1932

Abstract

The tongue is an elaborate complex of heterogeneous tissues with taste organs of diverse embryonic origins. The lingual taste organs are papillae, composed of an epithelium that includes specialized taste buds, the basal lamina, and a lamina propria core with matrix molecules, fibroblasts, nerves, and vessels. Because taste organs are dynamic in cell biology and sensory function, homeostasis requires tight regulation in specific compartments or niches. Recently, the Hedgehog (Hh) pathway has emerged as an essential regulator that maintains lingual taste papillae, taste bud and progenitor cell proliferation and differentiation, and neurophysiological function. Activating or suppressing Hh signaling, with genetic models or pharmacological agents used in cancer treatments, disrupts taste papilla and taste bud integrity and can eliminate responses from taste nerves to chemical stimuli but not to touch or temperature. Understanding Hh regulation of taste organ homeostasis contributes knowledge about the basic biology underlying taste disruptions in patients treated with Hh pathway inhibitors.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-022516-034202
2017-02-10
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/physiol/79/1/annurev-physiol-022516-034202.html?itemId=/content/journals/10.1146/annurev-physiol-022516-034202&mimeType=html&fmt=ahah

Literature Cited

  1. Barker N, Bartfeld S, Clevers H. 1.  2010. Tissue-resident adult stem cell populations of rapidly self-renewing organs. Cell Stem Cell 7:656–70 [Google Scholar]
  2. Potten CS, Saffhill R, Maibach HI. 2.  1987. Measurement of the transit time for cells through the epidermis and stratum corneum of the mouse and guinea-pig. Cell Tissue Kinet. 20:461–72 [Google Scholar]
  3. Cameron IL. 3.  1966. Cell proliferation migration and specialization in epithelium of mouse tongue. J. Exp. Zool. 163:271–83 [Google Scholar]
  4. Toto PD, Ojha G. 4.  1962. Generation cycle of oral epithelium in mice. J. Dent. Res. 41:388–91 [Google Scholar]
  5. Beidler LM, Smallman RL. 5.  1965. Renewal of cells within taste buds. J. Cell Biol. 27:263–72 [Google Scholar]
  6. Hamamichi R, Asano-Miyoshi M, Emori Y. 6.  2006. Taste bud contains both short-lived and long-lived cell populations. Neuroscience 141:2129–38 [Google Scholar]
  7. Perea-Martinez I, Nagai T, Chaudhari N. 7.  2013. Functional cell types in taste buds have distinct longevities. PLOS ONE 8:e53399 [Google Scholar]
  8. Mistretta CM. 8.  1991. Developmental neurobiology of taste. Smell and Taste in Health and Disease T Getchell, RL Doty, L Bartoshuk, J Snow 35–64 New York: Raven [Google Scholar]
  9. Manabe M, Lim HW, Winzer M, Loomis CA. 9.  1999. Architectural organization of filiform papillae in normal and black hairy tongue epithelium: dissection of differentiation pathways in a complex human epithelium according to their patterns of keratin expression. Arch. Dermatol. 135:177–81 [Google Scholar]
  10. Mistretta CM, Hill DL. 10.  1995. Development of the taste system: basic cell and neurobiology. Handbook of Clinical Olfaction and Gustation RL Doty 635–68 New York: Marcel Dekker [Google Scholar]
  11. Iturriaga R, Varas R, Alcayaga J. 11.  2007. Electrical and pharmacological properties of petrosal ganglion neurons that innervate the carotid body. Respir. Physiol. Neurobiol. 157:130–39 [Google Scholar]
