1932

Abstract

Cerebral small vessel disease (SVD) is characterized by changes in the pial and parenchymal microcirculations. SVD produces reductions in cerebral blood flow and impaired blood-brain barrier function, which are leading contributors to age-related reductions in brain health. End-organ effects are diverse, resulting in both cognitive and noncognitive deficits. Underlying phenotypes and mechanisms are multifactorial, with no specific treatments at this time. Despite consequences that are already considerable, the impact of SVD is predicted to increase substantially with the growing aging population. In the face of this health challenge, the basic biology, pathogenesis, and determinants of SVD are poorly defined. This review summarizes recent progress and concepts in this area, highlighting key findings and some major unanswered questions. We focus on phenotypes and mechanisms that underlie microvascular aging, the greatest risk factor for cerebrovascular disease and its subsequent effects.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-021119-034338
2020-02-10
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/physiol/82/1/annurev-physiol-021119-034338.html?itemId=/content/journals/10.1146/annurev-physiol-021119-034338&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    GBD 2015 Neurol. Collab. Group 2019. Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 18:459–80
    [Google Scholar]
  2. 2. 
    Feigin VL, Roth GA, Naghavi M, Parmar P, Krishnamurthi R et al. 2016. Global burden of stroke and risk factors in 188 countries, during 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet Neurol 15:913–24
    [Google Scholar]
  3. 3. 
    Rothwell PM, Coull AJ, Silver LE, Fairhead JF, Giles MF et al. 2005. Population-based study of event-rate, incidence, case fatality, and mortality for all acute vascular events in all arterial territories (Oxford Vascular Study). Lancet 366:1773–83
    [Google Scholar]
  4. 4. 
    Livingston G, Sommerlad A, Orgeta V, Costafreda SG, Huntley J et al. 2017. Dementia prevention, intervention, and care. Lancet 390:2673–734
    [Google Scholar]
  5. 5. 
    Cuadrado-Godia E, Dwivedi P, Sharma S, Santiago AO, Gonzalez JR et al. 2018. Cerebral small vessel disease: a review focusing on pathophysiology, biomarkers, and machine learning strategies. J. Stroke 20:302–20
    [Google Scholar]
  6. 6. 
    Hurd MD, Martorell P, Delavande A, Mullen KJ, Langa KM 2013. Monetary costs of dementia in the United States. N. Engl. J. Med. 368:1326–34
    [Google Scholar]
  7. 7. 
    Qiu C, Fratiglioni L. 2015. A major role for cardiovascular burden in age-related cognitive decline. Nat. Rev. Cardiol. 12:267–77
    [Google Scholar]
  8. 8. 
    Iadecola C. 2013. The pathobiology of vascular dementia. Neuron 80:844–66
    [Google Scholar]
  9. 9. 
    Montagne A, Zhao Z, Zlokovic BV 2017. Alzheimer's disease: a matter of blood-brain barrier dysfunction?. J. Exp. Med. 214:3151–69
    [Google Scholar]
  10. 10. 
    Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP 2013. The global prevalence of dementia: a systematic review and metaanalysis. Alzheimers Dement 9:63–75.e2
    [Google Scholar]
  11. 11. 
    Wardlaw JM, Smith C, Dichgans M 2013. Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging. Lancet Neurol 12:483–97
    [Google Scholar]
  12. 12. 
    Akoudad S, Wolters FJ, Viswanathan A, de Bruijn RF, van der Lugt A et al. 2016. Association of cerebral microbleeds with cognitive decline and dementia. JAMA Neurol 73:934–43
    [Google Scholar]
  13. 13. 
    Arvanitakis Z, Capuano AW, Leurgans SE, Bennett DA, Schneider JA 2016. Relation of cerebral vessel disease to Alzheimer's disease dementia and cognitive function in elderly people: a cross-sectional study. Lancet Neurol 15:934–43
    [Google Scholar]
  14. 14. 
    Cabeza R, Albert M, Belleville S, Craik FIM, Duarte A et al. 2018. Maintenance, reserve and compensation: the cognitive neuroscience of healthy ageing. Nat. Rev. Neurosci. 19:701–10
    [Google Scholar]
  15. 15. 
    Capone C, Cognat E, Ghezali L, Baron-Menguy C, Aubin D et al. 2016. Reducing TIMP3 or vitronectin ameliorates disease manifestations in CADASIL mice. Ann. Neurol. 79:387–403
    [Google Scholar]
  16. 16. 
