1932

Abstract

Regulated cell death is a major mechanism to eliminate damaged, infected, or superfluous cells. Previously, apoptosis was thought to be the only regulated cell death mechanism; however, new modalities of caspase-independent regulated cell death have been identified, including necroptosis, pyroptosis, and autophagic cell death. As an understanding of the cellular mechanisms that mediate regulated cell death continues to grow, there is increasing evidence that these pathways are implicated in the pathogenesis of many pulmonary disorders. This review summarizes our understanding of regulated cell death as it pertains to the pathogenesis of chronic obstructive pulmonary disease, asthma, idiopathic pulmonary fibrosis, acute respiratory distress syndrome, and pulmonary arterial hypertension.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-020518-114320
2019-02-10
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/physiol/81/1/annurev-physiol-020518-114320.html?itemId=/content/journals/10.1146/annurev-physiol-020518-114320&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Elmore S. 2007. Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35:495–516
    [Google Scholar]
  2. 2.  Ashkenazi A, Salvesen G 2014. Regulated cell death: signaling and mechanisms. Annu. Rev. Cell Dev. Biol. 30:337–56
    [Google Scholar]
  3. 3.  Kerr JF, Wyllie AH, Currie AR 1972. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26:239–57
    [Google Scholar]
  4. 4.  Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D et al. 2018. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 25:486–541
    [Google Scholar]
  5. 5.  Fuchs Y, Steller H 2011. Programmed cell death in animal development and disease. Cell 147:742–58
    [Google Scholar]
  6. 6.  Thornberry NA, Lazebnik Y 1998. Caspases: enemies within. Science 281:1312–16
    [Google Scholar]
  7. 7.  Demedts IK, Demoor T, Bracke KR, Joos GF, Brusselle GG 2006. Role of apoptosis in the pathogenesis of COPD and pulmonary emphysema. Respir. Res. 7:53
    [Google Scholar]
  8. 8.  Uhal BD, Joshi I, Hughes WF, Ramos C, Pardo A, Selman M 1998. Alveolar epithelial cell death adjacent to underlying myofibroblasts in advanced fibrotic human lung. Am. J. Physiol. 275:L1192–99
    [Google Scholar]
  9. 9.  Kalkavan H, Green DR 2018. MOMP, cell suicide as a BCL-2 family business. Cell Death Differ 25:46–55
    [Google Scholar]
  10. 10.  Reyna DE, Garner TP, Lopez A, Kopp F, Choudhary GS et al. 2017. Direct activation of BAX by BTSA1 overcomes apoptosis resistance in acute myeloid leukemia. Cancer Cell 32:490–505.e10
    [Google Scholar]
  11. 11.  Portt L, Norman G, Clapp C, Greenwood M, Greenwood MT 2011. Anti-apoptosis and cell survival: a review. Biochim. Biophys. Acta 1813:238–59
    [Google Scholar]
  12. 12.  Liu F, Lagares D, Choi KM, Stopfer L, Marinkovic A et al. 2015. Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 308:L344–57
    [Google Scholar]
  13. 13.  Quinton LJ, Mizgerd JP 2011. NF-κB and STAT3 signaling hubs for lung innate immunity. Cell Tissue Res 343:153–65
    [Google Scholar]
  14. 14.  Horowitz JC, Rogers DS, Sharma V, Vittal R, White ES et al. 2007. Combinatorial activation of FAK and AKT by transforming growth factor-β1 confers an anoikis-resistant phenotype to myofibroblasts. Cell Signal 19:761–71
    [Google Scholar]
  15. 15.  Ryter SW, Kim HP, Hoetzel A, Park JW, Nakahira K et al. 2007. Mechanisms of cell death in oxidative stress. Antioxid. Redox Signal. 9:49–89
    [Google Scholar]
  16. 16.  Kelsen SG. 2016. The unfolded protein response in chronic obstructive pulmonary disease. Ann. Am. Thorac. Soc. 13:Suppl. 2S138–45
    [Google Scholar]
  17. 17.  Galani V, Tatsaki E, Bai M, Kitsoulis P, Lekka M et al. 2010. The role of apoptosis in the pathophysiology of Acute Respiratory Distress Syndrome (ARDS): an up-to-date cell-specific review. Pathol. Res. Pract. 206:145–50
    [Google Scholar]
  18. 18.  Weinlich R, Oberst A, Beere HM, Green DR 2017. Necroptosis in development, inflammation and disease. Nat. Rev. Mol. Cell Biol. 18:2127–36
    [Google Scholar]
  19. 19.  Linkermann A, Green DR 2014. Necroptosis. N. Engl. J. Med. 370:5455–65
    [Google Scholar]
  20. 20.  Li D, Xu T, Cao Y, Wang H, Li L et al. 2015. A cytosolic heat shock protein 90 and cochaperone CDC37 complex is required for RIP3 activation during necroptosis. PNAS 112:165017–22
    [Google Scholar]
  21. 21.  Hildebrand JM, Tanzer MC, Lucet IS, Young SN, Spall SK et al. 2014. Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death. PNAS 111:4215072–77
    [Google Scholar]
  22. 22.  Galluzzi L, Kepp O, Chan FK, Kroemer G 2017. Necroptosis: mechanisms and relevance to disease. Annu. Rev. Pathol. Mech. Dis. 12:103–30
    [Google Scholar]
  23. 23.  Gong YN, Guy C, Olauson H, Becker JU, Yang M et al. 2017. ESCRT-III acts downstream of MLKL to regulate necroptotic cell death and its consequences. Cell 69:2286–300.e216
    [Google Scholar]
  24. 24.  Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerald P et al. 2011. Catalytic activity of the caspase-8-FLIPL complex inhibits RIPK3-dependent necrosis. Nature 471:363–67
    [Google Scholar]
  25. 25.  Chen W, Wu J, Li L, Zhang Z, Ren J et al. 2015. Ppm1b negatively regulates necroptosis through dephosphorylating Rip3. Nat. Cell Biol. 17:4434–44
    [Google Scholar]
  26. 26.  Upton JW, Kaiser WJ, Mocarski ES 2012. DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe 11:3290–97
    [Google Scholar]
