1932

Abstract

Inflammation-adapted hematopoietic stem and progenitor cells (HSPCs) have long been appreciated as key drivers of emergency myelopoiesis, thereby enabling the bone marrow to meet the elevated demand for myeloid cell generation under various stress conditions, such as systemic infection, inflammation, or myelosuppressive insults. In recent years, HSPC adaptations were associated with potential involvement in the induction of long-lived trained immunity and the emergence of clonal hematopoiesis of indeterminate potential (CHIP). Whereas trained immunity has context-dependent effects, protective in infections and tumors but potentially detrimental in chronic inflammatory diseases, CHIP increases the risk for hematological neoplastic disorders and cardiometabolic pathologies. This review focuses on the inflammatory regulation of HSPCs in the aforementioned processes and discusses how modulation of HSPC function could lead to novel therapeutic interventions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-052521-013627
2022-02-10
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/physiol/84/1/annurev-physiol-052521-013627.html?itemId=/content/journals/10.1146/annurev-physiol-052521-013627&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Laurenti E, Göttgens B. 2018. From haematopoietic stem cells to complex differentiation landscapes. Nature 553:418–26
    [Google Scholar]
  2. 2. 
    Seita J, Weissman IL. 2010. Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdiscip. Rev. Syst. Biol. Med. 2:640–53
    [Google Scholar]
  3. 3. 
    Yamamoto R, Morita Y, Ooehara J, Hamanaka S, Onodera M et al. 2013. Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell 154:1112–26
    [Google Scholar]
  4. 4. 
    Jacobsen SEW, Nerlov C. 2019. Haematopoiesis in the era of advanced single-cell technologies. Nat. Cell Biol. 21:2–8
    [Google Scholar]
  5. 5. 
    Rodriguez-Fraticelli AE, Wolock SL, Weinreb CS, Panero R, Patel SH et al. 2018. Clonal analysis of lineage fate in native haematopoiesis. Nature 553:212–16
    [Google Scholar]
  6. 6. 
    Carrelha J, Meng Y, Kettyle LM, Luis TC, Norfo R et al. 2018. Hierarchically related lineage-restricted fates of multipotent haematopoietic stem cells. Nature 554:106–11
    [Google Scholar]
  7. 7. 
    Nakada D, Oguro H, Levi BP, Ryan N, Kitano A et al. 2014. Oestrogen increases haematopoietic stem-cell self-renewal in females and during pregnancy. Nature 505:555–58
    [Google Scholar]
  8. 8. 
    Maryanovich M, Takeishi S, Frenette PS 2018. Neural regulation of bone and bone marrow. Cold Spring Harb. . Perspect. Med. 8:a031344
    [Google Scholar]
  9. 9. 
    Hajishengallis G, Li X, Chavakis T 2021. Immunometabolic control of hematopoiesis. Mol. Aspects Med. 77:100923
    [Google Scholar]
  10. 10. 
    Pinho S, Frenette PS. 2019. Haematopoietic stem cell activity and interactions with the niche. Nat. Rev. Mol. Cell Biol. 20:303–20
    [Google Scholar]
  11. 11. 
    Coutu DL, Kokkaliaris KD, Kunz L, Schroeder T. 2017. Three-dimensional map of nonhematopoietic bone and bone-marrow cells and molecules. Nat. Biotechnol. 35:1202–10
    [Google Scholar]
  12. 12. 
    Mitroulis I, Chen L-S, Singh RP, Kourtzelis I, Economopoulou M et al. 2017. Secreted protein Del-1 regulates myelopoiesis in the hematopoietic stem cell niche. J. Clin. Investig. 127:3624–39
    [Google Scholar]
  13. 13. 
    Maryanovich M, Zahalka AH, Pierce H, Pinho S, Nakahara F et al. 2018. Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche. Nat. Med. 24:782–91
    [Google Scholar]
  14. 14. 
    Gao X, Zhang D, Xu C, Li H, Caron KM, Frenette PS. 2021. Nociceptive nerves regulate haematopoietic stem cell mobilization. Nature 589:591–96
    [Google Scholar]
  15. 15. 
    Silberstein L, Goncalves KA, Kharchenko PV, Turcotte R, Kfoury Y et al. 2016. Proximity-based differential single-cell analysis of the niche to identify stem/progenitor cell regulators. Cell Stem Cell 19:530–43
    [Google Scholar]
  16. 16. 
    Kunisaki Y, Bruns I, Scheiermann C, Ahmed J, Pinho S et al. 2013. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502:637–43
    [Google Scholar]
  17. 17. 
    Itkin T, Gur-Cohen S, Spencer JA, Schajnovitz A, Ramasamy SK et al. 2016. Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature 532:323–28
    [Google Scholar]
  18. 18. 
    Bruns I, Lucas D, Pinho S, Ahmed J, Lambert MP et al. 2014. Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nat. Med. 20:1315–20
    [Google Scholar]
  19. 19. 
    Acar M, Kocherlakota KS, Murphy MM, Peyer JG, Oguro H et al. 2015. Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature 526:126–30
    [Google Scholar]
  20. 20. 
    Baryawno N, Przybylski D, Kowalczyk MS, Kfoury Y, Severe N et al. 2019. A cellular taxonomy of the bone marrow stroma in homeostasis and leukemia. Cell 177:1915–32.e16
    [Google Scholar]
  21. 21. 
    Chen Q, Liu Y, Jeong HW, Stehling M, Dinh VV et al. 2019. Apelin+ endothelial niche cells control hematopoiesis and mediate vascular regeneration after myeloablative injury. Cell Stem Cell 25:768–83.e6
    [Google Scholar]
  22. 22. 
