1932

Abstract

Mesenchymal stem cells (MSCs), whose mechanism of action is predominantly paracrine, are being widely tested for the treatment of a variety of human diseases. No one factor has been proven sufficient to mediate the therapeutic effects of MSCs. However, exosomes—membrane vesicles secreted by many cells, including MSCs—are appealing candidates as vectors of their efficacy. Exosomes can transport and deliver a large cargo of proteins, lipids, and nucleic acids and can modify cell and organ function. In addition to their key role as vehicles of intercellular communication, exosomes are increasingly recognized as biomarkers and prognosticators of disease. Moreover, they have the potential to be used as vehicles of gene and drug delivery for clinical application. This article reviews the biogenesis of exosomes, their molecular composition, and their role as messengers of intercellular communication, focusing on their potential as therapeutic vectors for stem cell therapy.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-021014-071641
2015-02-10
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/physiol/77/1/annurev-physiol-021014-071641.html?itemId=/content/journals/10.1146/annurev-physiol-021014-071641&mimeType=html&fmt=ahah

Literature Cited

  1. Timmers L, Lim SK, Arslan F, Armstrong JS, Hoefer IE. 1.  et al. 2007. Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium. Stem Cell Res. 1:129–37 [Google Scholar]
  2. Aslam M, Baveja R, Liang OD, Fernandez-Gonzalez A, Lee C. 2.  et al. 2009. Bone marrow stromal cells attenuate lung injury in a murine model of neonatal chronic lung disease. Am. J. Respir. Crit. Care Med. 180:1122–30 [Google Scholar]
  3. Cheng K, Rai P, Plagov A, Lan X, Kumar D. 3.  et al. 2013. Transplantation of bone marrow–derived MSCs improves cisplatinum-induced renal injury through paracrine mechanisms. Exp. Mol. Pathol. 94:466–73 [Google Scholar]
  4. van Koppen A, Joles JA, van Balkom BW, Lim SK, de Kleijn D. 4.  et al. 2012. Human embryonic mesenchymal stem cell–derived conditioned medium rescues kidney function in rats with established chronic kidney disease. PLOS ONE 7:e38746 [Google Scholar]
  5. Wei X, Du Z, Zhao L, Feng D, Wei G. 5.  et al. 2009. IFATS collection: The conditioned media of adipose stromal cells protect against hypoxia-ischemia-induced brain damage in neonatal rats. Stem Cells 27:478–88 [Google Scholar]
  6. Togel F, Hu Z, Weiss K, Isaac J, Lange C, Westenfelder C. 6.  2005. Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am. J. Physiol. Ren. Physiol. 289:F31–42 [Google Scholar]
  7. Kinnaird T, Stabile E, Burnett MS, Epstein SE. 7.  2004. Bone-marrow-derived cells for enhancing collateral development: mechanisms, animal data, and initial clinical experiences. Circ. Res. 95:354–63 [Google Scholar]
  8. Nakagami H, Maeda K, Morishita R, Iguchi S, Nishikawa T. 8.  et al. 2005. Novel autologous cell therapy in ischemic limb disease through growth factor secretion by cultured adipose tissue–derived stromal cells. Arterioscler. Thromb. Vasc. Biol. 25:2542–47 [Google Scholar]
  9. Van Overstraeten-Schlogel N, Beguin Y, Gothot A. 9.  2006. Role of stromal-derived factor-1 in the hematopoietic-supporting activity of human mesenchymal stem cells. Eur. J. Haematol. 76:488–93 [Google Scholar]
  10. Ortiz LA, Dutreil M, Fattman C, Pandey AC, Torres G. 10.  et al. 2007. Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc. Natl. Acad. Sci. USA 104:11002–7 [Google Scholar]
  11. Kupcova Skalnikova H. 11.  2013. Proteomic techniques for characterisation of mesenchymal stem cell secretome. Biochimie 95:2196–11 [Google Scholar]