    Joutel A, Monet-Leprêtre M, Gosele C, Baron-Menguy C, Hammes A et al. 2010. Cerebrovascular dysfunction and microcirculation rarefaction precede white matter lesions in a mouse genetic model of cerebral ischemic small vessel disease. J. Clin. Investig. 120:433–45
    [Google Scholar]
  17. 17. 
    Poggesi A, Pasi M, Pescini F, Pantoni L, Inzitari D 2016. Circulating biologic markers of endothelial dysfunction in cerebral small vessel disease: a review. J. Cereb. Blood Flow Metab. 36:72–94
    [Google Scholar]
  18. 18. 
    van der Flier WM, Skoog I, Schneider JA, Pantoni L, Mok V et al. 2018. Vascular cognitive impairment. Nat. Rev. Dis. Primers 4:18003
    [Google Scholar]
  19. 19. 
    Toledo JB, Arnold SE, Raible K, Brettschneider J, Xie SX et al. 2013. Contribution of cerebrovascular disease in autopsy confirmed neurodegenerative disease cases in the National Alzheimer's Coordinating Centre. Brain 136:2697–706
    [Google Scholar]
  20. 20. 
    Chiesa ST, Masi S, Shipley MJ, Ellins EA, Fraser AG et al. 2019. Carotid artery wave intensity in mid- to late-life predicts cognitive decline: the Whitehall II study. Eur. Heart J. 40:2300–9
    [Google Scholar]
  21. 21. 
    Samieri C, Perier MC, Gaye B, Proust-Lima C, Helmer C et al. 2018. Association of cardiovascular health level in older age with cognitive decline and incident dementia. JAMA 320:657–64
    [Google Scholar]
  22. 22. 
    Cipolla MJ. 2016. The cerebral circulation. The Cerebral Circulation1–80 San Rafael, CA: Morgan & Claypool Life Sci.
    [Google Scholar]
  23. 23. 
    Iadecola C. 2017. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron 96:17–42
    [Google Scholar]
  24. 24. 
    Faraci FM. 2011. Protecting against vascular disease in brain. Am. J. Physiol. Heart Circ. Physiol. 300:H1566–82
    [Google Scholar]
  25. 25. 
    Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV 2019. Blood-brain barrier: from physiology to disease and back. Physiol. Rev. 99:21–78
    [Google Scholar]
  26. 26. 
    Vanlandewijck M, He L, Mae MA, Andrae J, Ando K et al. 2018. A molecular atlas of cell types and zonation in the brain vasculature. Nature 554:475–80
    [Google Scholar]
  27. 27. 
    De Silva TM, Faraci FM 2016. Microvascular dysfunction and cognitive impairment. Cell Mol. Neurobiol. 36:241–58
    [Google Scholar]
  28. 28. 
    Gould IG, Tsai P, Kleinfeld D, Linninger A 2017. The capillary bed offers the largest hemodynamic resistance to the cortical blood supply. J. Cereb. Blood Flow Metab. 37:52–68
    [Google Scholar]
  29. 29. 
    Hoffman JD, Parikh I, Green SJ, Chlipala G, Mohney RP et al. 2017. Age drives distortion of brain metabolic, vascular and cognitive functions, and the gut microbiome. Front. Aging Neurosci. 9:298
    [Google Scholar]
  30. 30. 
    Li Y, Choi WJ, Wei W, Song S, Zhang Q et al. 2018. Aging-associated changes in cerebral vasculature and blood flow as determined by quantitative optical coherence tomography angiography. Neurobiol. Aging 70:148–59
    [Google Scholar]
  31. 31. 
    Lin AL, Zhang W, Gao X, Watts L 2015. Caloric restriction increases ketone bodies metabolism and preserves blood flow in aging brain. Neurobiol. Aging 36:2296–303
    [Google Scholar]
  32. 32. 
    Parikh I, Guo J, Chuang KH, Zhong Y, Rempe RG et al. 2016. Caloric restriction preserves memory and reduces anxiety of aging mice with early enhancement of neurovascular functions. Aging 8:2814–26
    [Google Scholar]
  33. 33. 
    Tarantini S, Valcarcel-Ares MN, Toth P, Yabluchanskiy A, Tucsek Z et al. 2019. Nicotinamide mononucleotide (NMN) supplementation rescues cerebromicrovascular endothelial function and neurovascular coupling responses and improves cognitive function in aged mice. Redox. Biol. 24:101192
    [Google Scholar]
  34. 34. 
    Amin-Hanjani S, Du X, Pandey DK, Thulborn KR, Charbel FT 2015. Effect of age and vascular anatomy on blood flow in major cerebral vessels. J. Cereb. Blood Flow Metab. 35:312–18
    [Google Scholar]
  35. 35. 