    Tikhonova AN, Dolgalev I, Hu H, Sivaraj KK, Hoxha E et al. 2019. The bone marrow microenvironment at single-cell resolution. Nature 569:222–28
    [Google Scholar]
  23. 23. 
    Baccin C, Al-Sabah J, Velten L, Helbling PM, Grünschläger F et al. 2020. Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization. Nat. Cell Biol. 22:38–48
    [Google Scholar]
  24. 24. 
    Severe N, Karabacak NM, Gustafsson K, Baryawno N, Courties G et al. 2019. Stress-induced changes in bone marrow stromal cell populations revealed through single-cell protein expression mapping. Cell Stem Cell 25:570–83.e7
    [Google Scholar]
  25. 25. 
    Chavakis T, Mitroulis I, Hajishengallis G 2019. Hematopoietic progenitor cells as integrative hubs for adaptation to and fine-tuning of inflammation. Nat. Immunol. 20:802–11
    [Google Scholar]
  26. 26. 
    Poller WC, Nahrendorf M, Swirski FK. 2020. Hematopoiesis and cardiovascular disease. Circ. Res. 126:1061–85
    [Google Scholar]
  27. 27. 
    Manz MG, Boettcher S. 2014. Emergency granulopoiesis. Nat. Rev. Immunol. 14:302–14
    [Google Scholar]
  28. 28. 
    Kwok I, Becht E, Xia Y, Ng M, Teh YC et al. 2020. Combinatorial single-cell analyses of granulocyte-monocyte progenitor heterogeneity reveals an early uni-potent neutrophil progenitor. Immunity 53:303–18.e5
    [Google Scholar]
  29. 29. 
    Evrard M, Kwok IWH, Chong SZ, Teng KWW, Becht E et al. 2018. Developmental analysis of bone marrow neutrophils reveals populations specialized in expansion, trafficking, and effector functions. Immunity 48:364–79.e8
    [Google Scholar]
  30. 30. 
    Bowers E, Slaughter A, Frenette PS, Kuick R, Pello OM, Lucas D. 2018. Granulocyte-derived TNFα promotes vascular and hematopoietic regeneration in the bone marrow. Nat. Med. 24:95–102
    [Google Scholar]
  31. 31. 
    Kwak HJ, Liu P, Bajrami B, Xu Y, Park SY et al. 2015. Myeloid cell-derived reactive oxygen species externally regulate the proliferation of myeloid progenitors in emergency granulopoiesis. Immunity 42:159–71
    [Google Scholar]
  32. 32. 
    Schulte-Schrepping J, Reusch N, Paclik D, Bassler K, Schlickeiser S et al. 2020. Severe COVID-19 is marked by a dysregulated myeloid cell compartment. Cell 182:1419–40.e23
    [Google Scholar]
  33. 33. 
    Pietras EM, Mirantes-Barbeito C, Fong S, Loeffler D, Kovtonyuk LV et al. 2016. Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal. Nat. Cell Biol. 18:607–18
    [Google Scholar]
  34. 34. 
    Essers MA, Offner S, Blanco-Bose WE, Waibler Z, Kalinke U et al. 2009. IFNα activates dormant haematopoietic stem cells in vivo. Nature 458:904–8
    [Google Scholar]
  35. 35. 
    Mossadegh-Keller N, Sarrazin S, Kandalla PK, Espinosa L, Stanley ER et al. 2013. M-CSF instructs myeloid lineage fate in single haematopoietic stem cells. Nature 497:239–43
    [Google Scholar]
  36. 36. 
    Regan-Komito D, Swann JW, Demetriou P, Cohen ES, Horwood NJ et al. 2020. GM-CSF drives dysregulated hematopoietic stem cell activity and pathogenic extramedullary myelopoiesis in experimental spondyloarthritis. Nat. Commun. 11:155
    [Google Scholar]
  37. 37. 
    Poulos MG, Ramalingam P, Gutkin MC, Kleppe M, Ginsberg M et al. 2016. Endothelial-specific inhibition of NF-κB enhances functional haematopoiesis. Nat. Commun. 7:13829
    [Google Scholar]
  38. 38. 
    Poulos MG, Ramalingam P, Gutkin MC, Llanos P, Gilleran K et al. 2017. Endothelial transplantation rejuvenates aged hematopoietic stem cell function. J. Clin. Investig. 127:4163–78
    [Google Scholar]
  39. 39. 
    Takizawa H, Regoes RR, Boddupalli CS, Bonhoeffer S, Manz MG. 2011. Dynamic variation in cycling of hematopoietic stem cells in steady state and inflammation. J. Exp. Med. 208:273–84
    [Google Scholar]
  40. 40. 
    Takizawa H, Fritsch K, Kovtonyuk LV, Saito Y, Yakkala C et al. 2017. Pathogen-induced TLR4-TRIF innate immune signaling in hematopoietic stem cells promotes proliferation but reduces competitive fitness. Cell Stem Cell 21:225–40.e5
    [Google Scholar]
  41. 41. 
    Boettcher S, Ziegler P, Schmid MA, Takizawa H, van Rooijen N et al. 2012. Cutting edge: LPS-induced emergency myelopoiesis depends on TLR4-expressing nonhematopoietic cells. J. Immunol. 188:5824–28
    [Google Scholar]
  42. 42. 
    Vandoorne K, Rohde D, Kim HY, Courties G, Wojtkiewicz G et al. 2018. Imaging the vascular bone marrow niche during inflammatory stress. Circ. Res. 123:415–27
    [Google Scholar]
  43. 43. 
