onto Eupergit CM for the synthesis of (S)-2-amino-4-phenylbutyric acid. J. Mol. Catal. B Enzymat. 88:26–31
    [Google Scholar]
  75. 75. 
    Zhang JL, Tao SS, Zhang BJ, Wu XR, Chen YJ. 2014. Microparticle-based strategy for controlled release of substrate for the biocatalytic preparation of l-homophenylalanine. ACS Catal. 4:1584–87
    [Google Scholar]
  76. 76. 
    Müller M. 2005. Chemoenzymatic synthesis of building blocks for statin side chains. Angew. Chem. Int. Ed. 44:362–65
    [Google Scholar]
  77. 77. 
    Hammond RJ, Poston BW, Ghiviriga I, Feske BD. 2007. Biocatalytic synthesis towards both antipodes of 3-hydroxy-3-phenylpropanitrile a precursor to fluoxetine, atomoxetine and nisoxetine. Tetrahedron Lett 48:1217–19
    [Google Scholar]
  78. 78. 
    Brown SA, Parker M-C, Turner NJ. 2000. Dynamic kinetic resolution: synthesis of optically active α-amino acid derivatives. Tetrahedron Asymmetry 11:1687–90
    [Google Scholar]
  79. 79. 
    Ankati H, Zhu D, Yang Y, Biehl ER, Hua L. 2009. Asymmetric synthesis of both antipodes of β-hydroxy nitriles and β-hydroxy carboxylic acids via enzymatic reduction or sequential reduction/hydrolysis. J. Org. Chem. 74:1658–62
    [Google Scholar]
  80. 80. 
    Ma SK, Gruber J, Davis C, Newman L, Gray D et al. 2010. A green-by-design biocatalytic process for atorvastatin intermediate. Green Chem. 12:81–86
    [Google Scholar]
  81. 81. 
    Servi S, Tessaro D, Pedrocchi-Fantoni G. 2008. Chemo-enzymatic deracemization methods for the preparation of enantiopure non-natural α-amino acids. Coord. Chem. Rev. 252:715–26
    [Google Scholar]
  82. 82. 
    Sheldon RA, Brady D. 2018. The limits to biocatalysis: pushing the envelope. Chem. Commun. 54:6088–104
    [Google Scholar]
  83. 83. 
    Uppada V, Bhaduri S, Noronha SB. 2014. Cofactor regeneration – an important aspect of biocatalysis. Curr. Sci. 106:946–57
    [Google Scholar]
  84. 84. 
    Schrittwieser JH, Lavandera I, Seisser B, Mautner B, Kroutil W. 2009. Biocatalytic cascade for the synthesis of enantiopure β-azidoalcohols and β-hydroxynitriles. Eur. J. Org. Chem. 2009.2293–98
    [Google Scholar]
  85. 85. 
    Chen S-Y, Yang C-X, Wu J-P, Xu G, Yang L-R. 2013. Multi-enzymatic biosynthesis of chiral β-hydroxy nitriles through co-expression of oxidoreductase and halohydrin dehalogenase. Adv. Synth. Catal. 355:3179–90
    [Google Scholar]
  86. 86. 
    Dong F, Chen H, Malapit CA, Prater MB, Li M et al. 2020. Biphasic bioelectrocatalytic synthesis of chiral β-hydroxy nitriles. J. Am. Chem. Soc. 142:8374–82
    [Google Scholar]
  87. 87. 
    Rodriguez-Ruiz V, Carlino R, Bezzenine-Lafollée S, Gil R, Prim D et al. 2015. Recent developments in alkene hydro-functionalisation promoted by homogeneous catalysts based on earth abundant elements: formation of C–N, C–O and C–P bond. Dalton Trans 44:12029–59
    [Google Scholar]
  88. 88. 
    Coombs JR, Morken JP. 2016. Catalytic enantioselective functionalization of unactivated terminal alkenes. Angew. Chem. Int. Ed. 55:2636–49
    [Google Scholar]
  89. 89. 
    Riva S, Fessner W-D. 2014. Cascade Biocatalysis: Integrating Stereoselective and Environmentally Friendly Reactions Weinheim, Ger: Wiley-VCH
  90. 90. 