  27. 27.  Kaiser WJ, Sridharan H, Huang C, Mandal P, Upton JW et al. 2013. Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J. Biol. Chem. 288:4331268–79
    [Google Scholar]
  28. 28.  Thapa RJ, Nogusa S, Chen P, Maki JL, Lerro A et al. 2013. Interferon-induced RIP1/RIP3-mediated necrosis requires PKR and is licensed by FADD and caspases. PNAS 110:33E3109–18
    [Google Scholar]
  29. 29.  Dannappel M, Vlantis K, Kumari S, Polykratis A, Kim C et al. 2014. RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis. Nature 513:751690–94
    [Google Scholar]
  30. 30.  Newton K, Dugger DL, Maltzman A, Greve JM, Hedehus M et al. 2016. RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in mouse models of inflammation and tissue injury. Cell Death Differ 23:91565–76
    [Google Scholar]
  31. 31.  Shi J, Zhao Y, Wang K, Shi X, Wang Y et al. 2015. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526:660–65
    [Google Scholar]
  32. 32.  Jorgensen I, Zhang Y, Krantz BA, Miao EA 2016. Pyroptosis triggers pore-induced intracellular traps (PITs) that capture bacteria and lead to their clearance by efferocytosis. J. Exp. Med. 213:2113–28
    [Google Scholar]
  33. 33.  Cheng KT, Xiong S, Ye Z, Hong Z, Di A et al. 2017. Caspase-11-mediated endothelial pyroptosis underlies endotoxemia-induced lung injury. J. Clin. Investig. 127:4124–35
    [Google Scholar]
  34. 34.  Choi AM, Ryter SW, Levine B 2013. Autophagy in human health and disease. N. Engl. J. Med. 368:651–62
    [Google Scholar]
  35. 35.  Kasahara Y, Tuder RM, Cool CD, Lynch DA, Flores SC, Voelkel NF 2001. Endothelial cell death and decreased expression of vascular endothelial growth factor and vascular endothelial growth factor receptor 2 in emphysema. Am. J. Respir. Crit. Care Med. 163:737–44
    [Google Scholar]
  36. 36.  Imai K, Mercer BA, Schulman LL, Sonett JR, D'Armiento JM 2005. Correlation of lung surface area to apoptosis and proliferation in human emphysema. Eur. Respir. J. 25:250–58
    [Google Scholar]
  37. 37.  Hodge S, Hodge G, Scicchitano R, Reynolds PN, Holmes M 2003. Alveolar macrophages from subjects with chronic obstructive pulmonary disease are deficient in their ability to phagocytose apoptotic airway epithelial cells. Immunol. Cell Biol. 81:289–96
    [Google Scholar]
  38. 38.  Bartalesi B, Cavarra E, Fineschi S, Lucattelli M, Lunghi B et al. 2005. Different lung responses to cigarette smoke in two strains of mice sensitive to oxidants. Eur. Respir. J. 25:15–22
    [Google Scholar]
  39. 39.  Aoshiba K, Yokohori N, Nagai A 2003. Alveolar wall apoptosis causes lung destruction and emphysematous changes. Am. J. Respir. Cell Mol. Biol. 28:555–62
    [Google Scholar]
  40. 40.  Clauss M, Voswinckel R, Rajashekhar G, Sigua NL, Fehrenbach H et al. 2011. Lung endothelial monocyte-activating protein 2 is a mediator of cigarette smoke-induced emphysema in mice. J. Clin. Investig. 121:2470–79
    [Google Scholar]
  41. 41.  Giordano RJ, Lahdenranta J, Zhen L, Chukwueke U, Petrache I et al. 2008. Targeted induction of lung endothelial cell apoptosis causes emphysema-like changes in the mouse. J. Biol. Chem. 283:29447–60
    [Google Scholar]
  42. 42.  Garcia O, Hiatt MJ, Lundin A, Lee J, Reddy R et al. 2016. Targeted type 2 alveolar cell depletion. A dynamic functional model for lung injury repair. Am. J. Respir. Cell Mol. Biol. 54:319–30
    [Google Scholar]
  43. 43.  Rangasamy T, Cho CY, Thimmulappa RK, Zhen L, Srisuma SS et al. 2004. Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice. J. Clin. Investig. 114:1248–59
    [Google Scholar]
  44. 44.  Lao T, Jiang Z, Yun J, Qiu W, Guo F et al. 2016. Hhip haploinsufficiency sensitizes mice to age-related emphysema. PNAS 113:E4681–7
    [Google Scholar]
  45. 45.  Yao H, Chung S, Hwang JW, Rajendrasozhan S, Sundar IK et al. 2012. SIRT1 protects against emphysema via FOXO3-mediated reduction of premature senescence in mice. J. Clin. Investig. 122:2032–45
    [Google Scholar]
  46. 46.  Caramori G, Adcock IM, Casolari P, Ito K, Jazrawi E et al. 2011. Unbalanced oxidant-induced DNA damage and repair in COPD: a link towards lung cancer. Thorax 66:521–27
    [Google Scholar]
  47. 47.  Alder JK, Guo N, Kembou F, Parry EM, Anderson CJ et al. 2011. Telomere length is a determinant of emphysema susceptibility. Am. J. Respir. Crit. Care Med. 184:904–12
    [Google Scholar]
  48. 48.  Sears CR, Zhou H, Justice MJ, Fisher AJ, Saliba J et al. 2018. Xeroderma pigmentosum group C deficiency alters cigarette smoke DNA damage cell fate and accelerates emphysema development. Am. J. Respir. Cell Mol. Biol. 58:402–11
    [Google Scholar]
  49. 49.  van Rijt SH, Keller IE, John G, Kohse K, Yildirim AO et al. 2012. Acute cigarette smoke exposure impairs proteasome function in the lung. Am. J. Physiol. Lung Cell. Mol. Physiol. 303:L814–23
    [Google Scholar]
  50. 50.  Kasahara Y, Tuder RM, Taraseviciene-Stewart L, Le Cras TD, Abman S et al. 2000. Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. J. Clin. Investig. 106:1311–19
    [Google Scholar]
  51. 51.  Nakanishi K, Takeda Y, Tetsumoto S, Iwasaki T, Tsujino K et al. 2011. Involvement of endothelial apoptosis underlying chronic obstructive pulmonary disease-like phenotype in adiponectin-null mice: implications for therapy. Am. J. Respir. Crit. Care Med. 183:1164–75
    [Google Scholar]
  52. 52.  Baarsma HA, Konigshoff M 2017. ‘WNT-er is coming’: WNT signalling in chronic lung diseases. Thorax 72:746–59
    [Google Scholar]