    Lu H, Xu F, Rodrigue KM, Kennedy KM, Cheng Y et al. 2011. Alterations in cerebral metabolic rate and blood supply across the adult lifespan. Cereb. Cortex 21:1426–34
    [Google Scholar]
  36. 36. 
    Wu C, Honarmand AR, Schnell S, Kuhn R, Schoeneman SE et al. 2016. Age-related changes of normal cerebral and cardiac blood flow in children and adults aged 7 months to 61 years. J. Am. Heart Assoc. 5:e002657
    [Google Scholar]
  37. 37. 
    De Vis JB, Peng SL, Chen X, Li Y, Liu P et al. 2018. Arterial-spin-labeling (ASL) perfusion MRI predicts cognitive function in elderly individuals: a 4-year longitudinal study. J. Magn. Reson. Imaging 48:449–58
    [Google Scholar]
  38. 38. 
    Yew B, Nation DA. 2017. Cerebrovascular resistance: effects on cognitive decline, cortical atrophy, and progression to dementia. Brain 140:1987–2001
    [Google Scholar]
  39. 39. 
    Zhang N, Gordon ML, Ma Y, Chi B, Gomar JJ et al. 2018. The age-related perfusion pattern measured with arterial spin labeling MRI in healthy subjects. Front. Aging Neurosci. 10:214
    [Google Scholar]
  40. 40. 
    Moeini M, Lu X, Avti PK, Damseh R, Belanger S et al. 2018. Compromised microvascular oxygen delivery increases brain tissue vulnerability with age. Sci. Rep. 8:8219
    [Google Scholar]
  41. 41. 
    Mutsaerts H, Mirza SS, Petr J, Thomas DL, Cash DM et al. 2019. Cerebral perfusion changes in presymptomatic genetic frontotemporal dementia: a GENFI study. Brain 142:1108–20
    [Google Scholar]
  42. 42. 
    Wolters FJ, Zonneveld HI, Hofman A, van der Lugt A, Koudstaal PJ et al. 2017. Cerebral perfusion and the risk of dementia: a population-based study. Circulation 136:719–28
    [Google Scholar]
  43. 43. 
    Thomas T, Miners S, Love S 2015. Post-mortem assessment of hypoperfusion of cerebral cortex in Alzheimer's disease and vascular dementia. Brain 138:1059–69
    [Google Scholar]
  44. 44. 
    Modrick ML, Didion SP, Sigmund CD, Faraci FM 2009. Role of oxidative stress and AT1 receptors in cerebral vascular dysfunction with aging. Am. J. Physiol. 296:H1914–19
    [Google Scholar]
  45. 45. 
    Shi Y, Savarese G, Perrone-Filardi P, Lüscher TF, Camici GG 2014. Enhanced age-dependent cerebrovascular dysfunction is mediated by adaptor protein p66Shc. Int. J. Cardiol. 175:446–50
    [Google Scholar]
  46. 46. 
    Walker AE, Henson GD, Reihl KD, Nielson EI, Morgan RG et al. 2014. Beneficial effects of lifelong caloric restriction on endothelial function are greater in conduit arteries compared to cerebral resistance arteries. Age 36:559–69
    [Google Scholar]
  47. 47. 
    Park MH, Lee JY, Park KH, Jung IK, Kim KT et al. 2018. Vascular and neurogenic rejuvenation in aging mice by modulation of ASM. Neuron 100:167–82.e9
    [Google Scholar]
  48. 48. 
    De Silva TM, Modrick ML, Dabertrand F, Faraci FM 2018. Changes in cerebral arteries and parenchymal arterioles with aging: role of Rho kinase 2 and impact of genetic background. Hypertension 71:921–27
    [Google Scholar]
  49. 49. 
    Faraci F. 2011. Cerebral vascular dysfunction with aging. Handbook of the Biology of Aging EJ Masoro, SN Austad 405–18 Amsterdam: Academic, 7th ed..
    [Google Scholar]
  50. 50. 
    Toth P, Tarantini S, Tucsek Z, Ashpole NM, Sosnowska D et al. 2014. Resveratrol treatment rescues neurovascular coupling in aged mice: role of improved cerebromicrovascular endothelial function and downregulation of NADPH oxidase. Am. J. Physiol. 306:H299–308
    [Google Scholar]
  51. 51. 