    Toda H, Imae R, Itoh N. 2014. Bioproduction of chiral epoxyalkanes using styrene monooxygenase from Rhodococcus sp. ST-10 (RhSMO). Adv. Synth. Catal. 356:3443–50
    [Google Scholar]
  91. 91. 
    Wu S, Zhou Y, Wang T, Too HP, Wang DI, Li Z. 2016. Highly regio- and enantioselective multiple oxy- and amino-functionalizations of alkenes by modular cascade biocatalysis. Nat. Commun. 7:11917
    [Google Scholar]
  92. 92. 
    Zhou Y, Wu S, Li Z. 2016. Cascade biocatalysis for sustainable asymmetric synthesis: from biobased l-phenylalanine to high-value chiral chemicals. Angew. Chem. Int. Ed. 55:11647–50
    [Google Scholar]
  93. 93. 
    Rasmussen M, Abdellaoui S, Minteer SD. 2016. Enzymatic biofuel cells: 30 years of critical advancements. Biosens. Bioelectron. 76:91–102
    [Google Scholar]
  94. 94. 
    Ellabban O, Abu-Rub H, Blaabjerg F. 2014. Renewable energy resources: current status, future prospects and their enabling technology. Renew. Sustain. Energy Rev. 39:748–64
    [Google Scholar]
  95. 95. 
    Tayhas G, Palmore GTR, Whitesides GM. 1994. Microbial and enzymatic biofuel cells. Enzymatic Conversion of Biomass for Fuels Production ME Himmel 271–90 Washington, DC: Am. Chem. Soc.
    [Google Scholar]
  96. 96. 
    Barton SC, Gallaway J, Atanassov P. 2004. Enzymatic biofuel cells for implantable and microscale devices. Chem. Rev. 104:4867–86
    [Google Scholar]
  97. 97. 
    Yan Y-M, Baravik I, Tel-Vered R, Willner I. 2009. An ethanol/O2 biofuel cell based on an electropolymerized bilirubin oxidase/Pt nanoparticle bioelectrocatalytic O2-reduction cathode. Adv. Mater. 21:4275–79
    [Google Scholar]
  98. 98. 
    Akers NL, Moore CM, Minteer SD. 2005. Development of alcohol/O2 biofuel cells using salt-extracted tetrabutylammonium bromide/Nafion membranes to immobilize dehydrogenase enzymes. Electrochim. Acta 50:2521–25
    [Google Scholar]
  99. 99. 
    Franco JH, Neto SA, Hickey DP, Minteer SD, de Andrade AR. 2018. Hybrid catalyst cascade architecture enhancement for complete ethanol electrochemical oxidation. Biosens. Bioelectron. 121:281–86
    [Google Scholar]
  100. 100. 
    Hickey DP, McCammant MS, Giroud F, Sigman MS, Minteer SD. 2014. Hybrid enzymatic and organic electrocatalytic cascade for the complete oxidation of glycerol. J. Am. Chem. Soc. 136:15917–20
    [Google Scholar]
  101. 101. 
    Aquino Neto S, Minteer SD, de Andrade AR 2018. Developing ethanol bioanodes using a hydrophobically modified linear polyethylenimine hydrogel for immobilizing an enzyme cascade. J. Electroanal. Chem. 812:153–58
    [Google Scholar]
  102. 102. 
    Dijksman A, Marino-Gonzalez A, Mairata IPA, Arends IW, Sheldon RA. 2001. Efficient and selective aerobic oxidation of alcohols into aldehydes and ketones using ruthenium/TEMPO as the catalytic system. J. Am. Chem. Soc. 123:6826–33
    [Google Scholar]
  103. 103. 
    De Luca L, Giacomelli G, Masala S, Porcheddu A. 2003. Trichloroisocyanuric/TEMPO oxidation of alcohols under mild conditions: a close investigation. J. Org. Chem. 68:4999–5001
    [Google Scholar]
  104. 104. 
    Hickey DP, Milton RD, Chen DY, Sigman MS, Minteer SD. 2015. TEMPO-modified linear poly(ethylenimine) for immobilization-enhanced electrocatalytic oxidation of alcohols. ACS Catal 5:5519–24
    [Google Scholar]
  105. 105. 