  53. 53.  Petrache I, Natarajan V, Zhen L, Medler TR, Richter AT et al. 2005. Ceramide upregulation causes pulmonary cell apoptosis and emphysema-like disease in mice. Nat. Med. 11:491–98
    [Google Scholar]
  54. 54.  Yoshida T, Mett I, Bhunia AK, Bowman J, Perez M et al. 2010. Rtp801, a suppressor of mTOR signaling, is an essential mediator of cigarette smoke-induced pulmonary injury and emphysema. Nat. Med. 16:767–73
    [Google Scholar]
  55. 55.  Ruwanpura SM, McLeod L, Dousha LF, Seow HJ, Alhayyani S et al. 2016. Therapeutic targeting of the IL-6 trans-signaling/mechanistic target of rapamycin complex 1 axis in pulmonary emphysema. Am. J. Respir. Crit. Care Med. 194:1494–505
    [Google Scholar]
  56. 56.  Suzuki T, Moraes TJ, Vachon E, Ginzberg HH, Huang TT et al. 2005. Proteinase-activated receptor-1 mediates elastase-induced apoptosis of human lung epithelial cells. Am. J. Respir. Cell Mol. Biol. 33:231–47
    [Google Scholar]
  57. 57.  Petrache I, Fijalkowska I, Medler TR, Skirball J, Cruz P et al. 2006. α-1 Antitrypsin inhibits caspase-3 activity, preventing lung endothelial cell apoptosis. Am. J. Pathol. 169:1155–66
    [Google Scholar]
  58. 58.  Morissette MC, Parent J, Milot J 2009. Alveolar epithelial and endothelial cell apoptosis in emphysema: what we know and what we need to know. Int. J. Chron. Obstruct. Pulmon. Dis. 4:19–31
    [Google Scholar]
  59. 59.  Wang Z, Zheng T, Zhu Z, Homer RJ, Riese RJ et al. 2000. Interferon γ induction of pulmonary emphysema in the adult murine lung. J. Exp. Med. 192:1587–600
    [Google Scholar]
  60. 60.  Majo J, Ghezzo H, Cosio MG 2001. Lymphocyte population and apoptosis in the lungs of smokers and their relation to emphysema. Eur. Respir. J. 17:946–53
    [Google Scholar]
  61. 61.  Taraseviciene-Stewart L, Scerbavicius R, Choe KH, Moore M, Sullivan A et al. 2005. An animal model of autoimmune emphysema. Am. J. Respir. Crit. Care Med. 171:734–42
    [Google Scholar]
  62. 62.  Polverino F, Cosio BG, Pons J, Laucho-Contreras M, Tejera P et al. 2015. B cell-activating factor. An orchestrator of lymphoid follicles in severe chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 192:695–705
    [Google Scholar]
  63. 63.  Comer DM, Kidney JC, Ennis M, Elborn JS 2013. Airway epithelial cell apoptosis and inflammation in COPD, smokers and nonsmokers. Eur. Respir. J. 41:1058–67
    [Google Scholar]
  64. 64.  Sauler M, Leng L, Trentalange M, Haslip M, Shan P et al. 2014. Macrophage migration inhibitory factor deficiency in chronic obstructive pulmonary disease. Am. J. Physiol. Lung Cell. Mol. Physiol. 306:L487–96
    [Google Scholar]
  65. 65.  Zhang X, Shan P, Jiang G, Cohn L, Lee PJ 2006. Toll-like receptor 4 deficiency causes pulmonary emphysema. J. Clin. Investig. 116:3050–59
    [Google Scholar]
  66. 66.  Kang MJ, Lee CG, Lee JY, Dela Cruz CS, Chen ZJ et al. 2008. Cigarette smoke selectively enhances viral PAMP- and virus-induced pulmonary innate immune and remodeling responses in mice. J. Clin. Investig. 118:2771–84
    [Google Scholar]
  67. 67.  Chen ZH, Lam HC, Jin Y, Kim HP, Cao J et al. 2010. Autophagy protein microtubule-associated protein 1 light chain-3B (LC3B) activates extrinsic apoptosis during cigarette smoke-induced emphysema. PNAS 107:18880–85
    [Google Scholar]
  68. 68.  Bodas M, Patel N, Silverberg D, Walworth K, Vij N 2017. Master autophagy regulator transcription factor EB regulates cigarette smoke-induced autophagy impairment and chronic obstructive pulmonary disease-emphysema pathogenesis. Antioxid. Redox Signal. 27:150–67
    [Google Scholar]
  69. 69.  Mizumura K, Cloonan SM, Nakahira K, Bhashyam AR, Cervo M et al. 2014. Mitophagy-dependent necroptosis contributes to the pathogenesis of COPD. J. Clin. Investig. 124:3987–4003
    [Google Scholar]
  70. 70.  Ito S, Araya J, Kurita Y, Kobayashi K, Takasaka N et al. 2015. PARK2-mediated mitophagy is involved in regulation of HBEC senescence in COPD pathogenesis. Autophagy 11:547–59
    [Google Scholar]
  71. 71.  Kang MJ, Homer RJ, Gallo A, Lee CG, Crothers KA et al. 2007. IL-18 is induced and IL-18 receptor α plays a critical role in the pathogenesis of cigarette smoke-induced pulmonary emphysema and inflammation. J. Immunol. 178:1948–59
    [Google Scholar]
  72. 72.  Franklin BS, Bossaller L, De Nardo D, Ratter JM, Stutz A et al. 2014. The adaptor ASC has extracellular and ‘prionoid’ activities that propagate inflammation. Nat. Immunol. 15:727–37
    [Google Scholar]
  73. 73.  Colarusso C, Terlizzi M, Molino A, Pinto A, Sorrentino R 2017. Role of the inflammasome in chronic obstructive pulmonary disease (COPD). Oncotarget 8:81813–24
    [Google Scholar]
  74. 74.  Di Stefano A, Caramori G, Barczyk A, Vicari C, Brun P et al. 2014. Innate immunity but not NLRP3 inflammasome activation correlates with severity of stable COPD. Thorax 69:516–24
    [Google Scholar]
  75. 75.  Cloonan SM, Glass K, Laucho-Contreras ME, Bhashyam AR, Cervo M et al. 2016. Mitochondrial iron chelation ameliorates cigarette smoke-induced bronchitis and emphysema in mice. Nat. Med. 22:163–74
    [Google Scholar]
  76. 76.  Cohen L, Xueping E, Tarsi J, Ramkumar T, Horiuchi TK et al. 2007. Epithelial cell proliferation contributes to airway remodeling in severe asthma. Am. J. Respir. Crit. Care Med. 176:2138–45
    [Google Scholar]
  77. 77.  Trautmann A, Schmid-Grendelmeier P, Kruger K, Crameri R, Akdis M et al. 2002. T cells and eosinophils cooperate in the induction of bronchial epithelial cell apoptosis in asthma. J. Allergy Clin. Immunol. 109:2329–37
    [Google Scholar]