    Mayhan WG, Arrick DM, Sharpe GM, Sun H 2008. Age-related alterations in reactivity of cerebral arterioles: role of oxidative stress. Microcirculation 15:225–36
    [Google Scholar]
  52. 52. 
    Park L, Anrather J, Girouard H, Zhou P, Iadecola C 2007. Nox2-derived reactive oxygen species mediate neurovascular dysregulation in the aging mouse brain. J. Cereb. Blood Flow Metab. 27:1908–18
    [Google Scholar]
  53. 53. 
    Emdin CA, Khera AV, Klarin D, Natarajan P, Zekavat SM et al. 2018. Phenotypic consequences of a genetic predisposition to enhanced nitric oxide signaling. Circulation 137:222–32
    [Google Scholar]
  54. 54. 
    Hu X, De Silva TM, Chen J, Faraci FM 2017. Cerebral vascular disease and neurovascular injury in ischemic stroke. Circ. Res. 120:449–71
    [Google Scholar]
  55. 55. 
    Katusic ZS, Austin SA. 2014. Endothelial nitric oxide: protector of a healthy mind. Eur. Heart J. 35:888–94
    [Google Scholar]
  56. 56. 
    Longden TA, Dabertrand F, Koide M, Gonzales AL, Tykocki NR et al. 2017. Capillary K+-sensing initiates retrograde hyperpolarization to increase local cerebral blood flow. Nat. Neurosci. 20:717–26
    [Google Scholar]
  57. 57. 
    Hatake K, Kakishita E, Wakabayashi I, Sakiyama N, Hishida S 1990. Effect of aging on endothelium-dependent vascular relaxation of isolated human basilar artery to thrombin and bradykinin. Stroke 21:1039–43
    [Google Scholar]
  58. 58. 
    Elhusseiny A, Hamel E. 2000. Muscarinic—but not nicotinic—acetylcholine receptors mediate a nitric oxide-dependent dilation in brain cortical arterioles: a possible role for the M5 receptor subtype. J. Cereb. Blood Flow Metab. 20:298–305
    [Google Scholar]
  59. 59. 
    Faraci FM, Heistad DD. 1998. Regulation of the cerebral circulation: role of endothelium and potassium channels. Physiol. Rev. 78:53–97
    [Google Scholar]
  60. 60. 
    Sobey CG, Faraci FM. 1997. Effects of a novel inhibitor of guanylyl cyclase on dilator responses of mouse cerebral arterioles. Stroke 28:837–42
    [Google Scholar]
  61. 61. 
    Yang G, Iadecola C. 1998. Activation of cerebellar climbing fibers increases cerebellar blood flow: role of glutamate receptors, nitric oxide, and cGMP. Stroke 29:499–507
    [Google Scholar]
  62. 62. 
    Dabertrand F, Kroigaard C, Bonev AD, Cognat E, Dalsgaard T et al. 2015. Potassium channelopathy-like defect underlies early-stage cerebrovascular dysfunction in a genetic model of small vessel disease. PNAS 112:E796–805
    [Google Scholar]
  63. 63. 
    Mayhan WG, Faraci FM, Baumbach GL, Heistad DD 1990. Effects of aging on responses of cerebral arterioles. Am. J. Physiol. 258:H1138–43
    [Google Scholar]
  64. 64. 
    De Silva TM, Broughton BR, Drummond GR, Sobey CG, Miller AA 2009. Gender influences cerebral vascular responses to angiotensin II through Nox2-derived reactive oxygen species. Stroke 40:1091–97
    [Google Scholar]
  65. 65. 
    Girouard H, Park L, Anrather J, Zhou P, Iadecola C 2006. Angiotensin II attenuates endothelium-dependent responses in the cerebral microcirculation through Nox-2-derived radicals. Arterioscler. Thromb. Vasc. Biol. 26:826–32
    [Google Scholar]
  66. 66. 
    Faraci FM, Lamping KG, Modrick ML, Ryan MJ, Sigmund CD, Didion SP 2006. Cerebral vascular effects of angiotensin II: new insights from genetic models. J. Cereb. Blood Flow Metab. 26:449–55
    [Google Scholar]
  67. 67. 
    Faraci FM, Brian JE Jr, Heistad DD 1995. Response of cerebral blood vessels to an endogenous inhibitor of nitric oxide synthase. Am. J. Physiol. 269:H1522–27
    [Google Scholar]
  68. 68. 
    Guo S, Deng W, Xing C, Zhou Y, Ning M, Lo EH 2019. Effects of aging, hypertension and diabetes on the mouse brain and heart vasculomes. Neurobiol. Dis. 126:117–23
    [Google Scholar]
  69. 69. 