    Franco JH, Klunder KJ, Russell V, de Andrade AR, Minteer SD. 2020. Hybrid enzymatic and organic catalyst cascade for enhanced complete oxidation of ethanol in an electrochemical micro-reactor device. Electrochim. Acta 331:135254
    [Google Scholar]
  106. 106. 
    Franco JH, Klunder KJ, Lee J, Russell V, de Andrade AR, Minteer SD. 2020. Enhanced electrochemical oxidation of ethanol using a hybrid catalyst cascade architecture containing pyrene-TEMPO, oxalate decarboxylase and carboxylated multi-walled carbon nanotube. Biosens. Bioelectron. 154:112077
    [Google Scholar]
  107. 107. 
    Palmore GTR, Bertschy H, Bergens SH, Whitesides GM. 1998. A methanol/dioxygen biofuel cell that uses NAD+-dependent dehydrogenases as catalysts: application of an electro-enzymatic method to regenerate nicotinamide adenine dinucleotide at low overpotentials. J. Electroanal. Chem. 443:155–61
    [Google Scholar]
  108. 108. 
    Wu G, Gao Y, Zhao D, Ling P, Gao F. 2017. Methanol/oxygen enzymatic biofuel cell using laccase and NAD+-dependent dehydrogenase cascades as biocatalysts on carbon nanodots electrodes. ACS Appl. Mater. Interfaces 9:40978–86
    [Google Scholar]
  109. 109. 
    Zhu Z, Tam TK, Sun F, You C, Zhang YHP. 2014. A high-energy-density sugar biobattery based on a synthetic enzymatic pathway. Nat. Commun. 5:3026
    [Google Scholar]
  110. 110. 
    Tasca F, Gorton L, Kujawa M, Patel I, Harreither W et al. 2010. Increasing the coulombic efficiency of glucose biofuel cell anodes by combination of redox enzymes. Biosens. Bioelectron. 25:1710–16
    [Google Scholar]
  111. 111. 
    Zhu ZG, Ma CL, Zhang YHP. 2018. Co-utilization of mixed sugars in an enzymatic fuel cell based on an in vitro enzymatic pathway. Electrochim. Acta 263:184–91
    [Google Scholar]
  112. 112. 
    Sokic-Lazic D, Minteer SD. 2009. Pyruvate/air enzymatic biofuel cell capable of complete oxidation. Electrochem. Solid State Lett. 12:F26–28
    [Google Scholar]
  113. 113. 
    Beltrán-Prieto JC, Kolomazník K, Pecha J. 2013. A review of catalytic systems for glycerol oxidation: alternatives for waste valorization. Aust. J. Chem. 66:511–21
    [Google Scholar]
  114. 114. 
    Sokic-Lazic D, Arechederra RL, Treu BL, Minteer SD. 2010. Oxidation of biofuels: fuel diversity and effectiveness of fuel oxidation through multiple enzyme cascades. Electroanalysis 22:757–64
    [Google Scholar]
  115. 115. 
    Arechederra RL, Minteer SD. 2009. Complete oxidation of glycerol in an enzymatic biofuel cell. Fuel Cells 9:63–69
    [Google Scholar]
  116. 116. 
    Abdellaoui S, Seow Chavez M, Matanovic I, Stephens AR, Atanassov P, Minteer SD 2017. Hybrid molecular/enzymatic catalytic cascade for complete electro-oxidation of glycerol using a promiscuous NAD-dependent formate dehydrogenase from Candida boidinii. Chem. Commun. 53:5368–71
    [Google Scholar]
  117. 117. 
    Abdellaoui S, Hickey DP, Stephens AR, Minteer SD. 2015. Recombinant oxalate decarboxylase: enhancement of a hybrid catalytic cascade for the complete electro-oxidation of glycerol. Chem. Commun. 51:14330–33
    [Google Scholar]
  118. 118. 
    Macazo FC, Hickey DP, Abdellaoui S, Sigman MS, Minteer SD. 2017. Polymer-immobilized, hybrid multi-catalyst architecture for enhanced electrochemical oxidation of glycerol. Chem. Commun. 53:10310–13
    [Google Scholar]
  119. 119. 