  12. Lavoie JR, Rosu-Myles M. 12.  2013. Uncovering the secretes of mesenchymal stem cells. Biochimie 95:2212–21 [Google Scholar]
  13. Théry C, Ostrowski M, Segura E. 13.  2009. Membrane vesicles as conveyors of immune responses. Nat. Rev. Immunol. 9:581–93 [Google Scholar]
  14. Dorronsoro A, Robbins PD. 14.  2013. Regenerating the injured kidney with human umbilical cord mesenchymal stem cell–derived exosomes. Stem Cell Res. Ther. 4:39 [Google Scholar]
  15. Théry C, Zitvogel L, Amigorena S. 15.  2002. Exosomes: composition, biogenesis and function. Nat. Rev. Immunol. 2:569–79 [Google Scholar]
  16. Trams EG, Lauter CJ, Salem N Jr, Heine U. 16.  1981. Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim. Biophys. Acta 645:63–70 [Google Scholar]
  17. Pan BT, Johnstone RM. 17.  1983. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33:967–78 [Google Scholar]
  18. Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. 18.  1987. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J. Biol. Chem. 262:9412–20 [Google Scholar]
  19. Clayton A, Turkes A, Navabi H, Mason MD, Tabi Z. 19.  2005. Induction of heat shock proteins in B-cell exosomes. J. Cell Sci. 118:3631–38 [Google Scholar]
  20. Taylor DD, Gercel-Taylor C. 20.  2005. Tumour-derived exosomes and their role in cancer-associated T-cell signalling defects. Br. J. Cancer 92:305–11 [Google Scholar]
  21. Skokos D, Goubran-Botros H, Roa M, Mecheri S. 21.  2002. Immunoregulatory properties of mast cell–derived exosomes. Mol. Immunol. 38:1359–62 [Google Scholar]
  22. van Niel G, Raposo G, Candalh C, Boussac M, Hershberg R. 22.  et al. 2001. Intestinal epithelial cells secrete exosome-like vesicles. Gastroenterology 121:337–49 [Google Scholar]
  23. Fauré J, Lachenal G, Court M, Hirrlinger J, Chatellard-Causse C. 23.  et al. 2006. Exosomes are released by cultured cortical neurones. Mol. Cell. Neurosci. 31:642–48 [Google Scholar]
  24. Lai RC, Arslan F, Lee MM, Sze NS, Choo A. 24.  et al. 2010. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 4:214–22 [Google Scholar]
  25. Lee C, Mitsialis SA, Aslam M, Vitali SH, Vergadi E. 25.  et al. 2012. Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation 126:2601–11 [Google Scholar]
  26. Tetta C, Bruno S, Fonsato V, Deregibus MC, Camussi G. 26.  2011. The role of microvesicles in tissue repair. Organogenesis 7:105–15 [Google Scholar]
  27. Michael A, Bajracharya SD, Yuen PS, Zhou H, Star RA. 27.  et al. 2010. Exosomes from human saliva as a source of microRNA biomarkers. Oral Dis. 16:34–38 [Google Scholar]
  28. Lakkaraju A, Rodriguez-Boulan E. 28.  2008. Itinerant exosomes: emerging roles in cell and tissue polarity. Trends Cell Biol. 18:199–209 [Google Scholar]
  29. Kosaka N, Izumi H, Sekine K, Ochiya T. 29.  2010. microRNA as a new immune-regulatory agent in breast milk. Silence 1:7 [Google Scholar]
  30. Keller S, Rupp C, Stoeck A, Runz S, Fogel M. 30.  et al. 2007. CD24 is a marker of exosomes secreted into urine and amniotic fluid. Kidney Int. 72:1095–102 [Google Scholar]
  31. Pisitkun T, Shen RF, Knepper MA. 31.  2004. Identification and proteomic profiling of exosomes in human urine. Proc. Natl. Acad. Sci. USA 101:13368–73 [Google Scholar]
  32. Nilsson J, Skog J, Nordstrand A, Baranov V, Mincheva-Nilsson L. 32.  et al. 2009. Prostate cancer–derived urine exosomes: a novel approach to biomarkers for prostate cancer. Br. J. Cancer 100:1603–7 [Google Scholar]
  33. Pant S, Hilton H, Burczynski ME. 33.  2012. The multifaceted exosome: biogenesis, role in normal and aberrant cellular function, and frontiers for pharmacological and biomarker opportunities. Biochem. Pharmacol. 83:1484–94 [Google Scholar]