    Tan C, Lu NN, Wang CK, Chen DY, Sun NH et al. 2019. Endothelium-derived semaphorin 3G regulates hippocampal synaptic structure and plasticity via neuropilin-2/PlexinA4. Neuron 101:920–37
    [Google Scholar]
  70. 70. 
    Austin SA, Katusic ZS. 2019. Partial loss of endothelial nitric oxide leads to increased cerebrovascular beta amyloid. J. Cereb. Blood Flow Metab. https://doi.org/10.1177/0271678X18822474
    [Crossref] [Google Scholar]
  71. 71. 
    Tan XL, Xue YQ, Ma T, Wang X, Li JJ et al. 2015. Partial eNOS deficiency causes spontaneous thrombotic cerebral infarction, amyloid angiopathy and cognitive impairment. Mol. Neurodegener. 10:24
    [Google Scholar]
  72. 72. 
    Mishra A, Reynolds JP, Chen Y, Gourine AV, Rusakov DA, Attwell D 2016. Astrocytes mediate neurovascular signaling to capillary pericytes but not to arterioles. Nat. Neurosci. 19:1619–27
    [Google Scholar]
  73. 73. 
    Faraci FM, Breese KR. 1993. Nitric oxide mediates vasodilatation in response to activation of N-methyl-d-aspartate receptors in brain. Circ. Res. 72:476–80
    [Google Scholar]
  74. 74. 
    Chen BR, Kozberg MG, Bouchard MB, Shaik MA, Hillman EM 2014. A critical role for the vascular endothelium in functional neurovascular coupling in the brain. J. Am. Heart Assoc. 3:e000787
    [Google Scholar]
  75. 75. 
    Kuschinsky W, Wahl M, Bosse O, Thurau K 1972. Perivascular potassium and pH as determinants of local pial arterial diameter in cats. A microapplication study. Circ. Res. 31:240–7
    [Google Scholar]
  76. 76. 
    Fujii K, Heistad DD, Faraci FM 1991. Flow-mediated dilatation of the basilar artery in vivo. Circ. Res. 69:697–705
    [Google Scholar]
  77. 77. 
    Tsukada H, Sato K, Kakiuchi T, Nishiyama S 2000. Age-related impairment of coupling mechanism between neuronal activation and functional cerebral blood flow response was restored by cholinesterase inhibition: PET study with microdialysis in the awake monkey brain. Brain Res 857:158–64
    [Google Scholar]
  78. 78. 
    West KL, Zuppichini MD, Turner MP, Sivakolundu DK, Zhao Y et al. 2018. BOLD hemodynamic response function changes significantly with healthy aging. Neuroimage 188:198–207
    [Google Scholar]
  79. 79. 
    Lourenco CF, Ledo A, Caetano M, Barbosa RM, Laranjinha J 2018. Age-dependent impairment of neurovascular and neurometabolic coupling in the hippocampus. Front. Physiol. 9:913
    [Google Scholar]
  80. 80. 
    Faraci FM. 2018. Watching small vessel disease grow. Circ. Res. 122:810–12
    [Google Scholar]
  81. 81. 
    Faraco G, Brea D, Garcia-Bonilla L, Wang G, Racchumi G et al. 2018. Dietary salt promotes neurovascular and cognitive dysfunction through a gut-initiated TH17 response. Nat. Neurosci. 21:240–49
    [Google Scholar]
  82. 82. 
    Wei EP, Kontos HA, Patterson JL Jr 1980. Dependence of pial arteriolar response to hypercapnia on vessel size. Am. J. Physiol. 238:697–703
    [Google Scholar]
  83. 83. 
    Lacombe P, Oligo C, Domenga V, Tournier-Lasserve E, Joutel A 2005. Impaired cerebral vasoreactivity in a transgenic mouse model of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy arteriopathy. Stroke 36:1053–58
    [Google Scholar]
  84. 84. 
    Glodzik L, Rusinek H, Brys M, Tsui WH, Switalski R et al. 2011. Framingham cardiovascular risk profile correlates with impaired hippocampal and cortical vasoreactivity to hypercapnia. J. Cereb. Blood Flow Metab. 31:671–79
    [Google Scholar]
  85. 85. 
    Wang Q, Pelligrino DA, Koenig HM, Albrecht RF 1994. The role of endothelium and nitric oxide in rat pial arteriolar dilatory responses to CO2 in vivo. J. Cereb. Blood Flow Metab. 14:944–51
    [Google Scholar]
  86. 86. 