    Boettcher S, Gerosa RC, Radpour R, Bauer J, Ampenberger F et al. 2014. Endothelial cells translate pathogen signals into G-CSF-driven emergency granulopoiesis. Blood 124:1393–403
    [Google Scholar]
  44. 44. 
    Fuchs A, Monlish DA, Ghosh S, Chang SW, Bochicchio GV et al. 2019. Trauma induces emergency hematopoiesis through IL-1/MyD88-dependent production of G-CSF. J. Immunol. 202:3020–32
    [Google Scholar]
  45. 45. 
    Rieger MA, Hoppe PS, Smejkal BM, Eitelhuber AC, Schroeder T. 2009. Hematopoietic cytokines can instruct lineage choice. Science 325:217–18
    [Google Scholar]
  46. 46. 
    Herault A, Binnewies M, Leong S, Calero-Nieto FJ, Zhang SY et al. 2017. Myeloid progenitor cluster formation drives emergency and leukaemic myelopoiesis. Nature 544:53–58
    [Google Scholar]
  47. 47. 
    Massberg S, Schaerli P, Knezevic-Maramica I, Köllnberger M, Tubo N et al. 2007. Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell 131:994–1008
    [Google Scholar]
  48. 48. 
    Burberry A, Zeng MY, Ding L, Wicks I, Inohara N et al. 2014. Infection mobilizes hematopoietic stem cells through cooperative NOD-like receptor and Toll-like receptor signaling. Cell Host Microbe 15:779–91
    [Google Scholar]
  49. 49. 
    Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD et al. 2010. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466:829–34
    [Google Scholar]
  50. 50. 
    Winkler IG, Sims NA, Pettit AR, Barbier V, Nowlan B et al. 2010. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 116:4815–28
    [Google Scholar]
  51. 51. 
    Zhang J, Supakorndej T, Krambs JR, Rao M, Abou-Ezzi G et al. 2019. Bone marrow dendritic cells regulate hematopoietic stem/progenitor cell trafficking. J. Clin. Investig. 129:2920–31
    [Google Scholar]
  52. 52. 
    Ito K, Ito K. 2018. Hematopoietic stem cell fate through metabolic control. Exp. Hematol. 64:1–11
    [Google Scholar]
  53. 53. 
    Mistry JJ, Marlein CR, Moore JA, Hellmich C, Wojtowicz EE et al. 2019. ROS-mediated PI3K activation drives mitochondrial transfer from stromal cells to hematopoietic stem cells in response to infection. PNAS 116:24610–19
    [Google Scholar]
  54. 54. 
    Netea MG, Domínguez-Andrés J, Barreiro LB, Chavakis T, Divangahi M et al. 2020. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 20:375–88
    [Google Scholar]
  55. 55. 
    Penkov S, Mitroulis I, Hajishengallis G, Chavakis T. 2019. Immunometabolic crosstalk: An ancestral principle of trained immunity?. Trends Immunol 40:1–11
    [Google Scholar]
  56. 56. 
    Mitroulis I, Ruppova K, Wang B, Chen LS, Grzybek M et al. 2018. Modulation of myelopoiesis progenitors is an integral component of trained immunity. Cell 172:147–61.e12
    [Google Scholar]
  57. 57. 
    Christ A, Günther P, Lauterbach MAR, Duewell P, Biswas D et al. 2018. Western diet triggers NLRP3-dependent innate immune reprogramming. Cell 172:162–75.e14
    [Google Scholar]
  58. 58. 
    Kaufmann E, Sanz J, Dunn JL, Khan N, Mendonca LE et al. 2018. BCG educates hematopoietic stem cells to generate protective innate immunity against tuberculosis. Cell 172:176–90.e19
    [Google Scholar]
  59. 59. 
    Kalafati L, Kourtzelis I, Schulte-Schrepping J, Li X, Hatzioannou A et al. 2020. Innate immune training of granulopoiesis promotes anti-tumor activity. Cell 183:771–85.e12
    [Google Scholar]
  60. 60. 
    Cirovic B, de Bree LCJ, Groh L, Blok BA, Chan J et al. 2020. BCG vaccination in humans elicits trained immunity via the hematopoietic progenitor compartment. Cell Host Microbe 28:322–334.e5
    [Google Scholar]
  61. 61. 
    Keating ST, Groh L, van der Heijden C, Rodriguez H, Dos Santos JC et al. 2020. The Set7 lysine methyltransferase regulates plasticity in oxidative phosphorylation necessary for trained immunity induced by β-glucan. Cell Rep 31:107548
    [Google Scholar]
  62. 62. 
    Arts RJW, Moorlag S, Novakovic B, Li Y, Wang SY et al. 2018. BCG vaccination protects against experimental viral infection in humans through the induction of cytokines associated with trained immunity. Cell Host Microbe 23:89–100.e5
    [Google Scholar]
  63. 63. 
    de Laval B, Maurizio J, Kandalla PK, Brisou G, Simonnet L et al. 2020. C/EBPβ-dependent epigenetic memory induces trained immunity in hematopoietic stem cells. Cell Stem Cell 26:657–674.e8
    [Google Scholar]
  64. 64. 
    Quintin J, Saeed S, Martens JHA, Giamarellos-Bourboulis EJ, Ifrim DC et al. 2012. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe 12:223–32
    [Google Scholar]
  65. 65. 
    Moorlag S, Khan N, Novakovic B, Kaufmann E, Jansen T et al. 2020. β-Glucan induces protective trained immunity against Mycobacterium tuberculosis infection: a key role for IL-1. Cell Rep 31:107634
    [Google Scholar]
  66. 66. 