  34. Conde-Vancells J, Rodriguez-Suarez E, Embade N, Gil D, Matthiesen R. 34.  et al. 2008. Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes. J. Proteome Res. 7:5157–66 [Google Scholar]
  35. Théry C, Amigorena S, Raposo G, Clayton A. 35.  2006. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol. 303.22.1–29
  36. Pfeffer SR. 36.  2010. Two Rabs for exosome release. Nat. Cell Biol. 12:3–4 [Google Scholar]
  37. Blanchard N, Lankar D, Faure F, Regnault A, Dumont C. 37.  et al. 2002. TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/ζ complex. J. Immunol. 168:3235–41 [Google Scholar]
  38. Wolfers J, Lozier A, Raposo G, Regnault A, Théry C. 38.  et al. 2001. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat. Med. 7:297–303 [Google Scholar]
  39. Rana S, Zoller M. 39.  2011. Exosome target cell selection and the importance of exosomal tetraspanins: a hypothesis. Biochem. Soc. Trans. 39:559–62 [Google Scholar]
  40. Vlassov AV, Magdaleno S, Setterquist R, Conrad R. 40.  2012. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim. Biophys. Acta 1820:940–48 [Google Scholar]
  41. Simpson RJ, Jensen SS, Lim JW. 41.  2008. Proteomic profiling of exosomes: current perspectives. Proteomics 8:4083–99 [Google Scholar]
  42. Kim HS, Choi DY, Yun SJ, Choi SM, Kang JW. 42.  et al. 2012. Proteomic analysis of microvesicles derived from human mesenchymal stem cells. J. Proteome Res. 11:839–49 [Google Scholar]
  43. Choi DS, Kim DK, Kim YK, Gho YS. 43.  2013. Proteomics, transcriptomics and lipidomics of exosomes and ectosomes. Proteomics 13:1554–71 [Google Scholar]
  44. Subra C, Grand D, Laulagnier K, Stella A, Lambeau G. 44.  et al. 2010. Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. J. Lipid Res. 51:2105–20 [Google Scholar]
  45. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. 45.  2007. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9:654–59 [Google Scholar]
  46. Gibbings DJ, Ciaudo C, Erhardt M, Voinnet O. 46.  2009. Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat. Cell Biol. 11:1143–49 [Google Scholar]
  47. Balaj L, Lessard R, Dai L, Cho YJ, Pomeroy SL. 47.  et al. 2011. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat. Commun. 2:180 [Google Scholar]
  48. Barres C, Blanc L, Bette-Bobillo P, Andre S, Mamoun R. 48.  et al. 2010. Galectin-5 is bound onto the surface of rat reticulocyte exosomes and modulates vesicle uptake by macrophages. Blood 115:696–705 [Google Scholar]
  49. Tian T, Wang Y, Wang H, Zhu Z, Xiao Z. 49.  2010. Visualizing of the cellular uptake and intracellular trafficking of exosomes by live-cell microscopy. J. Cell. Biochem. 111:488–96 [Google Scholar]
  50. Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L. 50.  et al. 2008. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol. 10:1470–76 [Google Scholar]
  51. Segura E, Amigorena S, Théry C. 51.  2005. Mature dendritic cells secrete exosomes with strong ability to induce antigen-specific effector immune responses. Blood Cells Mol. Dis. 35:89–93 [Google Scholar]
  52. Mittelbrunn M, Gutierrez-Vazquez C, Villarroya-Beltri C, Gonzalez S, Sanchez-Cabo F. 52.  et al. 2011. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat. Commun. 2:282 [Google Scholar]
  53. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. 53.  2011. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 29:341–45 [Google Scholar]
  54. Sahoo S, Losordo DW. 54.  2014. Exosomes and cardiac repair after myocardial infarction. Circ. Res. 114:333–44 [Google Scholar]
  55. van Balkom BW, de Jong OG, Smits M, Brummelman J, den Ouden K. 55.  et al. 2013. Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells. Blood 121:3997–4006 [Google Scholar]