  12. Eyzaguirre C, Zapata P. 12.  1984. Perspectives in carotid body research. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 57:931–57 [Google Scholar]
  13. Krimm RF. 13.  2007. Factors that regulate embryonic gustatory development. BMC Neurosci. 8:Suppl. 3S4 [Google Scholar]
  14. Schlosser G. 14.  2006. Induction and specification of cranial placodes. Dev. Biol. 294:303–51 [Google Scholar]
  15. Hayakawa T, Kuwahara-Otani S, Maeda S, Tanaka K, Seki M. 15.  2014. Calcitonin gene-related peptide immunoreactive sensory neurons in the vagal and glossopharyngeal ganglia innervating the larynx of the rat. J. Chem. Neuroanat. 55:18–23 [Google Scholar]
  16. Bradley RM, Stedman HM, Mistretta CM. 16.  1983. Superior laryngeal nerve response patterns to chemical stimulation of sheep epiglottis. Brain Res. 276:81–93 [Google Scholar]
  17. Chaudhari N, Roper SD. 17.  2010. The cell biology of taste. J. Cell Biol. 190:285–96 [Google Scholar]
  18. Miura H, Scott JK, Harada S, Barlow LA. 18.  2014. Sonic hedgehog-expressing basal cells are general post-mitotic precursors of functional taste receptor cells. Dev. Dyn. 243:1286–97 [Google Scholar]
  19. Murray RG. 19.  1973. The ultrastructure of taste buds. Ultrastructure of Sensory Organs I Friedman 1–81 Amsterdam: North Holland [Google Scholar]
  20. Gribble FM, Reimann F. 20.  2016. Enteroendocrine cells: chemosensors in the intestinal epithelium. Annu. Rev. Physiol. 78:277–99 [Google Scholar]
  21. Branchfield K, Nantie L, Verheyden JM, Sui P, Wienhold MD, Sun X. 21.  2016. Pulmonary neuroendocrine cells function as airway sensors to control lung immune response. Science 351:707–10 [Google Scholar]
  22. Lee RJ, Cohen NA. 22.  2014. Bitter and sweet taste receptors in the respiratory epithelium in health and disease. J. Mol. Med. 92:1235–44 [Google Scholar]
  23. Okubo T, Clark C, Hogan BL. 23.  2009. Cell lineage mapping of taste bud cells and keratinocytes in the mouse tongue and soft palate. Stem Cells 27:442–50 [Google Scholar]
  24. Petrova R, Joyner AL. 24.  2014. Roles for Hedgehog signaling in adult organ homeostasis and repair. Development 141:3445–57 [Google Scholar]
  25. Peng T, Frank DB, Kadzik RS, Morley MP, Rathi KS. 25.  et al. 2015. Hedgehog actively maintains adult lung quiescence and regulates repair and regeneration. Nature 526:578–82 [Google Scholar]
  26. Rompolas P, Greco V. 26.  2014. Stem cell dynamics in the hair follicle niche. Semin. Cell Dev. Biol. 25–26:34–42 [Google Scholar]
  27. Allen BL, Song JY, Izzi L, Althaus IW, Kang JS. 27.  et al. 2011. Overlapping roles and collective requirement for the coreceptors GAS1, CDO, and BOC in SHH pathway function. Dev. Cell 20:775–87 [Google Scholar]
  28. Briscoe J, Therond PP. 28.  2013. The mechanisms of Hedgehog signalling and its roles in development and disease. Nat. Rev. Mol. Cell Biol. 14:416–29 [Google Scholar]
  29. Gorojankina T. 29.  2016. Hedgehog signaling pathway: a novel model and molecular mechanisms of signal transduction. Cell Mol. Life Sci. 73:1317–32 [Google Scholar]
  30. Pan Y, Bai CB, Joyner AL, Wang B. 30.  2006. Sonic hedgehog signaling regulates Gli2 transcriptional activity by suppressing its processing and degradation. Mol. Cell. Biol. 26:3365–77 [Google Scholar]
  31. Chuang PT, McMahon AP. 31.  1999. Vertebrate Hedgehog signalling modulated by induction of a Hedgehog-binding protein. Nature 397:617–21 [Google Scholar]