    Lacolley P, Regnault V, Segers P, Laurent S 2017. Vascular smooth muscle cells and arterial stiffening: relevance in development, aging, and disease. Physiol. Rev. 97:1555–617
    [Google Scholar]
  87. 87. 
    Diaz-Otero JM, Garver H, Fink GD, Jackson WF, Dorrance AM 2016. Aging is associated with changes to the biomechanical properties of the posterior cerebral artery and parenchymal arterioles. Am. J. Physiol. 310:H365–75
    [Google Scholar]
  88. 88. 
    Fonck E, Feigl GG, Fasel J, Sage D, Unser M et al. 2009. Effect of aging on elastin functionality in human cerebral arteries. Stroke 40:2552–56
    [Google Scholar]
  89. 89. 
    Hajdu MA, Heistad DD, Siems JE, Baumbach GL 1990. Effects of aging on mechanics and composition of cerebral arterioles in rats. Circ. Res. 66:1747–54
    [Google Scholar]
  90. 90. 
    Nagasawa S, Handa H, Okumura A, Naruo Y, Moritake K, Hayashi K 1979. Mechanical properties of human cerebral arteries. Part 1: effects of age and vascular smooth muscle activation. Surg. Neurol. 12:297–304
    [Google Scholar]
  91. 91. 
    Schnerr RS, Jansen JFA, Uludag K, Hofman PAM, Wildberger JE et al. 2017. Pulsatility of lenticulostriate arteries assessed by 7 Tesla flow MRI-measurement, reproducibility, and applicability to aging effect. Front. Physiol. 8: https://doi.org/10.3389/fphys.2017.00961
    [Crossref] [Google Scholar]
  92. 92. 
    Baron-Menguy C, Domenga-Denier V, Ghezali L, Faraci FM, Joutel A 2017. Increased Notch3 activity mediates pathological changes in structure of cerebral arteries. Hypertension 69:60–70
    [Google Scholar]
  93. 93. 
    Walker AE, Kronquist EK, Chinen KT, Reihl KD, Li DY et al. 2019. Cerebral and skeletal muscle feed artery vasoconstrictor responses in a mouse model with greater large elastic artery stiffness. Exp. Physiol. 104:434–42
    [Google Scholar]
  94. 94. 
    Faber JE, Zhang H, Lassance-Soares RM, Prabhakar P, Najafi AH et al. 2011. Aging causes collateral rarefaction and increased severity of ischemic injury in multiple tissues. Arterioscler. Thromb. Vasc. Biol. 31:1748–56
    [Google Scholar]
  95. 95. 
    Rzechorzek W, Zhang H, Buckley BK, Hua K, Pomp D, Faber JE 2017. Aerobic exercise prevents rarefaction of pial collaterals and increased stroke severity that occur with aging. J. Cereb. Blood Flow Metab. 37:3544–55
    [Google Scholar]
  96. 96. 
    Menon BK, Smith EE, Coutts SB, Welsh DG, Faber JE et al. 2013. Leptomeningeal collaterals are associated with modifiable metabolic risk factors. Ann. Neurol. 74:241–48
    [Google Scholar]
  97. 97. 
    Moore SM, Zhang H, Maeda N, Doerschuk CM, Faber JE 2015. Cardiovascular risk factors cause premature rarefaction of the collateral circulation and greater ischemic tissue injury. Angiogenesis 18:265–81
    [Google Scholar]
  98. 98. 
    Kutuzov N, Flyvbjerg H, Lauritzen M 2018. Contributions of the glycocalyx, endothelium, and extravascular compartment to the blood-brain barrier. PNAS 115:E9429–38
    [Google Scholar]
  99. 99. 
    Liebner S, Dijkhuizen RM, Reiss Y, Plate KH, Agalliu D, Constantin G 2018. Functional morphology of the blood-brain barrier in health and disease. Acta Neuropathol 135:311–36
    [Google Scholar]
  100. 100. 
    Pollak TA, Drndarski S, Stone JM, David AS, McGuire P, Abbott NJ 2018. The blood-brain barrier in psychosis. Lancet Psychiatry 5:79–92
    [Google Scholar]
  101. 101. 
    Stamatovic SM, Johnson AM, Keep RF, Andjelkovic AV 2016. Junctional proteins of the blood-brain barrier: new insights into function and dysfunction. Tissue Barriers 4:e1154641
    [Google Scholar]
  102. 102. 