    Revathi C, Rajendra Kumar RT 2019. Enzymatic and nonenzymatic electrochemical biosensors. Fundamentals and Sensing Applications of 2D Materials CS Rout, M Hywel, DJ Late 259–300 Cambridge, UK: Woodhead Publ.
    [Google Scholar]
  120. 120. 
    Zhang Y, Arugula MA, Wales M, Wild J, Simonian AL. 2015. A novel layer-by-layer assembled multi-enzyme/CNT biosensor for discriminative detection between organophosphorus and non-organophosphrus pesticides. Biosens. Bioelectron. 67:287–95
    [Google Scholar]
  121. 121. 
    Trojanowicz M. 2002. Determination of pesticides using electrochemical enzymatic biosensors. Electroanalysis 14:1311–28
    [Google Scholar]
  122. 122. 
    Bucur B, Munteanu FD, Marty JL, Vasilescu A. 2018. Advances in enzyme-based biosensors for pesticide detection. Biosensors 8:27
    [Google Scholar]
  123. 123. 
    Fang Y, Bullock H, Lee SA, Sekar N, Eiteman MA et al. 2016. Detection of methyl salicylate using bi-enzyme electrochemical sensor consisting salicylate hydroxylase and tyrosinase. Biosens. Bioelectron. 85:603–10
    [Google Scholar]
  124. 124. 
    Wang H, Ramnani P, Pham T, Villarreal CC, Yu X et al. 2019. Gas biosensor arrays based on single-stranded DNA-functionalized single-walled carbon nanotubes for the detection of volatile organic compound biomarkers released by huanglongbing disease-infected citrus trees. Sensors 19:4795
    [Google Scholar]
  125. 125. 
    Berninger T, Bliem C, Piccinini E, Azzaroni O, Knoll W. 2018. Cascading reaction of arginase and urease on a graphene-based FET for ultrasensitive, real-time detection of arginine. Biosens. Bioelectron. 115:104–10
    [Google Scholar]
  126. 126. 
    Lu S, Hu T, Wang S, Sun J, Yang X. 2017. Ultra-sensitive colorimetric assay system based on the hybridization chain reaction-triggered enzyme cascade amplification. ACS Appl. Mater. Interfaces 9:167–75
    [Google Scholar]
  127. 127. 
    Hou C, Wang Y, Ding Q, Jiang L, Li M et al. 2015. Facile synthesis of enzyme-embedded magnetic metal-organic frameworks as a reusable mimic multi-enzyme system: mimetic peroxidase properties and colorimetric sensor. Nanoscale 7:18770–79
    [Google Scholar]
  128. 128. 
    Xianyu Y, Chen Y, Jiang X. 2015. Horseradish peroxidase-mediated, iodide-catalyzed cascade reaction for plasmonic immunoassays. Anal. Chem. 87:10688–92
    [Google Scholar]
  129. 129. 
    Zhang P, Liu H, Ma S, Men S, Li Q et al. 2016. A label-free ultrasensitive fluorescence detection of viable Salmonella enteritidis using enzyme-induced cascade two-stage toehold strand-displacement-driven assembly of G-quadruplex DNA. Biosens. Bioelectron. 80:538–42
    [Google Scholar]
  130. 130. 
    Fletcher AJ, Mallery DL, Watkinson RE, Dickson CF, James LC 2015. Sequential ubiquitination and deubiquitination enzymes synchronize the dual sensor and effector functions of TRIM21. PNAS 112:10014–19
    [Google Scholar]
  131. 131. 
    Jin LY, Dong YM, Wu XM, Cao GX, Wang GL. 2015. Versatile and amplified biosensing through enzymatic cascade reaction by coupling alkaline phosphatase in situ generation of photoresponsive nanozyme. Anal. Chem. 87:10429–36
    [Google Scholar]
  132. 132. 
    Jeong CY, Han YD, Yoon JH, Yoon HC. 2014. Bioelectrocatalytic sensor for triglycerides in human skin sebum based on enzymatic cascade reaction of lipase, glycerol kinase and glycerophosphate oxidase. J. Biotechnol. 175:7–14
    [Google Scholar]
  133. 133. 