  32. Holtz AM, Peterson KA, Nishi Y, Morin S, Song JY. 32.  et al. 2013. Essential role for ligand-dependent feedback antagonism of vertebrate hedgehog signaling by PTCH1, PTCH2 and HHIP1 during neural patterning. Development 140:3423–34 [Google Scholar]
  33. Barlow LA, Klein OD. 33.  2015. Developing and regenerating a sense of taste. Curr. Top. Dev. Biol. 111:401–19 [Google Scholar]
  34. Mistretta CM, Liu HX. 34.  2006. Development of fungiform papillae: patterned lingual gustatory organs. Arch. Histol. Cytol. 69:199–208 [Google Scholar]
  35. Liu HX, Ermilov A, Grachtchouk M, Li L, Gumucio DL. 35.  et al. 2013. Dev. Biol. 382:82–97
  36. Miura H, Kusakabe Y, Harada S. 36.  2006. Cell lineage and differentiation in taste buds. Arch. Histol. Cytol. 69:209–25 [Google Scholar]
  37. Mistretta CM, Liu HX, Gaffield W, MacCallum DK. 37.  2003. Cyclopamine and jervine in embryonic rat tongue cultures demonstrate a role for Shh signaling in taste papilla development and patterning: fungiform papillae double in number and form in novel locations in dorsal lingual epithelium. Dev. Biol. 254:1–18 [Google Scholar]
  38. Ermilov AN, Kumari A, Li L, Joiner AM, Grachtchouk MA. 38.  et al. 2016. Maintenance of taste organs is strictly dependent on epithelial Hedgehog/GLI signaling. PLOS Genet. 1211e1006442
  39. Barlow LA. 39.  2015. Progress and renewal in gustation: new insights into taste bud development. Development 142:3620–29 [Google Scholar]
  40. Kapsimali M, Barlow LA. 40.  2013. Developing a sense of taste. Semin. Cell Dev. Biol. 24:200–9 [Google Scholar]
  41. Bradley RM, Stern IB. 41.  1967. The development of the human taste bud during the foetal period. J. Anat. 101:743–52 [Google Scholar]
  42. Beard RW, Nathanielsz PW. 42.  1984. Fetal Physiology and Medicine: The Basis of Perinatology 6 New York: Marcel Dekker, 2nd ed..
  43. Dawes GS. 43.  1968. Foetal and Neonatal Physiology Chicago: Year Book Med. Publ.
  44. Longo LD. 44.  2013. Rise of Fetal and Neonatal Physiology: Basic Science to Clinical Care New York: Springer-Verlag [Google Scholar]
  45. Bradley RM, Mistretta CM. 45.  1973. Swallowing in fetal sheep. Science 179:1016–17 [Google Scholar]
  46. Mistretta CM, Bradley RM. 46.  1983. Neural basis of developing salt taste sensation-response changes in fetal, postnatal, and adult sheep. J. Comp. Neurol. 215:199–210 [Google Scholar]
  47. Mistretta CM, Bradley RM. 47.  1985. The development of taste. Handbook of Behavioral Neurobiology. Vol. 8: Developmental Processes in Psychobiology and Neurobiology E. Blass 205–36 New York: Plenum [Google Scholar]
  48. Chen JK, Taipale J, Cooper MK, Beachy PA. 48.  2002. Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev. 16:2743–48 [Google Scholar]
  49. Gaffield W, Keeler RF. 49.  1996. Steroidal alkaloid teratogens: molecular probes for investigation of craniofacial malformations. J. Toxicol. Toxin Rev. 15:303–26 [Google Scholar]
  50. Mistretta CM, Bradley RM. 50.  1975. Taste and swallowing in utero: discussion of fetal sensory function. Br. Med. Bull. 31:80–84 [Google Scholar]
  51. Mistretta CM. 51.  1990. Taste development. Development of Sensory Systems in Mammals JR Coleman 567–613 New York: Wiley-Interscience [Google Scholar]