  78. 78.  Juncadella IJ, Kadl A, Sharma AK, Shim YM, Hochreiter-Hufford A et al. 2013. Apoptotic cell clearance by bronchial epithelial cells critically influences airway inflammation. Nature 493:7433547–51
    [Google Scholar]
  79. 79.  Barbato A, Turato G, Baraldo S, Bazzan E, Calabrese F et al. 2006. Epithelial damage and angiogenesis in the airways of children with asthma. Am. J. Respir. Crit. Care Med. 174:9975–81
    [Google Scholar]
  80. 80.  Truong-Tran AQ, Grosser D, Ruffin RE, Murgia C, Zalewski PD 2003. Apoptosis in the normal and inflamed airway epithelium: role of zinc in epithelial protection and procaspase-3 regulation. Biochem. Pharmacol. 66:81459–68
    [Google Scholar]
  81. 81.  Hoffman SM, Tully JE, Nolin JD, Lahue KG, Goldman DH et al. 2013. Endoplasmic reticulum stress mediates house dust mite-induced airway epithelial apoptosis and fibrosis. Respir. Res. 14:141
    [Google Scholar]
  82. 82.  Iwata A, Nishio K, Winn RK, Chi EY, Henderson WR Jr., Harlan JM 2003. A broad-spectrum caspase inhibitor attenuates allergic airway inflammation in murine asthma model. J. Immunol. 170:63386–91
    [Google Scholar]
  83. 83.  Lambrecht BN, Hammad H 2013. Death at the airway epithelium in asthma. Cell Res 23:5588–89
    [Google Scholar]
  84. 84.  White SR. 2011. Apoptosis and the airway epithelium. J. Allergy 2011:948406
    [Google Scholar]
  85. 85.  Ordonez C, Ferrando R, Hyde DM, Wong HH, Fahy JV 2000. Epithelial desquamation in asthma: Artifact or pathology?. Am. J. Respir. Crit. Care Med. 162:62324–29
    [Google Scholar]
  86. 86.  Tesfaigzi Y. 2006. Roles of apoptosis in airway epithelia. Am. J. Respir. Cell. Mol. Biol. 34:5537–47
    [Google Scholar]
  87. 87.  Comhair SA, Bhathena PR, Dweik RA, Kavuru M, Erzurum SC 2000. Rapid loss of superoxide dismutase activity during antigen-induced asthmatic response. Lancet 355:9204624
    [Google Scholar]
  88. 88.  Fitzpatrick AM, Stephenson ST, Hadley GR, Burwell L, Penugonda M et al. 2011. Thiol redox disturbances in children with severe asthma are associated with posttranslational modification of the transcription factor nuclear factor (erythroid-derived 2)-like 2. J. Allergy Clin. Immunol. 127:61604–11
    [Google Scholar]
  89. 89.  Contoli M, Message SD, Laza-Stanca V, Edwards MR, Wark PA et al. 2006. Role of deficient type III interferon-lambda production in asthma exacerbations. Nat. Med. 12:91023–26
    [Google Scholar]
  90. 90.  Edwards MR, Regamey N, Vareille M, Kieninger E, Gupta A et al. 2013. Impaired innate interferon induction in severe therapy resistant atopic asthmatic children. Mucosal Immunol 6:4797–806
    [Google Scholar]
  91. 91.  Wadsworth SJ, Atsuta R, McIntyre JO, Hackett TL, Singhera GK, Dorscheid DR 2010. IL-13 and TH2 cytokine exposure triggers matrix metalloproteinase 7–mediated Fas ligand cleavage from bronchial epithelial cells. J. Allergy Clin. Immunol. 126:2366–74.e8
    [Google Scholar]
  92. 92.  Hamann KJ, Dorscheid DR, Ko FD, Conforti AE, Sperling AI et al. 1998. Expression of Fas (CD95) and FasL (CD95L) in human airway epithelium. Am. J. Respir. Cell. Mol. Biol. 19:4537–42
    [Google Scholar]
  93. 93.  Nakamura M, Matute-Bello G, Liles WC, Hayashi S, Kajikawa O et al. 2004. Differential response of human lung epithelial cells to Fas-induced apoptosis. Am. J. Pathol. 164:61949–58
    [Google Scholar]
  94. 94.  Robertson NM, Zangrilli JG, Steplewski A, Hastie A, Lindemeyer RG et al. 2002. Differential expression of TRAIL and TRAIL receptors in allergic asthmatics following segmental antigen challenge: evidence for a role of TRAIL in eosinophil survival. J. Immunol. 169:105986–96
    [Google Scholar]
  95. 95.  Weckmann M, Collison A, Simpson JL, Kopp MV, Wark PA et al. 2007. Critical link between TRAIL and CCL20 for the activation of TH2 cells and the expression of allergic airway disease. Nat. Med. 13:111308–15
    [Google Scholar]
  96. 96.  Jayaraman S, Castro M, O'Sullivan M, Bragdon MJ, Holtzman MJ 1999. Resistance to Fas-mediated T cell apoptosis in asthma. J. Immunol. 162:31717–22
    [Google Scholar]
  97. 97.  Tong J, Bandulwala HS, Clay BS, Anders RA, Shilling RA et al. 2006. Fas-positive T cells regulate the resolution of airway inflammation in a murine model of asthma. J. Exp. Med. 203:51173–84
    [Google Scholar]
  98. 98.  Faustino L, Fonseca DM, Florsheim EB, Resende RR, Lepique AP et al. 2014. Tumor necrosis factor-related apoptosis-inducing ligand mediates the resolution of allergic airway inflammation induced by chronic allergen inhalation. Mucosal Immunol 7:51199–1208
    [Google Scholar]
  99. 99.  Walsh GM. 2013. Eosinophil apoptosis and clearance in asthma. J. Cell Death 6:17–25
    [Google Scholar]
  100. 100.  Kolbeck R, Kozhich A, Koike M, Peng L, Andersson CK et al. 201. MEDI-563, a humanized anti-IL-5 receptor alpha mAb with enhanced antibody-dependent cell-mediated cytotoxicity function. J. Allergy Clin. Immunol. 125:61344–53.e2
    [Google Scholar]
  101. 101.  Uddin M, Nong G, Ward J, Seumois G, Prince LR et al. 2010. Prosurvival activity for airway neutrophils in severe asthma. Thorax 65:8684–89
    [Google Scholar]
  102. 102.  Radonjic-Hoesli S, Wang X, de Graauw E, Stoeckle C, Styp-Rekowska B et al. 2017. Adhesion-induced eosinophil cytolysis requires the receptor-interacting protein kinase 3 (RIPK3)-mixed lineage kinase-like (MLKL) signaling pathway, which is counterregulated by autophagy. J. Allergy Clin. Immunol. 140:61632–42
    [Google Scholar]