  56. Sahoo S, Klychko E, Thorne T, Misener S, Schultz KM. 56.  et al. 2011. Exosomes from human CD34+ stem cells mediate their proangiogenic paracrine activity. Circ. Res. 109:724–28 [Google Scholar]
  57. Mackie AR, Klyachko E, Thorne T, Schultz KM, Millay M. 57.  et al. 2012. Sonic hedgehog–modified human CD34+ cells preserve cardiac function after acute myocardial infarction. Circ. Res. 111:312–21 [Google Scholar]
  58. Hergenreider E, Heydt S, Treguer K, Boettger T, Horrevoets AJ. 58.  et al. 2012. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat. Cell Biol. 14:249–56 [Google Scholar]
  59. Qazi KR, Torregrosa Paredes P, Dahlberg B, Grunewald J, Eklund A, Gabrielsson S. 59.  2010. Proinflammatory exosomes in bronchoalveolar lavage fluid of patients with sarcoidosis. Thorax 65:1016–24 [Google Scholar]
  60. Park JA, Sharif AS, Tschumperlin DJ, Lau L, Limbrey R. 60.  et al. 2012. Tissue factor–bearing exosome secretion from human mechanically stimulated bronchial epithelial cells in vitro and in vivo. J. Allergy Clin. Immunol. 130:1375–83 [Google Scholar]
  61. Sheldon H, Heikamp E, Turley H, Dragovic R, Thomas P. 61.  et al. 2010. New mechanism for Notch signaling to endothelium at a distance by Delta-like 4 incorporation into exosomes. Blood 116:2385–94 [Google Scholar]
  62. Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L. 62.  et al. 2008. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat. Cell Biol. 10:619–24 [Google Scholar]
  63. Perez-Gonzalez R, Gauthier SA, Kumar A, Levy E. 63.  2012. The exosome secretory pathway transports amyloid precursor protein carboxyl-terminal fragments from the cell into the brain extracellular space. J. Biol. Chem. 287:43108–15 [Google Scholar]
  64. Rajendran L, Honsho M, Zahn TR, Keller P, Geiger KD. 64.  et al. 2006. Alzheimer's disease β-amyloid peptides are released in association with exosomes. Proc. Natl. Acad. Sci. USA 103:11172–77 [Google Scholar]
  65. Mac Sweeney R, McAuley DF. 65.  2012. Mesenchymal stem cell therapy in acute lung injury: Is it time for a clinical trial?. Thorax 67:475–76 [Google Scholar]
  66. Kebriaei P, Isola L, Bahceci E, Holland K, Rowley S. 66.  et al. 2009. Adult human mesenchymal stem cells added to corticosteroid therapy for the treatment of acute graft-versus-host disease. Biol. Blood Marrow Transplant. 15:804–11 [Google Scholar]
  67. Jang MJ, Kim HS, Lee HG, Kim GJ, Jeon HG. 67.  et al. 2013. Placenta-derived mesenchymal stem cells have an immunomodulatory effect that can control acute graft-versus-host disease in mice. Acta Haematol. 129:197–206 [Google Scholar]
  68. Hare JM, Traverse JH, Henry TD, Dib N, Strumpf RK. 68.  et al. 2009. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J. Am. Coll. Cardiol. 54:2277–86 [Google Scholar]
  69. Ezquer FE, Ezquer ME, Parrau DB, Carpio D, Yanez AJ, Conget PA. 69.  2008. Systemic administration of multipotent mesenchymal stromal cells reverts hyperglycemia and prevents nephropathy in type 1 diabetic mice. Biol. Blood Marrow Transplant. 14:631–40 [Google Scholar]
  70. Chhabra P, Brayman KL. 70.  2013. Stem cell therapy to cure type 1 diabetes: from hype to hope. Stem Cells Transl. Med. 2:328–36 [Google Scholar]
  71. Banerjee M, Kumar A, Bhonde RR. 71.  2005. Reversal of experimental diabetes by multiple bone marrow transplantation. Biochem. Biophys. Res. Commun. 328:318–25 [Google Scholar]
  72. Amsalem Y, Mardor Y, Feinberg MS, Landa N, Miller L. 72.  et al. 2007. Iron-oxide labeling and outcome of transplanted mesenchymal stem cells in the infarcted myocardium. Circulation 116:I38–45 [Google Scholar]