  52. Mbiene JP, Maccallum DK, Mistretta CM. 52.  1997. Organ cultures of embryonic rat tongue support tongue and gustatory papilla morphogenesis in vitro without intact sensory ganglia. J. Comp. Neurol. 377:324–40 [Google Scholar]
  53. Harada S, Yamaguchi K, Kanemaru N, Kasahara Y. 53.  2000. Maturation of taste buds on the soft palate of the postnatal rat. Physiol. Behav. 68:333–39 [Google Scholar]
  54. Hendricks SJ, Brunjes PC, Hill DL. 54.  2004. Taste bud cell dynamics during normal and sodium-restricted development. J. Comp. Neurol. 472:173–82 [Google Scholar]
  55. Krimm RF, Hill DL. 55.  2000. Neuron/target matching between chorda tympani neurons and taste buds during postnatal rat development. J. Neurobiol. 43:98–106 [Google Scholar]
  56. Hall JM, Bell ML, Finger TE. 56.  2003. Disruption of sonic hedgehog signaling alters growth and patterning of lingual taste papillae. Dev. Biol. 255:263–77 [Google Scholar]
  57. Torii D, Soeno Y, Fujita K, Sato K, Aoba T, Taya Y. 57.  2016. Embryonic tongue morphogenesis in an organ culture model of mouse mandibular arches: blocking Sonic hedgehog signaling leads to microglossia. In Vitro Cell Dev. Biol. Anim. 52:89–99 [Google Scholar]
  58. Liu HX, MacCallum DK, Edwards C, Gaffield W, Mistretta CM. 58.  2004. Sonic hedgehog exerts distinct, stage-specific effects on tongue and taste papilla development. Dev. Biol. 276:280–300 [Google Scholar]
  59. Zhou Y, Liu HX, Mistretta CM. 59.  2006. Bone morphogenetic proteins and noggin: inhibiting and inducing fungiform taste papilla development. Dev. Biol. 297:198–213 [Google Scholar]
  60. Liu HX, Henson BS, Zhou Y, D'Silva NJ, Mistretta CM. 60.  2008. Fungiform papilla pattern: EGF regulates inter-papilla lingual epithelium and decreases papilla number by means of PI3K/Akt, MEK/ERK, and p38 MAPK signaling. Dev. Dyn. 237:2378–93 [Google Scholar]
  61. Liu HX, Grosse AS, Iwatsuki K, Mishina Y, Gumucio DL, Mistretta CM. 61.  2012. Separate and distinctive roles for Wnt5a in tongue, lingual tissue and taste papilla development. Dev. Biol. 361:39–56 [Google Scholar]
  62. Iwatsuki K, Liu HX, Gronder A, Singer MA, Lane TF. 62.  et al. 2007. Wnt signaling interacts with Shh to regulate taste papilla development. PNAS 104:2253–58 [Google Scholar]
  63. Liu F, Thirumangalathu S, Gallant NM, Yang SH, Stoick-Cooper CL. 63.  et al. 2007. Wnt-β-catenin signaling initiates taste papilla development. Nat. Genet. 39:106–12 [Google Scholar]
  64. Petersen CI, Jheon AH, Mostowfi P, Charles C, Ching S. 64.  et al. 2011. FGF signaling regulates the number of posterior taste papillae by controlling progenitor field size. PLOS Genet. 7:e1002098 [Google Scholar]
  65. Byrd KM, Lough KJ, Patel JH, Descovich CP, Curtis TA, Williams SE. 65.  2016. LGN plays distinct roles in oral epithelial stratification, filiform papilla morphogenesis and hair follicle development. Development 143:2803–17 [Google Scholar]
  66. Zhao H, Feng J, Seidel K, Shi S, Klein O. 66.  et al. 2014. Secretion of Shh by a neurovascular bundle niche supports mesenchymal stem cell homeostasis in the adult mouse incisor. Cell Stem Cell 14:160–73 [Google Scholar]
  67. Miura H, Kusakabe Y, Sugiyama C, Kawamatsu M, Ninomiya Y. 67.  et al. 2001. Shh and Ptc are associated with taste bud maintenance in the adult mouse. Mech. Dev. 106:143–45 [Google Scholar]
  68. Stone LM, Finger TE, Tam PP, Tan SS. 68.  1995. Taste receptor cells arise from local epithelium, not neurogenic ectoderm. PNAS 92:1916–20 [Google Scholar]