  103. 103.  Qi X, Gurung P, Malireddi RK, Karmaus PW, Sharma D et al. 2017. Critical role of caspase-8-mediated IL-1 signaling in promoting Th2 responses during asthma pathogenesis. Mucosal Immunol 10:128–38
    [Google Scholar]
  104. 104.  Kim RY, Pinkerton JW, Essilfie AT, Robertson AAB, Baines KJ et al. 2017. Role for NLRP3 inflammasome-mediated, IL-1β-dependent responses in severe, steroid-resistant asthma. Am. J. Respir. Crit. Care Med. 196:3283–97
    [Google Scholar]
  105. 105.  Panganiban RA, Sun M, Dahlin A, Park HR, Kan M et al. 2018. A functional splice variant associated with decreased asthma risk abolishes the ability of gasdermin B to induce epithelial cell pyroptosis. J. Allergy Clin. Immunol. 142:1469–78.e2
    [Google Scholar]
  106. 106.  Chao KL, Kulakova L, Herzberg O. 2017. Gene polymorphism linked to increased asthma and IBD risk alters gasdermin-B structure, a sulfatide and phosphoinositide binding protein. PNAS 114:E1128–37
    [Google Scholar]
  107. 107.  Thannickal VJ, Horowitz JC 2006. Evolving concepts of apoptosis in idiopathic pulmonary fibrosis. Proc. Am. Thorac. Soc. 3:350–56
    [Google Scholar]
  108. 108.  Barbas-Filho JV, Ferreira MA, Sesso A, Kairalla RA, Carvalho CR, Capelozzi VL 2001. Evidence of type II pneumocyte apoptosis in the pathogenesis of idiopathic pulmonary fibrosis (IFP)/usual interstitial pneumonia (UIP). J. Clin. Pathol. 54:132–38
    [Google Scholar]
  109. 109.  Sisson TH, Mendez M, Choi K, Subbotina N, Courey A et al. 2010. Targeted injury of type II alveolar epithelial cells induces pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 181:254–63
    [Google Scholar]
  110. 110.  Wallach-Dayan SB, Izbicki G, Cohen PY, Gerstl-Golan R, Fine A, Breuer R 2006. Bleomycin initiates apoptosis of lung epithelial cells by ROS but not by Fas/FasL pathway. Am. J. Physiol. Lung Cell. Mol. Physiol. 290:L790–L6
    [Google Scholar]
  111. 111.  Fernandez IE, Eickelberg O 2012. The impact of TGF-β on lung fibrosis: from targeting to biomarkers. Proc. Am. Thorac. Soc. 9:111–16
    [Google Scholar]
  112. 112.  Mulugeta S, Nguyen V, Russo SJ, Muniswamy M, Beers MF 2005. A surfactant protein C precursor protein BRICHOS domain mutation causes endoplasmic reticulum stress, proteasome dysfunction, and caspase 3 activation. Am. J. Respir. Cell Mol. Biol. 32:521–30
    [Google Scholar]
  113. 113.  Korfei M, Ruppert C, Mahavadi P, Henneke I, Markart P et al. 2008. Epithelial endoplasmic reticulum stress and apoptosis in sporadic idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 178:838–46
    [Google Scholar]
  114. 114.  Lawson WE, Crossno PF, Polosukhin VV, Roldan J, Cheng DS et al. 2008. Endoplasmic reticulum stress in alveolar epithelial cells is prominent in IPF: association with altered surfactant protein processing and herpesvirus infection. Am. J. Physiol. Lung Cell. Mol. Physiol. 294:L1119–26
    [Google Scholar]
  115. 115.  Bueno M, Lai YC, Romero Y, Brands J, St Croix CM et al. 2015. PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis. J. Clin. Investig. 125:521–38
    [Google Scholar]
  116. 116.  Yu G, Tzouvelekis A, Wang R, Herazo-Maya JD, Ibarra GH et al. 2018. Thyroid hormone inhibits lung fibrosis in mice by improving epithelial mitochondrial function. Nat. Med. 24:39–49
    [Google Scholar]
  117. 117.  Cantin AM, North SL, Fells GA, Hubbard RC, Crystal RG 1987. Oxidant-mediated epithelial cell injury in idiopathic pulmonary fibrosis. J. Clin. Investig. 79:1665–73
    [Google Scholar]
  118. 118.  Waghray M, Cui Z, Horowitz JC, Subramanian IM, Martinez FJ et al. 2005. Hydrogen peroxide is a diffusible paracrine signal for the induction of epithelial cell death by activated myofibroblasts. FASEB J 19:854–56
    [Google Scholar]
  119. 119.  Kuwano K, Kunitake R, Kawasaki M, Nomoto Y, Hagimoto N et al. 1996. P21Waf1/Cip1/Sdi1 and p53 expression in association with DNA strand breaks in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 154:477–83
    [Google Scholar]
  120. 120.  Armanios M, Blackburn EH 2012. The telomere syndromes. Nat. Rev. Genet. 13:693–704
    [Google Scholar]
  121. 121.  Alder JK, Barkauskas CE, Limjunyawong N, Stanley SE, Kembou F et al. 2015. Telomere dysfunction causes alveolar stem cell failure. PNAS 112:5099–104
    [Google Scholar]
  122. 122.  Naikawadi RP, Disayabutr S, Mallavia B, Donne ML, Green G et al. 2016. Telomere dysfunction in alveolar epithelial cells causes lung remodeling and fibrosis. JCI Insight 1:e86704
    [Google Scholar]
  123. 123.  Povedano JM, Martinez P, Flores JM, Mulero F, Blasco MA 2015. Mice with pulmonary fibrosis driven by telomere dysfunction. Cell Rep 12:286–99
    [Google Scholar]
  124. 124.  Golan-Gerstl R, Wallach-Dayan SB, Amir G, Breuer R 2007. Epithelial cell apoptosis by Fas ligand-positive myofibroblasts in lung fibrosis. Am. J. Respir. Cell Mol. Biol. 36:270–5
    [Google Scholar]
  125. 125.  Wang R, Ramos C, Joshi I, Zagariya A, Pardo A et al. 1999. Human lung myofibroblast-derived inducers of alveolar epithelial apoptosis identified as angiotensin peptides. Am. J. Physiol. 277:L1158–64
    [Google Scholar]
  126. 126.  Zhou Y, Peng H, Sun H, Peng X, Tang C et al. 2014. Chitinase 3-like 1 suppresses injury and promotes fibroproliferative responses in mammalian lung fibrosis. Sci. Transl. Med. 6:240ra76
    [Google Scholar]
  127. 127.  Lee JM, Yoshida M, Kim MS, Lee JH, Baek AR et al. 2018. Involvement of alveolar epithelial cell necroptosis in IPF pathogenesis. Am. J. Respir. Cell Mol. Biol. 59: https://doi.org/10.1165/rcmb.2017-0034OC