  73. Gnecchi M, He H, Liang OD, Melo LG, Morello F. 73.  et al. 2005. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat. Med. 11:367–68 [Google Scholar]
  74. Hansmann G, Fernandez-Gonzalez A, Aslam M, Vitali SH, Martin T. 74.  et al. 2012. Mesenchymal stem cell–mediated reversal of bronchopulmonary dysplasia and associated pulmonary hypertension. Pulm. Circ. 2:170–81 [Google Scholar]
  75. Liang OD, Mitsialis SA, Chang MS, Vergadi E, Lee C. 75.  et al. 2011. Mesenchymal stromal cells expressing heme oxygenase-1 reverse pulmonary hypertension. Stem Cells 29:99–107 [Google Scholar]
  76. Lee JW, Fang X, Gupta N, Serikov V, Matthay MA. 76.  2009. Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. Proc. Natl. Acad. Sci. USA 106:16357–62 [Google Scholar]
  77. Kitazawa Y, Li XK, Xie L, Zhu P, Kimura H, Takahara S. 77.  2012. Bone marrow–derived conventional, but not cloned, mesenchymal stem cells suppress lymphocyte proliferation and prevent graft-versus-host disease in rats. Cell Transplant. 21:581–90 [Google Scholar]
  78. Budoni M, Fierabracci A, Luciano R, Petrini S, Di Ciommo V, Muraca M. 78.  2013. The immunosuppressive effect of mesenchymal stromal cells on B lymphocytes is mediated by membrane vesicles. Cell Transplant. 22:369–79 [Google Scholar]
  79. Chen L, Wang Y, Pan Y, Zhang L, Shen C. 79.  et al. 2013. Cardiac progenitor–derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury. Biochem. Biophys. Res. Commun. 431:566–71 [Google Scholar]
  80. Peche H, Heslan M, Usal C, Amigorena S, Cuturi MC. 80.  2003. Presentation of donor major histocompatibility complex antigens by bone marrow dendritic cell–derived exosomes modulates allograft rejection. Transplantation 76:1503–10 [Google Scholar]
  81. Parekkadan B, van Poll D, Suganuma K, Carter EA, Berthiaume F. 81.  et al. 2007. Mesenchymal stem cell–derived molecules reverse fulminant hepatic failure. PLOS ONE 2e941
  82. Ranganath SH, Levy O, Inamdar MS, Karp JM. 82.  2012. Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell 10:244–58 [Google Scholar]
  83. Baglio SR, Pegtel DM, Baldini N. 83.  2012. Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Front. Physiol. 3:359 [Google Scholar]
  84. Yeo RW, Lai RC, Zhang B, Tan SS, Yin Y. 84.  et al. 2013. Mesenchymal stem cell: an efficient mass producer of exosomes for drug delivery. Adv. Drug Deliv. Rev. 65:336–41 [Google Scholar]
  85. Zhou Y, Xu H, Xu W, Wang B, Wu H. 85.  et al. 2013. Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res. Ther. 4:34 [Google Scholar]
  86. Bruno S, Grange C, Deregibus MC, Calogero RA, Saviozzi S. 86.  et al. 2009. Mesenchymal stem cell–derived microvesicles protect against acute tubular injury. J. Am. Soc. Nephrol. 20:1053–67 [Google Scholar]
  87. Liu GS, Thornton J, Van Winkle DM, Stanley AW, Olsson RA, Downey JM. 87.  1991. Protection against infarction afforded by preconditioning is mediated by A1 adenosine receptors in rabbit heart. Circulation 84:350–56 [Google Scholar]
  88. Kitakaze M, Hori M, Takashima S, Sato H, Inoue M, Kamada T. 88.  1993. Ischemic preconditioning increases adenosine release and 5′-nucleotidase activity during myocardial ischemia and reperfusion in dogs. Implications for myocardial salvage. Circulation 87:208–15 [Google Scholar]
  89. Arslan F, Lai RC, Smeets MB, Akeroyd L, Choo A. 89.  et al. 2013. Mesenchymal stem cell–derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res. 10:301–12 [Google Scholar]
  90. Ranghino A, Cantaluppi V, Grange C, Vitillo L, Fop F. 90.  et al. 2012. Endothelial progenitor cell–derived microvesicles improve neovascularization in a murine model of hindlimb ischemia. Int. J. Immunopathol. Pharmacol. 25:75–85 [Google Scholar]