    Ciarlo E, Heinonen T, Théroude C, Asgari F, Le Roy D et al. 2020. Trained immunity confers broad-spectrum protection against bacterial infections. J. Infect. Dis. 222:1869–81
    [Google Scholar]
  67. 67. 
    Dos Santos JC, Barroso de Figueiredo AM, Teodoro Silva MV, Cirovic B, de Bree LCJ et al. 2019. β-Glucan-induced trained immunity protects against Leishmania braziliensis infection: a crucial role for IL-32. Cell Rep 28:2659–72.e6
    [Google Scholar]
  68. 68. 
    Bomans K, Schenz J, Sztwiertnia I, Schaack D, Weigand MA, Uhle F. 2018. Sepsis induces a long-lasting state of trained immunity in bone marrow monocytes. Front. Immunol. 9:2685
    [Google Scholar]
  69. 69. 
    Sui Y, Berzofsky JA. 2020. Myeloid cell-mediated trained innate immunity in mucosal AIDS vaccine development. Front. Immunol. 11:315
    [Google Scholar]
  70. 70. 
    Sánchez-Ramón S, Conejero L, Netea MG, Sancho D, Palomares Ó, Subiza JL. 2018. Trained immunity-based vaccines: a new paradigm for the development of broad-spectrum anti-infectious formulations. Front. Immunol. 9:2936
    [Google Scholar]
  71. 71. 
    Goodridge HS, Ahmed SS, Curtis N, Kollmann TR, Levy O et al. 2016. Harnessing the beneficial heterologous effects of vaccination. Nat. Rev. Immunol. 16:392–400
    [Google Scholar]
  72. 72. 
    Aaby P, Roth A, Ravn H, Napirna BM, Rodrigues A et al. 2011. Randomized trial of BCG vaccination at birth to low-birth-weight children: Beneficial nonspecific effects in the neonatal period?. J. Infect. Dis. 204:245–52
    [Google Scholar]
  73. 73. 
    Priem B, van Leent MMT, Teunissen AJP, Sofias AM, Mourits VP et al. 2020. Trained immunity-promoting nanobiologic therapy suppresses tumor growth and potentiates checkpoint inhibition. Cell 183:786–801.e19
    [Google Scholar]
  74. 74. 
    Moorlag SJCFM, Rodriguez-Rosales YA, Gillard J, Fanucchi S, Theunissen K et al. 2020. BCG vaccination induces long-term functional reprogramming of human neutrophils. Cell Rep 33:108387
    [Google Scholar]
  75. 75. 
    Buffen K, Oosting M, Quintin J, Ng A, Kleinnijenhuis J et al. 2014. Autophagy controls BCG-induced trained immunity and the response to intravesical BCG therapy for bladder cancer. PLOS Pathog 10:e1004485
    [Google Scholar]
  76. 76. 
    Suttmann H, Riemensberger J, Bentien G, Schmaltz D, Stöckle M et al. 2006. Neutrophil granulocytes are required for effective Bacillus Calmette-Guérin immunotherapy of bladder cancer and orchestrate local immune responses. Cancer Res 66:8250–57
    [Google Scholar]
  77. 77. 
    Wendeln AC, Degenhardt K, Kaurani L, Gertig M, Ulas T et al. 2018. Innate immune memory in the brain shapes neurological disease hallmarks. Nature 556:332–38
    [Google Scholar]
  78. 78. 
    Bekkering S, Saner C, Riksen NP, Netea MG, Sabin MA et al. 2020. Trained immunity: Linking obesity and cardiovascular disease across the life-course?. Trends Endocrinol. Metab. 31:378–89
    [Google Scholar]
  79. 79. 
    Flores-Gomez D, Bekkering S, Netea MG, Riksen NP. 2021. Trained immunity in atherosclerotic cardiovascular disease. Arterioscler Thromb. Vasc. Biol. 41:62–69
    [Google Scholar]
  80. 80. 
    van der Heijden C, Smeets EMM, Aarntzen E, Noz MP, Monajemi H et al. 2020. Arterial wall inflammation and increased hematopoietic activity in patients with primary aldosteronism. J. Clin. Endocrinol. Metab. 105:e1967–80
    [Google Scholar]
  81. 81. 
    Noz MP, Bekkering S, Groh L, Nielen TM, Lamfers EJ et al. 2020. Reprogramming of bone marrow myeloid progenitor cells in patients with severe coronary artery disease. eLife 9:e60939
    [Google Scholar]
  82. 82. 
    Hajishengallis G, Chavakis T. 2021. Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities. Nat. Rev. Immunol. 21:426–40
    [Google Scholar]
  83. 83. 
    Kaplan MJ. 2010. Cardiovascular complications of rheumatoid arthritis: assessment, prevention, and treatment. Rheum. Dis. Clin. N. Am. 36:405–26
    [Google Scholar]
  84. 84. 
    Dragoljevic D, Kraakman MJ, Nagareddy PR, Ngo D, Shihata W et al. 2018. Defective cholesterol metabolism in haematopoietic stem cells promotes monocyte-driven atherosclerosis in rheumatoid arthritis. Eur. Heart J. 39:2158–67
    [Google Scholar]
  85. 85. 
    Koelwyn GJ, Newman AAC, Afonso MS, van Solingen C, Corr EM et al. 2020. Myocardial infarction accelerates breast cancer via innate immune reprogramming. Nat. Med. 26:1452–58
    [Google Scholar]
  86. 86. 