  69. Sullivan JM, Borecki AA, Oleskevich S. 69.  2010. Stem and progenitor cell compartments within adult mouse taste buds. Eur. J. Neurosci. 31:1549–60 [Google Scholar]
  70. Delay RJ, Kinnamon JC, Roper SD. 70.  1986. Ultrastructure of mouse vallate taste buds: II. Cell types and cell lineage. J. Comp. Neurol. 253:242–52 [Google Scholar]
  71. Gaillard D, Barlow LA. 71.  2011. Taste bud cells of adult mice are responsive to Wnt/β-catenin signaling: Implications for the renewal of mature taste cells. Genesis 49:295–306 [Google Scholar]
  72. Thirumangalathu S, Harlow DE, Driskell AL, Krimm RF, Barlow LA. 72.  2009. Fate mapping of mammalian embryonic taste bud progenitors. Development 136:1519–28 [Google Scholar]
  73. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M. 73.  et al. 2007. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:1003–7 [Google Scholar]
  74. Jaks V, Barker N, Kasper M, van Es JH, Snippert HJ. 74.  et al. 2008. Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat. Genet. 40:1291–99 [Google Scholar]
  75. Ren W, Lewandowski BC, Watson J, Aihara E, Iwatsuki K. 75.  et al. 2014. Single Lgr5- or Lgr6-expressing taste stem/progenitor cells generate taste bud cells ex vivo. PNAS 111:16401–6 [Google Scholar]
  76. Yee KK, Li Y, Redding KM, Iwatsuki K, Margolskee RF, Jiang P. 76.  2013. Lgr5-EGFP marks taste bud stem/progenitor cells in posterior tongue. Stem Cells 31:992–1000 [Google Scholar]
  77. Tanaka T, Komai Y, Tokuyama Y, Yanai H, Ohe S. 77.  et al. 2013. Identification of stem cells that maintain and regenerate lingual keratinized epithelial cells. Nat. Cell Biol. 15:511–18 [Google Scholar]
  78. Howard JM, Nuguid JM, Ngole D, Nguyen H. 78.  2014. Tcf3 expression marks both stem and progenitor cells in multiple epithelia. Development 141:3143–52 [Google Scholar]
  79. Boggs K, Venkatesan N, Mederacke I, Komatsu Y, Stice S. 79.  et al. 2016. Contribution of underlying connective tissue cells to taste buds in mouse tongue and soft palate. PLOS ONE 11:e0146475 [Google Scholar]
  80. Liu HX, Komatsu Y, Mishina Y, Mistretta CM. 80.  2012. Neural crest contribution to lingual mesenchyme, epithelium and developing taste papillae and taste buds. Dev. Biol. 368:294–303 [Google Scholar]
  81. Castillo D, Seidel K, Salcedo E, Ahn C, de Sauvage FJ. 81.  et al. 2014. Induction of ectopic taste buds by SHH reveals the competency and plasticity of adult lingual epithelium. Development 141:2993–3002 [Google Scholar]
  82. Mistretta CM. 82.  2016. Taste papilla and taste bud maintenance, function and renewal are dependent on epithelial hedgehog signaling Presented at Int. Symp. Olfaction Taste, 17th Yokohama, Japan:
  83. Kumari A, Ermilov AN, Allen BL, Bradley RM, Dlugosz AA, Mistretta CM. 83.  2015. Hedgehog pathway blockade with the cancer drug LDE225 disrupts taste organs and taste sensation. J. Neurophysiol. 113:1034–40 [Google Scholar]
  84. Yang H, Cong WN, Yoon JS, Egan JM. 84.  2015. Vismodegib, an antagonist of hedgehog signaling, directly alters taste molecular signaling in taste buds. Cancer Med. 4:245–52 [Google Scholar]
  85. Kumari A, Ermilov AN, Li L, Allen BL, Bradley RM. 85.  et al. 2016. Cessation of hedgehog pathway blockade leads to restoration of taste responses despite incomplete taste organ recovery. Assoc. Chemorecept. Sci.199 (Abstr.)