    Okazaki M, Komoriya N, Tomoike H, Inoue N, Usui S et al. 1998. Quantitative detection method of triglycerides in serum lipoproteins and serum-free glycerol by high-performance liquid chromatography. J. Chromatogr. B Biomed. Sci. Appl. 709:179–87
    [Google Scholar]
  134. 134. 
    Mondal K, Ali MA, Singh C, Sumana G, Malhotra BD, Sharma A. 2017. Highly sensitive porous carbon and metal/carbon conducting nanofiber based enzymatic biosensors for triglyceride detection. Sens. Actuators B Chem. 246:202–14
    [Google Scholar]
  135. 135. 
    Narwal V, Pundir CS. 2017. An improved amperometric triglyceride biosensor based on co-immobilization of nanoparticles of lipase, glycerol kinase and glycerol 3-phosphate oxidase onto pencil graphite electrode. Enzyme Microb. Technol. 100:11–16
    [Google Scholar]
  136. 136. 
    Bhardwaj SK, Chauhan R, Yadav P, Ghosh S, Mahapatro AK et al. 2019. Bi-enzyme functionalized electro-chemically reduced transparent graphene oxide platform for triglyceride detection. Biomater. Sci. 7:1598–606
    [Google Scholar]
  137. 137. 
    Vlassov VV, Laktionov PP, Rykova EY. 2010. Circulating nucleic acids as a potential source for cancer biomarkers. Curr. Mol. Med. 10:142–65
    [Google Scholar]
  138. 138. 
    Schwarzenbach H, Hoon DS, Pantel K. 2011. Cell-free nucleic acids as biomarkers in cancer patients. Nat. Rev. Cancer 11:426–37
    [Google Scholar]
  139. 139. 
    Han X, Wang J, Sun Y. 2017. Circulating tumor DNA as biomarkers for cancer detection. Genom. Proteom. Bioinformat. 15:59–72
    [Google Scholar]
  140. 140. 
    Thakur BK, Zhang H, Becker A, Matei I, Huang Y et al. 2014. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res 24:766–69
    [Google Scholar]
  141. 141. 
    De Guire V, Robitaille R, Tetreault N, Guerin R, Menard C et al. 2013. Circulating miRNAs as sensitive and specific biomarkers for the diagnosis and monitoring of human diseases: promises and challenges. Clin. Biochem. 46:846–60
    [Google Scholar]
  142. 142. 
    Heneghan HM, Miller N, Kelly R, Newell J, Kerin MJ. 2010. Systemic miRNA-195 differentiates breast cancer from other malignancies and is a potential biomarker for detecting noninvasive and early stage disease. Oncologist 15:673–82
    [Google Scholar]
  143. 143. 
    Bartels CL, Tsongalis GJ. 2009. MicroRNAs: novel biomarkers for human cancer. Clin. Chem. 55:623–31
    [Google Scholar]
  144. 144. 
    Liu S, Liu T, Wang L. 2015. Label-free, isothermal and ultrasensitive electrochemical detection of DNA and DNA 3′-phosphatase using a cascade enzymatic cleavage strategy. Chem. Commun. 51:176–79
    [Google Scholar]
  145. 145. 
    Miao P, Zhang T, Xu J, Tang Y. 2018. Electrochemical detection of miRNA combining T7 exonuclease-assisted cascade signal amplification and DNA-templated copper nanoparticles. Anal. Chem. 90:11154–60
    [Google Scholar]
  146. 146. 
    Mandli J, Mohammadi H, Amine A. 2017. Electrochemical DNA sandwich biosensor based on enzyme amplified microRNA-21 detection and gold nanoparticles. Bioelectrochemistry 116:17–23
    [Google Scholar]
  147. 147. 
    Wu X, Chai Y, Zhang P, Yuan R. 2015. An electrochemical biosensor for sensitive detection of microRNA-155: combining target recycling with cascade catalysis for signal amplification. ACS Appl. Mater. Interfaces 7:713–20
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-090519-050109
Loading
/content/journals/10.1146/annurev-physchem-090519-050109
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error