    [Crossref] [Google Scholar]
  128. 128.  Moodley YP, Caterina P, Scaffidi AK, Misso NL, Papadimitriou JM et al. 2004. Comparison of the morphological and biochemical changes in normal human lung fibroblasts and fibroblasts derived from lungs of patients with idiopathic pulmonary fibrosis during FasL-induced apoptosis. J. Pathol. 202:486–95
    [Google Scholar]
  129. 129.  Vittal R, Horowitz JC, Moore BB, Zhang H, Martinez FJ et al. 2005. Modulation of prosurvival signaling in fibroblasts by a protein kinase inhibitor protects against fibrotic tissue injury. Am. J. Pathol. 166:367–75
    [Google Scholar]
  130. 130.  Kis K, Liu X, Hagood JS 2011. Myofibroblast differentiation and survival in fibrotic disease. Expert Rev. Mol. Med. 13:e27
    [Google Scholar]
  131. 131.  Noguchi S, Saito A, Mikami Y, Urushiyama H, Horie M et al. 2017. TAZ contributes to pulmonary fibrosis by activating profibrotic functions of lung fibroblasts. Sci. Rep. 7:42595
    [Google Scholar]
  132. 132.  Rangarajan S, Bone NB, Zmijewska AA, Jiang S, Park DW et al. 2018. Metformin reverses established lung fibrosis in a bleomycin model. Nat. Med. 24:81121–27
    [Google Scholar]
  133. 133.  Ashley SL, Sisson TH, Wheaton AK, Kim KK, Wilke CA et al. 2016. Targeting inhibitor of apoptosis proteins protects from bleomycin-induced lung fibrosis. Am. J. Respir. Cell. Mol. Biol. 54:4482–92
    [Google Scholar]
  134. 134.  Hecker L, Logsdon NJ, Kurundkar D, Kurundkar A, Bernard K et al. 2014. Reversal of persistent fibrosis in aging by targeting Nox4-Nrf2 redox imbalance. Sci. Transl. Med. 6:231ra47
    [Google Scholar]
  135. 135.  Lagares D, Santos A, Grasberger PE, Liu F, Probst CK et al. 2017. Targeted apoptosis of myofibroblasts with the BH3 mimetic ABT-263 reverses established fibrosis. Sci. Transl. Med. 9:eaal3765
    [Google Scholar]
  136. 136.  Hecker L. 2018. Mechanisms and consequences of oxidative stress in lung disease: therapeutic implications for an aging populace. Am. J. Physiol. Lung Cell. Mol. Physiol. 314:L642–53
    [Google Scholar]
  137. 137.  Matute-Bello G, Liles WC, Radella F 2nd, Steinberg KP, Ruzinski JT et al. 1997. Neutrophil apoptosis in the acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 156:1969–77
    [Google Scholar]
  138. 138.  Juss JK, House D, Amour A, Begg M, Herre J et al. 2016. Acute respiratory distress syndrome neutrophils have a distinct phenotype and are resistant to phosphoinositide 3-kinase inhibition. Am. J. Respir. Crit. Care Med. 194:961–73
    [Google Scholar]
  139. 139.  El Kebir D, Gjorstrup P, Filep JG 2012. Resolvin E1 promotes phagocytosis-induced neutrophil apoptosis and accelerates resolution of pulmonary inflammation. PNAS 109:14983–8
    [Google Scholar]
  140. 140.  Liu G, Park YJ, Tsuruta Y, Lorne E, Abraham E 2009. p53 Attenuates lipopolysaccharide-induced NF-κB activation and acute lung injury. J. Immunol. 182:5063–71
    [Google Scholar]
  141. 141.  D'Alessio FR, Tsushima K, Aggarwal NR, West EE, Willett MH et al. 2009. CD4+CD25+Foxp3+ Tregs resolve experimental lung injury in mice and are present in humans with acute lung injury. J. Clin. Investig. 119:2898–913
    [Google Scholar]
  142. 142.  Fialkow L, Fochesatto Filho L, Bozzetti MC, Milani AR, Rodrigues Filho EM et al. 2006. Neutrophil apoptosis: a marker of disease severity in sepsis and sepsis-induced acute respiratory distress syndrome. Crit. Care 10:R155
    [Google Scholar]
  143. 143.  Matute-Bello G, Liles WC, Radella F 2nd, Steinberg KP, Ruzinski JT et al. 2000. Modulation of neutrophil apoptosis by granulocyte colony-stimulating factor and granulocyte/macrophage colony-stimulating factor during the course of acute respiratory distress syndrome. Crit. Care Med. 28:1–7
    [Google Scholar]
  144. 144.  Bachofen M, Weibel ER 1977. Alterations of the gas exchange apparatus in adult respiratory insufficiency associated with septicemia. Am. Rev. Respir. Dis. 116:4589–615
    [Google Scholar]
  145. 145.  Fujita M, Kuwano K, Kunitake R, Hagimoto N, Miyazaki H et al. 1998. Endothelial cell apoptosis in lipopolysaccharide-induced lung injury in mice. Int. Arch. Allergy Immunol. 117:202–8
    [Google Scholar]
  146. 146.  Kawasaki M, Kuwano K, Hagimoto N, Matsuba T, Kunitake R et al. 2000. Protection from lethal apoptosis in lipopolysaccharide-induced acute lung injury in mice by a caspase inhibitor. Am. J. Pathol. 157:597–603
    [Google Scholar]
  147. 147.  Albertine KH, Soulier MF, Wang Z, Ishizaka A, Hashimoto S et al. 2002. Fas and fas ligand are up-regulated in pulmonary edema fluid and lung tissue of patients with acute lung injury and the acute respiratory distress syndrome. Am. J. Pathol. 161:1783–96
    [Google Scholar]
  148. 148.  Glavan BJ, Holden TD, Goss CH, Black RA, Neff MJ et al. 2011. Genetic variation in the FAS gene and associations with acute lung injury. Am. J. Respir. Crit. Care Med. 183:356–63
    [Google Scholar]
  149. 149.  Matute-Bello G, Liles WC, Steinberg KP, Kiener PA, Mongovin S et al. 1999. Soluble Fas ligand induces epithelial cell apoptosis in humans with acute lung injury (ARDS). J. Immunol. 163:2217–25
    [Google Scholar]
  150. 150.  Neff TA, Guo RF, Neff SB, Sarma JV, Speyer CL et al. 2005. Relationship of acute lung inflammatory injury to Fas/FasL system. Am. J. Pathol. 166:685–94
    [Google Scholar]
  151. 151.  Matute-Bello G, Liles WC, Frevert CW, Nakamura M, Ballman K et al. 2001. Recombinant human Fas ligand induces alveolar epithelial cell apoptosis and lung injury in rabbits. Am. J. Physiol. Lung Cell. Mol. Physiol. 281:L328–35