  86. Kumari A, Ermilov AN, Li L, Allen BL, Bradley RM. 86.  et al. 2015. Pharmacologic and genetic disruption of Smoothened reveals dependence of taste organs on Hedgehog signaling. Assoc. Chemorecept. Sci.113 (Abstr.)
  87. Gaillard D, Xu M, Liu F, Millar SE, Barlow LA. 87.  2015. β-Catenin signaling biases multipotent lingual epithelial progenitors to differentiate and acquire specific taste cell fates. PLOS Genet. 11:e1005208 [Google Scholar]
  88. Schneider FT, Schanzer A, Czupalla CJ, Thom S, Engels K. 88.  et al. 2010. Sonic hedgehog acts as a negative regulator of β-catenin signaling in the adult tongue epithelium. Am. J. Pathol. 177:404–14 [Google Scholar]
  89. Mistretta CM. 89.  1998. The role of innervation in induction and differentiation of taste organs: introduction and background. Ann. N.Y. Acad. Sci. 855:1–13 [Google Scholar]
  90. Driskell RR, Watt FM. 90.  2015. Understanding fibroblast heterogeneity in the skin. Trends Cell Biol. 25:92–99 [Google Scholar]
  91. Ivaska J, Pallari HM, Nevo J, Eriksson JE. 91.  2007. Novel functions of vimentin in cell adhesion, migration, and signaling. Exp. Cell Res. 313:2050–62 [Google Scholar]
  92. Snyder JC, Rochelle LK, Marion S, Lyerly HK, Barak LS, Caron MG. 92.  2015. Lgr4 and Lgr5 drive the formation of long actin-rich cytoneme-like membrane protrusions. J. Cell Sci. 128:1230–40 [Google Scholar]
  93. Sanders TA, Llagostera E, Barna M. 93.  2013. Specialized filopodia direct long-range transport of SHH during vertebrate tissue patterning. Nature 497:628–32 [Google Scholar]
  94. Morgan BA. 94.  2014. The dermal papilla: an instructive niche for epithelial stem and progenitor cells in development and regeneration of the hair follicle. Cold Spring Harb. Perspect. Med. 4:a015180 [Google Scholar]
  95. Gomez C, Chua W, Miremadi A, Quist S, Headon DJ, Watt FM. 95.  2013. The interfollicular epidermis of adult mouse tail comprises two distinct cell lineages that are differentially regulated by Wnt, Edaradd, and Lrig1. Stem Cell Rep. 1:19–27 [Google Scholar]
  96. Mathew E, Zhang Y, Holtz AM, Kane KT, Song JY. 96.  et al. 2014. Dosage-dependent regulation of pancreatic cancer growth and angiogenesis by hedgehog signaling. Cell Rep. 9:484–94 [Google Scholar]
  97. Green BG. 97.  2012. Chemesthesis and the chemical senses as components of a “chemofensor complex. Chem. Senses 37:201–6 [Google Scholar]
  98. Schutz B, Jurastow I, Bader S, Ringer C, von Engelhardt J. 98.  et al. 2015. Chemical coding and chemosensory properties of cholinergic brush cells in the mouse gastrointestinal and biliary tract. Front. Physiol. 6:87 [Google Scholar]
  99. Tizzano M, Finger TE. 99.  2013. Chemosensors in the nose: guardians of the airways. Physiology 28:51–60 [Google Scholar]
  100. Torrey TW. 100.  1934. The relation of taste buds to their nerve fibers. J. Comp. Neurol. 59:203–20 [Google Scholar]