    Liberale L, Montecucco F, Tardif JC, Libby P, Camici GG 2020. Inflamm-ageing: the role of inflammation in age-dependent cardiovascular disease. Eur. Heart J. 41:2974–82
    [Google Scholar]
  87. 87. 
    Furman D, Chang J, Lartigue L, Bolen CR, Haddad F et al. 2017. Expression of specific inflammasome gene modules stratifies older individuals into two extreme clinical and immunological states. Nat. Med. 23:174–84
    [Google Scholar]
  88. 88. 
    Franceschi C, Campisi J. 2014. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. A Biol. Sci. Med. Sci. 69:Suppl. 1S4–9
    [Google Scholar]
  89. 89. 
    Cho RH, Sieburg HB, Muller-Sieburg CE. 2008. A new mechanism for the aging of hematopoietic stem cells: aging changes the clonal composition of the stem cell compartment but not individual stem cells. Blood 111:5553–61
    [Google Scholar]
  90. 90. 
    Dykstra B, Olthof S, Schreuder J, Ritsema M, de Haan G. 2011. Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells. J. Exp. Med. 208:2691–703
    [Google Scholar]
  91. 91. 
    Yamamoto R, Wilkinson AC, Ooehara J, Lan X, Lai CY et al. 2018. Large-scale clonal analysis resolves aging of the mouse hematopoietic stem cell compartment. Cell Stem Cell 22:600–7.e4
    [Google Scholar]
  92. 92. 
    Mann M, Mehta A, de Boer CG, Kowalczyk MS, Lee K et al. 2018. Heterogeneous responses of hematopoietic stem cells to inflammatory stimuli are altered with age. Cell Rep 25:2992–3005.e5
    [Google Scholar]
  93. 93. 
    Kovtonyuk LV, Fritsch K, Feng X, Manz MG, Takizawa H. 2016. Inflamm-aging of hematopoiesis, hematopoietic stem cells, and the bone marrow microenvironment. Front. Immunol. 7:502
    [Google Scholar]
  94. 94. 
    Jaiswal S, Libby P 2020. Clonal haematopoiesis: connecting ageing and inflammation in cardiovascular disease. Nat. Rev. Cardiol. 17:137–44
    [Google Scholar]
  95. 95. 
    Steensma DP. 2018. Clinical implications of clonal hematopoiesis. Mayo Clin. Proc. 93:1122–30
    [Google Scholar]
  96. 96. 
    Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV et al. 2014. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371:2488–98
    [Google Scholar]
  97. 97. 
    Jaiswal S, Ebert BL 2019. Clonal hematopoiesis in human aging and disease. Science 366:eaan4673
    [Google Scholar]
  98. 98. 
    Genovese G, Kähler AK, Handsaker RE, Lindberg J, Rose SA et al. 2014. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl. J. Med. 371:2477–87
    [Google Scholar]
  99. 99. 
    Fuster JJ, MacLauchlan S, Zuriaga MA, Polackal MN, Ostriker AC et al. 2017. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science 355:842–47
    [Google Scholar]
  100. 100. 
    Dorsheimer L, Assmus B, Rasper T, Ortmann CA, Ecke A et al. 2019. Association of mutations contributing to clonal hematopoiesis with prognosis in chronic ischemic heart failure. JAMA Cardiol 4:25–33
    [Google Scholar]
  101. 101. 
    Lee MKS, Dragoljevic D, Bertuzzo Veiga C, Wang N, Yvan-Charvet L, Murphy AJ 2020. Interplay between clonal hematopoiesis of indeterminate potential and metabolism. Trends Endocrinol. Metab. 31:525–35
    [Google Scholar]
  102. 102. 
    Bick AG, Weinstock JS, Nandakumar SK, Fulco CP, Bao EL et al. 2020. Inherited causes of clonal haematopoiesis in 97,691 whole genomes. Nature 586:763–68
    [Google Scholar]
  103. 103. 
    Abdel-Wahab O, Adli M, LaFave LM, Gao J, Hricik T et al. 2012. ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression. Cancer Cell 22:180–93
    [Google Scholar]
  104. 104. 
    Moran-Crusio K, Reavie L, Shih A, Abdel-Wahab O, Ndiaye-Lobry D et al. 2011. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 20:11–24
    [Google Scholar]
  105. 105. 
    Mas-Peiro S, Hoffmann J, Fichtlscherer S, Dorsheimer L, Rieger MA et al. 2020. Clonal haematopoiesis in patients with degenerative aortic valve stenosis undergoing transcatheter aortic valve implantation. Eur. Heart J. 41:933–39
    [Google Scholar]
  106. 106. 
    Buscarlet M, Provost S, Zada YF, Bourgoin V, Mollica L et al. 2018. Lineage restriction analyses in CHIP indicate myeloid bias for TET2 and multipotent stem cell origin for DNMT3A. Blood 132:277–80
    [Google Scholar]
  107. 107. 
    Guryanova OA, Shank K, Spitzer B, Luciani L, Koche RP et al. 2016. DNMT3A mutations promote anthracycline resistance in acute myeloid leukemia via impaired nucleosome remodeling. Nat. Med. 22:1488–95
    [Google Scholar]
  108. 108. 
    Cole CB, Russler-Germain DA, Ketkar S, Verdoni AM, Smith AM et al. 2017. Haploinsufficiency for DNA methyltransferase 3A predisposes hematopoietic cells to myeloid malignancies. J. Clin. Investig. 127:3657–74
    [Google Scholar]
  109. 109. 