  91. Deregibus MC, Cantaluppi V, Calogero R, Lo Iacono M, Tetta C. 91.  et al. 2007. Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood 110:2440–48 [Google Scholar]
  92. Gatti S, Bruno S, Deregibus MC, Sordi A, Cantaluppi V. 92.  et al. 2011. Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury. Nephrol. Dial. Transplant. 26:1474–83 [Google Scholar]
  93. Cantaluppi V, Gatti S, Medica D, Figliolini F, Bruno S. 93.  et al. 2012. Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia-reperfusion injury by microRNA-dependent reprogramming of resident renal cells. Kidney Int. 82:412–27 [Google Scholar]
  94. Levanen B, Bhakta NR, Torregrosa Paredes P, Barbeau R, Hiltbrunner S. 94.  et al. 2013. Altered microRNA profiles in bronchoalveolar lavage fluid exosomes in asthmatic patients. J. Allergy Clin. Immunol. 131:894–903 [Google Scholar]
  95. Noerholm M, Balaj L, Limperg T, Salehi A, Zhu LD. 95.  et al. 2012. RNA expression patterns in serum microvesicles from patients with glioblastoma multiforme and controls. BMC Cancer 12:22 [Google Scholar]
  96. Duijvesz D, Burnum-Johnson KE, Gritsenko MA, Hoogland AM, Vredenbregt–van den Berg MS. 96.  et al. 2013. Proteomic profiling of exosomes leads to the identification of novel biomarkers for prostate cancer. PLOS ONE 8e82589
  97. Yamashita T, Kamada H, Kanasaki S, Maeda Y, Nagano K. 97.  et al. 2013. Epidermal growth factor receptor localized to exosome membranes as a possible biomarker for lung cancer diagnosis. Pharmazie 68:969–73 [Google Scholar]
  98. Lasser C. 98.  2012. Exosomal RNA as biomarkers and the therapeutic potential of exosome vectors. Expert Opin. Biol. Ther. 12:Suppl. 1189–97 [Google Scholar]
  99. Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B. 99.  et al. 2012. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med. 18:883–91 [Google Scholar]
  100. Taylor DD, Gercel-Taylor C. 100.  2008. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol. Oncol. 110:13–21 [Google Scholar]
  101. Zhou H, Pisitkun T, Aponte A, Yuen PS, Hoffert JD. 101.  et al. 2006. Exosomal Fetuin-A identified by proteomics: a novel urinary biomarker for detecting acute kidney injury. Kidney Int. 70:1847–57 [Google Scholar]
  102. Tavoosidana G, Ronquist G, Darmanis S, Yan J, Carlsson L. 102.  et al. 2011. Multiple recognition assay reveals prostasomes as promising plasma biomarkers for prostate cancer. Proc. Natl. Acad. Sci. USA 108:8809–14 [Google Scholar]
  103. Bryniarski K, Ptak W, Jayakumar A, Pullmann K, Caplan MJ. 103.  et al. 2013. Antigen-specific, antibody-coated, exosome-like nanovesicles deliver suppressor T-cell microRNA-150 to effector T cells to inhibit contact sensitivity. J. Allergy Clin. Immunol. 132:170–81 [Google Scholar]
  104. Xin H, Li Y, Buller B, Katakowski M, Zhang Y. 104.  et al. 2012. Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells 30:1556–64 [Google Scholar]
  105. Katakowski M, Buller B, Zheng X, Lu Y, Rogers T. 105.  et al. 2013. Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. Cancer Lett. 335:201–4 [Google Scholar]
  106. Tian Y, Li S, Song J, Ji T, Zhu M. 106.  et al. 2014. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 35:2383–90 [Google Scholar]
  107. Jang SC, Kim OY, Yoon CM, Choi DS, Roh TY. 107.  et al. 2013. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano 7:7698–710 [Google Scholar]
/content/journals/10.1146/annurev-physiol-021014-071641
Loading
/content/journals/10.1146/annurev-physiol-021014-071641
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error