  101. Smith DV, Klevitsky R, Akeson RA, Shipley MT. 101.  1994. Expression of the neural cell adhesion molecule (NCAM) and polysialic acid during taste bud degeneration and regeneration. J. Comp. Neurol. 347:187–96 [Google Scholar]
  102. Zalewski AA. 102.  1969. Regeneration of taste buds after reinnervation by peripheral or central sensory fibers of vagal ganglia. Exp. Neurol. 25:429–37 [Google Scholar]
  103. Guth L. 103.  1957. The effects of glossopharyngeal nerve transection on the circumvallate papilla of the rat. Anat. Rec. 128:715–31 [Google Scholar]
  104. Miura H, Kato H, Kusakabe Y, Tagami M, Miura-Ohnuma J. 104.  et al. 2004. A strong nerve dependence of sonic hedgehog expression in basal cells in mouse taste bud and an autonomous transcriptional control of genes in differentiated taste cells. Chem. Senses 29:823–31 [Google Scholar]
  105. Kumari A, Allen BL, Bradley RM, Dlugosz AA, Mistretta CM. 105.  2016. Role of innervation in HH signaling in the adult mouse fungiform taste papilla Presented at Soc. Neurosci. Meet., 46th San Diego, CA:
  106. Brownell I, Guevara E, Bai CB, Loomis CA, Joyner AL. 106.  2011. Nerve-derived Sonic hedgehog defines a niche for hair follicle stem cells capable of becoming epidermal stem cells. Cell Stem Cell 8:552–65 [Google Scholar]
  107. Xiao Y, Thoresen DT, Williams JS, Wang C, Perna J. 107.  et al. 2015. Neural Hedgehog signaling maintains stem cell renewal in the sensory touch dome epithelium. PNAS 112:7195–200 [Google Scholar]
  108. Peterson SC, Eberl M, Vagnozzi AN, Belkadi A, Veniaminova NA. 108.  et al. 2015. Basal cell carcinoma preferentially arises from stem cells within hair follicle and mechanosensory niches. Cell Stem Cell 16:400–12 [Google Scholar]
  109. Hsu YC, Li L, Fuchs E. 109.  2014. Emerging interactions between skin stem cells and their niches. Nat. Med. 20:847–56 [Google Scholar]
  110. Lander AD, Kimble J, Clevers H, Fuchs E, Montarras D. 110.  et al. 2012. What does the concept of the stem cell niche really mean today?. BMC Biol. 10:19 [Google Scholar]
  111. Epstein JB, Barasch A. 111.  2010. Taste disorders in cancer patients: pathogenesis, and approach to assessment and management. Oral. Oncol. 46:77–81 [Google Scholar]
  112. Hong JH, Omur-Ozbek P, Stanek BT, Dietrich AM, Duncan SE. 112.  et al. 2009. Taste and odor abnormalities in cancer patients. J. Support. Oncol. 7:58–65 [Google Scholar]
  113. Nguyen HM, Reyland ME, Barlow LA. 113.  2012. Mechanisms of taste bud cell loss after head and neck irradiation. J. Neurosci. 32:3474–84 [Google Scholar]
  114. Ruo Redda MG, Allis S. 114.  2006. Radiotherapy-induced taste impairment. Cancer Treat. Rev. 32:541–47 [Google Scholar]
  115. Reifenberger J, Wolter M, Knobbe CB, Köhler B, Schonicke A. 115.  et al. 2005. Somatic mutations in the PTCH, SMOH, SUFUH and TP53 genes in sporadic basal cell carcinomas. Br. J. Dermatol. 152:43–51 [Google Scholar]