    Ceafalan LC, Fertig TE, Gheorghe TC, Hinescu ME, Popescu BO et al. 2018. Age-related ultrastructural changes of the basement membrane in the mouse blood-brain barrier. J. Cell. Mol. Med. 23:819–27
    [Google Scholar]
  103. 103. 
    Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ 2010. Structure and function of the blood-brain barrier. Neurobiol. Dis. 37:13–25
    [Google Scholar]
  104. 104. 
    Erdő F, Denes L, de Lange E 2017. Age-associated physiological and pathological changes at the blood-brain barrier: a review. J. Cereb. Blood Flow Metab. 37:4–24
    [Google Scholar]
  105. 105. 
    Ayloo S, Gu C. 2019. Transcytosis at the blood-brain barrier. Curr. Opin. Neurobiol. 57:32–38
    [Google Scholar]
  106. 106. 
    Erickson MA, Banks WA. 2019. Age-associated changes in the immune system and blood-brain barrier functions. Int. J. Mol. Sci. 20:1632
    [Google Scholar]
  107. 107. 
    Wilhelm I, Nyul-Toth A, Suciu M, Hermenean A, Krizbai IA 2016. Heterogeneity of the blood-brain barrier. Tissue Barriers 4:e1143544
    [Google Scholar]
  108. 108. 
    Hanske S, Dyrna F, Bechmann I, Krueger M 2016. Different segments of the cerebral vasculature reveal specific endothelial specifications, while tight junction proteins appear equally distributed. Brain Struct. Funct. 222:1179–92
    [Google Scholar]
  109. 109. 
    Berthiaume AA, Hartmann DA, Majesky MW, Bhat NR, Shih AY 2018. Pericyte structural remodeling in cerebrovascular health and homeostasis. Front. Aging Neurosci. 10:210
    [Google Scholar]
  110. 110. 
    Goodall EF, Wang C, Simpson JE, Baker DJ, Drew DR et al. 2018. Age-associated changes in the blood-brain barrier: comparative studies in human and mouse. Neuropathol. Appl. Neurobiol. 44:328–40
    [Google Scholar]
  111. 111. 
    Montagne A, Barnes SR, Sweeney MD, Halliday MR, Sagare AP et al. 2015. Blood-brain barrier breakdown in the aging human hippocampus. Neuron 85:296–302
    [Google Scholar]
  112. 112. 
    Stamatovic SM, Martinez-Revollar G, Hu A, Choi J, Keep RF, Andjelkovic AV 2019. Decline in sirtuin-1 expression and activity plays a critical role in blood-brain barrier permeability in aging. Neurobiol. Dis. 126:105–16
    [Google Scholar]
  113. 113. 
    Nation DA, Sweeney MD, Montagne A, Sagare AP, D'Orazio LM et al. 2019. Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat. Med. 25:270–76
    [Google Scholar]
  114. 114. 
    Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B et al. 2010. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68:409–27
    [Google Scholar]
  115. 115. 
    Mozumder M, Pozo JM, Coelho S, Costantini M, Simpson J et al. 2019. Quantitative histomorphometry of capillary microstructure in deep white matter. Neuroimage Clin 23:101839
    [Google Scholar]
  116. 116. 
    Kiyatkin EA, Wakabayashi KT. 2015. Parsing glucose entry into the brain: novel findings obtained with enzyme-based glucose biosensors. ACS Chem. Neurosci. 6:108–16
    [Google Scholar]
  117. 117. 
    Winkler EA, Nishida Y, Sagare AP, Rege SV, Bell RD et al. 2015. GLUT1 reductions exacerbate Alzheimer's disease vasculo-neuronal dysfunction and degeneration. Nat. Neurosci. 18:521–30
    [Google Scholar]
  118. 118. 
    Ridder DA, Wenzel J, Müller K, Töllner K, Tong XK et al. 2015. Brain endothelial TAK1 and NEMO safeguard the neurovascular unit. J. Exp. Med. 212:1529–49
    [Google Scholar]
  119. 119. 
    Yousef H, Czupalla CJ, Lee D, Chen MB, Burke AN et al. 2019. Aged blood impairs hippocampal neural precursor activity and activates microglia via brain endothelial cell VCAM1. Nat. Med. 25:988–1000
    [Google Scholar]
  120. 120. 
    Snodgrass R, Johanson CE. 2019. Choroid plexus: source of cerebrospinal fluid and regulator of brain development and function. Pediatric Hydrocephalus G Cinalli 239–66 Cham, Switz: Springer
    [Google Scholar]
  121. 121. 