    [Google Scholar]
  152. 152.  Idell S, Kueppers F, Lippmann M, Rosen H, Niederman M, Fein A 1987. Angiotensin converting enzyme in bronchoalveolar lavage in ARDS. Chest 91:52–56
    [Google Scholar]
  153. 153.  Budinger GR, Chandel NS, Donnelly HK, Eisenbart J, Oberoi M, Jain M 2005. Active transforming growth factor-β1 activates the procollagen I promoter in patients with acute lung injury. Intensive Care Med 31:121–28
    [Google Scholar]
  154. 154.  Liu AN, Mohammed AZ, Rice WR, Fiedeldey DT, Liebermann JS et al. 1999. Perforin-independent CD8+ T-cell-mediated cytotoxicity of alveolar epithelial cells is preferentially mediated by tumor necrosis factor-α: relative insensitivity to Fas ligand. Am. J. Respir. Cell Mol. Biol. 20:849–58
    [Google Scholar]
  155. 155.  Hashimoto S, Kobayashi A, Kooguchi K, Kitamura Y, Onodera H, Nakajima H 2000. Upregulation of two death pathways of perforin/granzyme and FasL/Fas in septic acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 161:237–43
    [Google Scholar]
  156. 156.  Budinger GR, Mutlu GM, Urich D, Soberanes S, Buccellato LJ et al. 2011. Epithelial cell death is an important contributor to oxidant-mediated acute lung injury. Am. J. Respir. Crit. Care Med. 183:1043–54
    [Google Scholar]
  157. 157.  Zhang Y, Sauler M, Shinn AS, Gong H, Haslip M et al. 2014. Endothelial PINK1 mediates the protective effects of NLRP3 deficiency during lethal oxidant injury. J. Immunol. 192:5296–304
    [Google Scholar]
  158. 158.  Mannam P, Shinn AS, Srivastava A, Neamu RF, Walker WE et al. 2014. MKK3 regulates mitochondrial biogenesis and mitophagy in sepsis-induced lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 306:L604–19
    [Google Scholar]
  159. 159.  Ueno H, Matsuda T, Hashimoto S, Amaya F, Kitamura Y et al. 2004. Contributions of high mobility group box protein in experimental and clinical acute lung injury. Am. J. Respir. Crit. Care Med. 170:1310–16
    [Google Scholar]
  160. 160.  Pan L, Yao DC, Yu YZ, Li SJ, Chen BJ et al. 2016. Necrostatin-1 protects against oleic acid-induced acute respiratory distress syndrome in rats. Biochem. Biophys. Res. Commun. 478:1602–8
    [Google Scholar]
  161. 161.  Qing DY, Conegliano D, Shashaty MGS, Seo J, Reilly JP et al. 2014. Red blood cells induce necroptosis of lung endothelial cells and increase susceptibility to lung inflammation. Am. J. Respir. Crit. Care Med. 190:111243–54
    [Google Scholar]
  162. 162.  Kovarova M, Hesker PR, Jania L, Nguyen M, Snouwaert JN et al. 2012. NLRP1-dependent pyroptosis leads to acute lung injury and morbidity in mice. J. Immunol. 189:2006–16
    [Google Scholar]
  163. 163.  Xiang M, Shi X, Li Y, Xu J, Yin L et al. 2011. Hemorrhagic shock activation of NLRP3 inflammasome in lung endothelial cells. J. Immunol. 187:4809–17
    [Google Scholar]
  164. 164.  Dockrell DH, Marriott HM, Prince LR, Ridger VC, Ince PG et al. 2003. Alveolar macrophage apoptosis contributes to pneumococcal clearance in a resolving model of pulmonary infection. J. Immunol. 171:105380–88
    [Google Scholar]
  165. 165.  Fonai F, Priber JK, Jakus PB, Kalman N, Antus C et al. 2015. Lack of cyclophilin D protects against the development of acute lung injury in endotoxemia. Biochim. Biophys. Acta 1852:2563–73
    [Google Scholar]
  166. 166.  Grassme H, Kirschnek S, Riethmueller J, Riehle A, von Kurthy G et al. 2000. CD95/CD95 ligand interactions on epithelial cells in host defense to Pseudomonas aeruginosa. Science 290:527–30
    [Google Scholar]
  167. 167.  Matute-Bello G, Frevert CW, Liles WC, Nakamura M, Ruzinski JT et al. 2001. Fas/Fas ligand system mediates epithelial injury, but not pulmonary host defenses, in response to inhaled bacteria. Infect. Immun. 69:5768–76
    [Google Scholar]
  168. 168.  Ahn D, Prince A 2017. Participation of necroptosis in the host response to acute bacterial pneumonia. J. Innate Immun. 9:262–70
    [Google Scholar]
  169. 169.  Kitur K, Wachtel S, Brown A, Wickersham M, Paulino F et al. 2016. Necroptosis promotes Staphylococcus aureus clearance by inhibiting excessive inflammatory signaling. Cell Rep 16:82219–30
    [Google Scholar]
  170. 170.  Mauad T, Hajjar LA, Callegari GD, da Silva LF, Schout D et al. 2010. Lung pathology in fatal novel human influenza A (H1N1) infection. Am. J. Respir. Crit. Care Med. 181:72–79
    [Google Scholar]
  171. 171.  Rodrigue-Gervais IG, Labbe K, Dagenais M, Dupaul-Chicoine J, Champagne C et al. 2014. Cellular inhibitor of apoptosis protein cIAP2 protects against pulmonary tissue necrosis during influenza virus infection to promote host survival. Cell Host Microbe 15:23–35
    [Google Scholar]
  172. 172.  Nogusa S, Thapa RJ, Dillon CP, Liedmann S, Oguin TH 3rd et al. 2016. RIPK3 activates parallel pathways of MLKL-driven necroptosis and FADD-mediated apoptosis to protect against influenza A virus. Cell Host Microbe 20:113–24
    [Google Scholar]
  173. 173.  Pulendran B, Maddur MS 2015. Innate immune sensing and response to influenza. Curr. Top. Microbiol. Immunol. 386:23–71
    [Google Scholar]
  174. 174.  Cohen TS, Prince AS 2013. Activation of inflammasome signaling mediates pathology of acute P. aeruginosa pneumonia. J. Clin. Investig. 123:1630–7
    [Google Scholar]
  175. 175.  Dela Cruz CS, Liu W, He CH, Jacoby A, Gornitzky A et al. 2012. Chitinase 3-like-1 promotes Streptococcus pneumoniae killing and augments host tolerance to lung antibacterial responses. Cell Host Microbe 12:34–46