  116. Gailani MR, Ståhle-Bäckdahl M, Leffell DJ, Glynn M, Zaphiropoulos PG. 116.  et al. 1996. The role of the human homologue of Drosophila patched in sporadic basal cell carcinomas. Nat. Genet. 14:78–81 [Google Scholar]
  117. Amakye D, Jagani Z, Dorsch M. 117.  2013. Unraveling the therapeutic potential of the Hedgehog pathway in cancer. Nat. Med. 19:1410–22 [Google Scholar]
  118. Jacobsen AA, Aldahan AS, Hughes OB, Shah VV, Strasswimmer J. 118.  2016. Hedgehog pathway inhibitor therapy for locally advanced and metastatic basal cell carcinoma: a systematic review and pooled analysis of interventional studies. JAMA Dermatol. 152:816–24 [Google Scholar]
  119. Migden MR, Guminski A, Gutzmer R, Dirix L, Lewis KD. 119.  et al. 2015. Treatment with two different doses of sonidegib in patients with locally advanced or metastatic basal cell carcinoma (BOLT): a multicentre, randomised, double-blind phase 2 trial. Lancet Oncol. 16:716–28 [Google Scholar]
  120. Rodon J, Tawbi HA, Thomas AL, Stoller RG, Turtschi CP. 120.  et al. 2014. A phase I, multicenter, open-label, first-in-human, dose-escalation study of the oral smoothened inhibitor Sonidegib (LDE225) in patients with advanced solid tumors. Clin. Cancer Res. 20:1900–9 [Google Scholar]
  121. Sekulic A, Migden MR, Oro AE, Dirix L, Lewis KD. 121.  et al. 2012. Efficacy and safety of Vismodegib in advanced basal-cell carcinoma. N. Engl. J. Med. 366:2171–79 [Google Scholar]
  122. Tang JY, Mackay-Wiggan JM, Aszterbaum M, Yauch RL, Lindgren J. 122.  et al. 2012. Inhibiting the hedgehog pathway in patients with the basal-cell nevus syndrome. N. Engl. J. Med. 366:2180–88 [Google Scholar]
  123. Pan S, Wu X, Jiang J, Gao W, Wan Y. 123.  et al. 2010. Discovery of NVP-LDE225, a potent and selective smoothened antagonist. ACS Med. Chem. Lett. 1:130–34 [Google Scholar]
  124. Basset-Seguin N, Sharpe HJ, de Sauvage FJ. 124.  2015. Efficacy of Hedgehog pathway inhibitors in basal cell carcinoma. Mol. Cancer Ther. 14:633–41 [Google Scholar]
  125. Miyazaki Y, Matsubara S, Ding Q, Tsukasa K, Yoshimitsu M. 125.  et al. 2016. Efficient elimination of pancreatic cancer stem cells by hedgehog/GLI inhibitor GANT61 in combination with mTOR inhibition. Mol. Cancer 15:49 [Google Scholar]
  126. Rimkus TK, Carpenter RL, Qasem S, Chan M, Lo HW. 126.  2016. Targeting the sonic hedgehog signaling pathway: review of smoothened and GLI inhibitors. Cancers 8:22 [Google Scholar]
  127. Tang Y, Gholamin S, Schubert S, Willardson MI, Lee A. 127.  et al. 2014. Epigenetic targeting of Hedgehog pathway transcriptional output through BET bromodomain inhibition. Nat. Med. 20:732–40 [Google Scholar]
  128. Nagraj SK, Naresh S, Srinivas K, Renjith George P, Shrestha A. 128.  et al. 2014. Interventions for the management of taste disturbances. Cochrane Database Syst. Rev. 11:CD010470 [Google Scholar]
/content/journals/10.1146/annurev-physiol-022516-034202
Loading
/content/journals/10.1146/annurev-physiol-022516-034202
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error