    Mayle A, Yang L, Rodriguez B, Zhou T, Chang E et al. 2015. Dnmt3a loss predisposes murine hematopoietic stem cells to malignant transformation. Blood 125:629–38
    [Google Scholar]
  110. 110. 
    Abdel-Wahab O, Gao J, Adli M, Dey A, Trimarchi T et al. 2013. Deletion of Asxl1 results in myelodysplasia and severe developmental defects in vivo. J. Exp. Med. 210:2641–59
    [Google Scholar]
  111. 111. 
    Cook EK, Luo M, Rauh MJ. 2020. Clonal hematopoiesis and inflammation: partners in leukemogenesis and comorbidity. Exp. Hematol. 83:85–94
    [Google Scholar]
  112. 112. 
    Jaiswal S, Natarajan P, Silver AJ, Gibson CJ, Bick AG et al. 2017. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N. Engl. J. Med. 377:111–21
    [Google Scholar]
  113. 113. 
    Rasmussen KD, Jia G, Johansen JV, Pedersen MT, Rapin N et al. 2015. Loss of TET2 in hematopoietic cells leads to DNA hypermethylation of active enhancers and induction of leukemogenesis. Genes Dev 29:910–22
    [Google Scholar]
  114. 114. 
    Yamazaki J, Jelinek J, Lu Y, Cesaroni M, Madzo J et al. 2015. TET2 mutations affect non-CpG island DNA methylation at enhancers and transcription factor–binding sites in chronic myelomonocytic leukemia. Cancer Res 75:2833–43
    [Google Scholar]
  115. 115. 
    Delhommeau F, Dupont S, Valle VD, James C, Trannoy S et al. 2009. Mutation in TET2 in myeloid cancers. N. Engl. J. Med. 360:2289–301
    [Google Scholar]
  116. 116. 
    Quivoron C, Couronné L, Della Valle V, Lopez CK, Plo I et al. 2011. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell 20:25–38
    [Google Scholar]
  117. 117. 
    Ito K, Lee J, Chrysanthou S, Zhao Y, Josephs K et al. 2019. Non-catalytic roles of Tet2 are essential to regulate hematopoietic stem and progenitor cell homeostasis. Cell Rep 28:2480–90.e4
    [Google Scholar]
  118. 118. 
    Zhang Q, Zhao K, Shen Q, Han Y, Gu Y et al. 2015. Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6. Nature 525:389–93
    [Google Scholar]
  119. 119. 
    Arends CM, Galan-Sousa J, Hoyer K, Chan W, Jäger M et al. 2018. Hematopoietic lineage distribution and evolutionary dynamics of clonal hematopoiesis. Leukemia 32:1908–19
    [Google Scholar]
  120. 120. 
    Fuster JJ, Zuriaga MA, Zorita V, MacLauchlan S, Polackal MN et al. 2020. TET2-loss-of-function-driven clonal hematopoiesis exacerbates experimental insulin resistance in aging and obesity. Cell Rep 33:108326
    [Google Scholar]
  121. 121. 
    Sano S, Oshima K, Wang Y, MacLauchlan S, Katanasaka Y et al. 2018. Tet2-mediated clonal hematopoiesis accelerates heart failure through a mechanism involving the IL-1β/NLRP3 inflammasome. J. Am. Coll. Cardiol. 71:875–86
    [Google Scholar]
  122. 122. 
    Wang Y, Sano S, Yura Y, Ke Z, Sano M et al. 2020. Tet2-mediated clonal hematopoiesis in nonconditioned mice accelerates age-associated cardiac dysfunction. JCI Insight 5:e135204
    [Google Scholar]
  123. 123. 
    Hirata Y, Furuhashi K, Ishii H, Li HW, Pinho S et al. 2018. CD150high bone marrow Tregs maintain hematopoietic stem cell quiescence and immune privilege via adenosine. Cell Stem Cell 22:445–53.e5
    [Google Scholar]
  124. 124. 
    Yue X, Lio C-WJ, Samaniego-Castruita D, Li X, Rao A 2019. Loss of TET2 and TET3 in regulatory T cells unleashes effector function. Nat. Commun. 10:2011
    [Google Scholar]
  125. 125. 
    Cai Z, Kotzin JJ, Ramdas B, Chen S, Nelanuthala S et al. 2018. Inhibition of inflammatory signaling in Tet2 mutant preleukemic cells mitigates stress-induced abnormalities and clonal hematopoiesis. Cell Stem Cell 23:833–49.e5
    [Google Scholar]
  126. 126. 
    Abegunde SO, Buckstein R, Wells RA, Rauh MJ. 2018. An inflammatory environment containing TNFα favors Tet2-mutant clonal hematopoiesis. Exp. Hematol. 59:60–65
    [Google Scholar]
  127. 127. 
    Craver BM, El Alaoui K, Scherber RM, Fleischman AG. 2018. The critical role of inflammation in the pathogenesis and progression of myeloid malignancies. Cancers 10:104
    [Google Scholar]
  128. 128. 
    Meisel M, Hinterleitner R, Pacis A, Chen L, Earley ZM et al. 2018. Microbial signals drive pre-leukaemic myeloproliferation in a Tet2-deficient host. Nature 557:580–84
    [Google Scholar]
  129. 129. 
    Bick AG, Pirruccello JP, Griffin GK, Gupta N, Gabriel S et al. 2020. Genetic interleukin 6 signaling deficiency attenuates cardiovascular risk in clonal hematopoiesis. Circulation 141:124–31
    [Google Scholar]
  130. 130. 