    [Google Scholar]
  176. 176.  Sakao S, Taraseviciene-Stewart L, Lee JD, Wood K, Cool CD, Voelkel NF 2005. Initial apoptosis is followed by increased proliferation of apoptosis-resistant endothelial cells. FASEB J 19:1178–80
    [Google Scholar]
  177. 177.  Atkinson C, Stewart S, Upton PD, Machado R, Thomson JR et al. 2002. Primary pulmonary hypertension is associated with reduced pulmonary vascular expression of type II bone morphogenetic protein receptor. Circulation 105:1672–78
    [Google Scholar]
  178. 178.  Teichert-Kuliszewska K, Kutryk MJ, Kuliszewski MA, Karoubi G, Courtman DW et al. 2006. Bone morphogenetic protein receptor-2 signaling promotes pulmonary arterial endothelial cell survival: implications for loss-of-function mutations in the pathogenesis of pulmonary hypertension. Circ. Res. 98:209–17
    [Google Scholar]
  179. 179.  Haslip M, Dostanic I, Huang Y, Zhang Y, Russell KS et al. 2015. Endothelial uncoupling protein 2 regulates mitophagy and pulmonary hypertension during intermittent hypoxia. Arterioscler. Thromb. Vasc. Biol. 35:1166–78
    [Google Scholar]
  180. 180.  Masri FA, Xu W, Comhair SA, Asosingh K, Koo M et al. 2007. Hyperproliferative apoptosis-resistant endothelial cells in idiopathic pulmonary arterial hypertension. Am. J. Physiol. Lung Cell. Mol. Physiol. 293:L548–54
    [Google Scholar]
  181. 181.  Tu L, Dewachter L, Gore B, Fadel E, Dartevelle P et al. 2011. Autocrine fibroblast growth factor-2 signaling contributes to altered endothelial phenotype in pulmonary hypertension. Am. J. Respir. Cell Mol. Biol. 45:311–22
    [Google Scholar]
  182. 182.  Alastalo TP, Li M, Perez V, Pham D, Sawada H et al. 2011. Disruption of PPARγ/β-catenin-mediated regulation of apelin impairs BMP-induced mouse and human pulmonary arterial EC survival. J. Clin. Investig. 121:3735–46
    [Google Scholar]
  183. 183.  Kim J, Kang Y, Kojima Y, Lighthouse JK, Hu X et al. 2013. An endothelial apelin-FGF link mediated by miR-424 and miR-503 is disrupted in pulmonary arterial hypertension. Nat. Med. 19:74–82
    [Google Scholar]
  184. 184.  Le Hiress M, Tu L, Ricard N, Phan C, Thuillet R et al. 2015. Proinflammatory signature of the dysfunctional endothelium in pulmonary hypertension. role of the macrophage migration inhibitory factor/CD74 complex. Am. J. Respir. Crit. Care Med. 192:983–97
    [Google Scholar]
  185. 185.  Izikki M, Guignabert C, Fadel E, Humbert M, Tu L et al. 2009. Endothelial-derived FGF2 contributes to the progression of pulmonary hypertension in humans and rodents. J. Clin. Investig. 119:512–23
    [Google Scholar]
  186. 186.  Schermuly RT, Dony E, Ghofrani HA, Pullamsetti S, Savai R et al. 2005. Reversal of experimental pulmonary hypertension by PDGF inhibition. J. Clin. Investig. 115:2811–21
    [Google Scholar]
  187. 187.  Long L, Ormiston ML, Yang X, Southwood M, Graf S et al. 2015. Selective enhancement of endothelial BMPR-II with BMP9 reverses pulmonary arterial hypertension. Nat. Med. 21:777–85
    [Google Scholar]
  188. 188.  McMurtry MS, Archer SL, Altieri DC, Bonnet S, Haromy A et al. 2005. Gene therapy targeting survivin selectively induces pulmonary vascular apoptosis and reverses pulmonary arterial hypertension. J. Clin. Investig. 115:1479–91
    [Google Scholar]
  189. 189.  Pullamsetti SS, Savai R, Seeger W, Goncharova EA 2017. From cancer biology to new pulmonary arterial hypertension therapeutics. Targeting cell growth and proliferation signaling hubs. Am. J. Respir. Crit. Care Med. 195:4425–37
    [Google Scholar]
  190. 190.  McMurtry MS, Bonnet S, Wu X, Dyck JR, Haromy A et al. 2004. Dichloroacetate prevents and reverses pulmonary hypertension by inducing pulmonary artery smooth muscle cell apoptosis. Circ. Res. 95:830–40
    [Google Scholar]
  191. 191.  Archer SL, Gomberg-Maitland M, Maitland ML, Rich S, Garcia JG, Weir EK 2008. Mitochondrial metabolism, redox signaling, and fusion: a mitochondria-ROS-HIF-1α-Kv1.5 O2-sensing pathway at the intersection of pulmonary hypertension and cancer. Am. J. Physiol. Heart Circ. Physiol. 294:H570–78
    [Google Scholar]
  192. 192.  Lee SJ, Smith A, Guo L, Alastalo TP, Li M et al. 2011. Autophagic protein LC3B confers resistance against hypoxia-induced pulmonary hypertension. Am. J. Respir. Crit. Care Med. 183:649–58
    [Google Scholar]
  193. 193.  Federici C, Drake KM, Rigelsky CM, McNelly LN, Meade SL et al. 2015. Increased mutagen sensitivity and DNA damage in pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 192:219–28
    [Google Scholar]
  194. 194.  Li M, Vattulainen S, Aho J, Orcholski M, Rojas V et al. 2014. Loss of bone morphogenetic protein receptor 2 is associated with abnormal DNA repair in pulmonary arterial hypertension. Am. J. Respir. Cell Mol. Biol. 50:1118–28
    [Google Scholar]
  195. 195.  Mizuno S, Bogaard HJ, Kraskauskas D, Alhussaini A, Gomez-Arroyo J et al. 2011. p53 gene deficiency promotes hypoxia-induced pulmonary hypertension and vascular remodeling in mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 300:L753–61
    [Google Scholar]
  196. 196.  Lee SD, Shroyer KR, Markham NE, Cool CD, Voelkel NF, Tuder RM 1998. Monoclonal endothelial cell proliferation is present in primary but not secondary pulmonary hypertension. J. Clin. Investig. 101:927–34
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-020518-114320
Loading
/content/journals/10.1146/annurev-physiol-020518-114320
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error