    Ghersi-Egea JF, Strazielle N, Catala M, Silva-Vargas V, Doetsch F, Engelhardt B 2018. Molecular anatomy and functions of the choroidal blood-cerebrospinal fluid barrier in health and disease. Acta Neuropathol 135:337–61
    [Google Scholar]
  122. 122. 
    Vandenbroucke RE. 2016. A hidden epithelial barrier in the brain with a central role in regulating brain homeostasis. Implications for aging. Ann. Am. Thorac. Soc. 13:Suppl. 5S407–10
    [Google Scholar]
  123. 123. 
    Honarpisheh P, McCullough LD. 2019. Sex as a biological variable in the pathology and pharmacology of neurodegenerative and neurovascular diseases. Br. J. Pharmacol. 176:4173–92
    [Google Scholar]
  124. 124. 
    Faber JE, Moore SM, Lucitti JL, Aghajanian A, Zhang H 2017. Sex differences in the cerebral collateral circulation. Transl. Stroke Res. 8:273–83
    [Google Scholar]
  125. 125. 
    Zhang H, Prabhakar P, Sealock R, Faber JE 2010. Wide genetic variation in the native pial collateral circulation is a major determinant of variation in severity of stroke. J. Cereb. Blood Flow Metab. 30:923–34
    [Google Scholar]
  126. 126. 
    Madeo F, Carmona-Gutierrez D, Hofer SJ, Kroemer G 2019. Caloric restriction mimetics against age-associated disease: targets, mechanisms, and therapeutic potential. Cell Metab 29:592–610
    [Google Scholar]
  127. 127. 
    Barger JL, Vann JM, Cray NL, Pugh TD, Mastaloudis A et al. 2017. Identification of tissue-specific transcriptional markers of caloric restriction in the mouse and their use to evaluate caloric restriction mimetics. Aging Cell 16:750–60
    [Google Scholar]
  128. 128. 
    De Silva TM, Hu C, Kinzenbaw DA, Modrick ML, Sigmund CD, Faraci FM 2017. Genetic interference with endothelial PPAR-γ (peroxisome proliferator-activated receptor-γ) augments effects of angiotensin II while impairing responses to angiotensin 1–7. Hypertension 70:559–65
    [Google Scholar]
  129. 129. 
    De Silva TM, Ketsawatsomkron P, Pelham C, Sigmund CD, Faraci FM 2015. Genetic interference with peroxisome proliferator-activated receptor γ in smooth muscle enhances myogenic tone in the cerebrovasculature via a Rho kinase-dependent mechanism. Hypertension 65:345–51
    [Google Scholar]
  130. 130. 
    De Silva TM, Modrick ML, Ketsawatsomkron P, Lynch C, Chu Y et al. 2014. Role of peroxisome proliferator-activated receptor-γ in vascular muscle in the cerebral circulation. Hypertension 64:1088–93
    [Google Scholar]
  131. 131. 
    Beyer AM, Baumbach GL, Halabi CM, Modrick ML, Lynch CM et al. 2008. Interference with PPARγ signaling causes cerebral vascular dysfunction, hypertrophy, and remodeling. Hypertension 51:867–71
    [Google Scholar]
  132. 132. 
    Halabi CM, Beyer AM, de Lange WJ, Keen HL, Baumbach GL et al. 2008. Interference with PPARγ function in smooth muscle causes vascular dysfunction and hypertension. Cell Metab 7:215–26
    [Google Scholar]
  133. 133. 
    Heneka MT, Fink A, Doblhammer G 2015. Effect of pioglitazone medication on the incidence of dementia. Ann. Neurol. 78:284–94
    [Google Scholar]
  134. 134. 
    De Silva TM, Li Y, Kinzenbaw DA, Sigmund CD, Faraci FM 2018. Endothelial PPARγ (peroxisome proliferator-activated receptor-γ) is essential for preventing endothelial dysfunction with aging. Hypertension 72:227–34
    [Google Scholar]
  135. 135. 
    Liu W, Li J, Liu M, Zhang H, Wang N 2015. PPAR-γ promotes endothelial cell migration by inducing the expression of Sema3g. J. Cell Biochem. 116:514–23
    [Google Scholar]
  136. 136. 
    Duvernoy HM, Delon S, Vannson JL 1981. Cortical blood vessels of the human brain. Brain Res. Bull. 7:519–79
    [Google Scholar]
  137. 137. 
    Kalaria RN, Hase Y. 2019. Neurovascular ageing and age-related diseases. Subcell. Biochem. 91:477–99
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-021119-034338
Loading
/content/journals/10.1146/annurev-physiol-021119-034338
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error