    Yamashita M, Dellorusso PV, Olson OC, Passegué E. 2020. Dysregulated haematopoietic stem cell behaviour in myeloid leukaemogenesis. Nat. Rev. Cancer 20:365–382
    [Google Scholar]
  131. 131. 
    Barreyro L, Chlon TM, Starczynowski DT. 2018. Chronic immune response dysregulation in MDS pathogenesis. Blood 132:1553–60
    [Google Scholar]
  132. 132. 
    Kristinsson SY, Björkholm M, Hultcrantz M, Derolf AR, Landgren O, Goldin LR 2011. Chronic immune stimulation might act as a trigger for the development of acute myeloid leukemia or myelodysplastic syndromes. J. Clin. Oncol. 29:2897–903
    [Google Scholar]
  133. 133. 
    Zeman MK, Cimprich KA. 2014. Causes and consequences of replication stress. Nat. Cell Biol. 16:2–9
    [Google Scholar]
  134. 134. 
    Zambetti NA, Ping Z, Chen S, Kenswil KJG, Mylona MA et al. 2016. Mesenchymal inflammation drives genotoxic stress in hematopoietic stem cells and predicts disease evolution in human pre-leukemia. Cell Stem Cell 19:613–27
    [Google Scholar]
  135. 135. 
    Basiorka AA, McGraw KL, Eksioglu EA, Chen X, Johnson J et al. 2016. The NLRP3 inflammasome functions as a driver of the myelodysplastic syndrome phenotype. Blood 128:2960–75
    [Google Scholar]
  136. 136. 
    Muto T, Walker CS, Choi K, Hueneman K, Smith MA et al. 2020. Adaptive response to inflammation contributes to sustained myelopoiesis and confers a competitive advantage in myelodysplastic syndrome HSCs. Nat. Immunol. 21:535–45
    [Google Scholar]
  137. 137. 
    Raaijmakers MH, Mukherjee S, Guo S, Zhang S, Kobayashi T et al. 2010. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 464:852–57
    [Google Scholar]
  138. 138. 
    Schepers K, Pietras EM, Reynaud D, Flach J, Binnewies M et al. 2013. Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell 13:285–99
    [Google Scholar]
  139. 139. 
    Arranz L, Sánchez-Aguilera A, Martín-Pérez D, Isern J, Langa X et al. 2014. Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms. Nature 512:78–81
    [Google Scholar]
  140. 140. 
    Hanoun M, Zhang D, Mizoguchi T, Pinho S, Pierce H et al. 2014. Acute myelogenous leukemia-induced sympathetic neuropathy promotes malignancy in an altered hematopoietic stem cell niche. Cell Stem Cell 15:365–75
    [Google Scholar]
  141. 141. 
    Barrett TJ, Murphy AJ, Goldberg IJ, Fisher EA. 2017. Diabetes-mediated myelopoiesis and the relationship to cardiovascular risk. Ann. N. Y. Acad. Sci. 1402:31–42
    [Google Scholar]
  142. 142. 
    Singer K, DelProposto J, Morris DL, Zamarron B, Mergian T et al. 2014. Diet-induced obesity promotes myelopoiesis in hematopoietic stem cells. Mol. Metab. 3:664–75
    [Google Scholar]
  143. 143. 
    Griffin C, Eter L, Lanzetta N, Abrishami S, Varghese M et al. 2018. TLR4, TRIF, and MyD88 are essential for myelopoiesis and CD11c+ adipose tissue macrophage production in obese mice. J. Biol. Chem. 293:8775–86
    [Google Scholar]
  144. 144. 
    Nagareddy PR, Kraakman M, Masters SL, Stirzaker RA, Gorman DJ et al. 2014. Adipose tissue macrophages promote myelopoiesis and monocytosis in obesity. Cell Metab 19:821–35
    [Google Scholar]
  145. 145. 
    Hock H, Hamblen MJ, Rooke HM, Schindler JW, Saleque S et al. 2004. Gfi-1 restricts proliferation and preserves functional integrity of haematopoietic stem cells. Nature 431:1002–7
    [Google Scholar]
  146. 146. 
    Lee JM, Govindarajah V, Goddard B, Hinge A, Muench DE et al. 2018. Obesity alters the long-term fitness of the hematopoietic stem cell compartment through modulation of Gfi1 expression. J. Exp. Med. 215:627–44
    [Google Scholar]
  147. 147. 
    Nagareddy PR, Murphy AJ, Stirzaker RA, Hu Y, Yu S et al. 2013. Hyperglycemia promotes myelopoiesis and impairs the resolution of atherosclerosis. Cell Metab 17:695–708
    [Google Scholar]
  148. 148. 
    Luo Y, Chen GL, Hannemann N, Ipseiz N, Krönke G et al. 2015. Microbiota from obese mice regulate hematopoietic stem cell differentiation by altering the bone niche. Cell Metab 22:886–94
    [Google Scholar]
  149. 149. 
    Ferland-McCollough D, Maselli D, Spinetti G, Sambataro M, Sullivan N et al. 2018. MCP-1 feedback loop between adipocytes and mesenchymal stromal cells causes fat accumulation and contributes to hematopoietic stem cell rarefaction in the bone marrow of patients with diabetes. Diabetes 67:1380–94
    [Google Scholar]
  150. 150. 
    Zhou BO, Yu H, Yue R, Zhao Z, Rios JJ et al. 2017. Bone marrow adipocytes promote the regeneration of stem cells and haematopoiesis by secreting SCF. Nat. Cell Biol. 19:891–903
    [Google Scholar]
  151. 151. 
    Ambrosi TH, Scialdone A, Graja A, Gohlke S, Jank AM et al. 2017. Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration. Cell Stem Cell 20:771–84.e6
    [Google Scholar]
  152. 152. 
    Zhang Z, Huang Z, Ong B, Sahu C, Zeng H, Ruan HB. 2019. Bone marrow adipose tissue-derived stem cell factor mediates metabolic regulation of hematopoiesis. Haematologica 104:1731–43
    [Google Scholar]
  153. 153. 
    Mangialardi G, Ferland-McCollough D, Maselli D, Santopaolo M, Cordaro A et al. 2019. Bone marrow pericyte dysfunction in individuals with type 2 diabetes. Diabetologia 62:1275–90
    [Google Scholar]
  154. 154. 
    Hoyer FF, Zhang X, Coppin E, Vasamsetti SB, Modugu G et al. 2020. Bone marrow endothelial cells regulate myelopoiesis in diabetes mellitus. Circulation 142:244–58
    [Google Scholar]
  155. 155. 
    Kang KW, Ok M, Lee SK 2020. Leptin as a key between obesity and cardiovascular disease. J. Obes. Metab. Syndr. 29:248–59
    [Google Scholar]
  156. 156. 
    Frodermann V, Rohde D, Courties G, Severe N, Schloss MJ et al. 2019. Exercise reduces inflammatory cell production and cardiovascular inflammation via instruction of hematopoietic progenitor cells. Nat. Med. 25:1761–71
    [Google Scholar]
  157. 157. 
    Mitroulis I, Hajishengallis G, Chavakis T. 2021. Trained immunity and cardiometabolic disease: the role of bone marrow. Arterioscler Thromb. Vasc. Biol. 41:48–54
    [Google Scholar]
  158. 158. 
    Murphy AJ, Tall AR. 2016. Disordered haematopoiesis and athero-thrombosis. Eur. Heart J. 37:1113–21
    [Google Scholar]
  159. 159. 
    Tall AR, Yvan-Charvet L. 2015. Cholesterol, inflammation and innate immunity. Nat. Rev. Immunol. 15:104–16
    [Google Scholar]
  160. 160. 
    Murphy AJ, Akhtari M, Tolani S, Pagler T, Bijl N et al. 2011. ApoE regulates hematopoietic stem cell proliferation, monocytosis, and monocyte accumulation in atherosclerotic lesions in mice. J. Clin. Investig. 121:4138–49
    [Google Scholar]
  161. 161. 
    Yvan-Charvet L, Pagler T, Gautier EL, Avagyan S, Siry RL et al. 2010. ATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferation. Science 328:1689–93
    [Google Scholar]
  162. 162. 
    Gu Q, Yang X, Lv J, Zhang J, Xia B et al. 2019. AIBP-mediated cholesterol efflux instructs hematopoietic stem and progenitor cell fate. Science 363:1085–88
    [Google Scholar]
  163. 163. 
    Dutta P, Sager HB, Stengel KR, Naxerova K, Courties G et al. 2015. Myocardial infarction activates CCR2+ hematopoietic stem and progenitor cells. Cell Stem Cell 16:477–87
    [Google Scholar]
  164. 164. 
    Leuschner F, Rauch PJ, Ueno T, Gorbatov R, Marinelli B et al. 2012. Rapid monocyte kinetics in acute myocardial infarction are sustained by extramedullary monocytopoiesis. J. Exp. Med. 209:123–37
    [Google Scholar]
  165. 165. 
    Dutta P, Courties G, Wei Y, Leuschner F, Gorbatov R et al. 2012. Myocardial infarction accelerates atherosclerosis. Nature 487:325–29
    [Google Scholar]
  166. 166. 
    Sager HB, Heidt T, Hulsmans M, Dutta P, Courties G et al. 2015. Targeting interleukin-1β reduces leukocyte production after acute myocardial infarction. Circulation 132:1880–90
    [Google Scholar]
  167. 167. 
    Anzai A, Choi JL, He S, Fenn AM, Nairz M et al. 2017. The infarcted myocardium solicits GM-CSF for the detrimental oversupply of inflammatory leukocytes. J. Exp. Med. 214:3293–310
    [Google Scholar]
  168. 168. 
    Peshkova IO, Aghayev T, Fatkhullina AR, Makhov P, Titerina EK et al. 2019. IL-27 receptor-regulated stress myelopoiesis drives abdominal aortic aneurysm development. Nat. Commun. 10:5046
    [Google Scholar]
  169. 169. 
    Ramasz B, Krüger A, Reinhardt J, Sinha A, Gerlach M et al. 2019. Hematopoietic stem cell response to acute thrombocytopenia requires signaling through distinct receptor tyrosine kinases. Blood 134:1046–58
    [Google Scholar]
  170. 170. 
    Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH et al. 2017. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377:1119–31
    [Google Scholar]
  171. 171. 
    Svensson EC, Madar A, Campbell CD, He Y, Sultan M et al. 2018. TET2-driven clonal hematopoiesis predicts enhanced response to canakinumab in the CANTOS Trial: an exploratory analysis. Circulation 138:A15111
    [Google Scholar]
  172. 172. 
    Pietras EM. 2017. Inflammation: a key regulator of hematopoietic stem cell fate in health and disease. Blood 130:1693–98
    [Google Scholar]
  173. 173. 
    Wolach O, Sellar RS, Martinod K, Cherpokova D, McConkey M et al. 2018. Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms. Sci. Transl. Med. 10:eaan8292
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-052521-013627
Loading
/content/journals/10.1146/annurev-physiol-052521-013627
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error