1932

Abstract

Cerebral small vessel disease (SVD) is highly prevalent and a common cause of ischemic and hemorrhagic stroke and dementia, yet the pathophysiology is poorly understood. Its clinical expression is highly varied, and prognostic implications are frequently overlooked in clinics; thus, treatment is currently confined to vascular risk factor management. Traditionally, SVD is considered the small vessel equivalent of large artery stroke (occlusion, rupture), but data emerging from human neuroimaging and genetic studies refute this, instead showing microvessel endothelial dysfunction impacting on cell–cell interactions and leading to brain damage. These dysfunctions reflect defects that appear to be inherited and secondary to environmental exposures, including vascular risk factors. Interrogation in preclinical models shows consistent and converging molecular and cellular interactions across the endothelial-glial-neural unit that increasingly explain the human macroscopic observations and identify common patterns of pathology despite different triggers. Importantly, these insights may offer new targets for therapeutic intervention focused on restoring endothelial-glial physiology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-060821-014521
2022-02-10
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/physiol/84/1/annurev-physiol-060821-014521.html?itemId=/content/journals/10.1146/annurev-physiol-060821-014521&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Feigin VL, Nguyen G, Cercy K, Johnson CO, Alam T et al. 2018. Global, regional, and country-specific lifetime risks of stroke, 1990 and 2016. N. Engl. J. Med. 379:2429–37
    [Google Scholar]
  2. 2. 
    Pasi M, Cordonnier C. 2020. Clinical relevance of cerebral small vessel diseases. Stroke 51:47–53
    [Google Scholar]
  3. 3. 
    Hachinski V, Einhaupl K, Ganten D, Alladi S, Brayne C et al. 2019. Preventing dementia by preventing stroke: the Berlin Manifesto. Alzheimer's Dement. 15:961–84Authoritative review of the many ways in which vascular disease leads to dementia.
    [Google Scholar]
  4. 4. 
    Gordon BA, Blazey TM, Su Y, Hari-Raj A, Dincer A et al. 2018. Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer's disease: a longitudinal study. Lancet Neurol 17:241–50
    [Google Scholar]
  5. 5. 
    Lee S, Viqar F, Zimmerman ME, Narkhede A, Tosto G et al. 2016. White matter hyperintensities are a core feature of Alzheimer's disease: evidence from the dominantly inherited Alzheimer network. Ann. Neurol. 79:929–39
    [Google Scholar]
  6. 6. 
    Kapasi A, DeCarli C, Schneider JA. 2017. Impact of multiple pathologies on the threshold for clinically overt dementia. Acta Neuropathol 134:171–86
    [Google Scholar]
  7. 7. 
    Debette S, Schilling S, Duperron MG, Larsson SC, Markus HS. 2019. Clinical significance of magnetic resonance imaging markers of vascular brain injury: a systematic review and meta-analysis. JAMA Neurol. 76:81–94Summary of all data on common SVD lesions and future risk of stroke, dementia, and death.
    [Google Scholar]
  8. 8. 
    Hatano Y, Narumoto J, Shibata K, Matsuoka T, Taniguchi S et al. 2013. White-matter hyperintensities predict delirium after cardiac surgery. Am. J. Geriatr. Psychiatry 21:938–45
    [Google Scholar]
  9. 9. 
    Georgakis MK, Duering M, Wardlaw JM, Dichgans M. 2019. WMH and long-term outcomes in ischemic stroke: a systematic review and meta-analysis. Neurology 92:e1298–308
    [Google Scholar]
  10. 10. 
    Appleton JP, Woodhouse LJ, Adami A, Becker JL, Berge E et al. 2020. Imaging markers of small vessel disease and brain frailty, and outcomes in acute stroke. Neurology 94:e439–52
    [Google Scholar]
  11. 11. 
    Geurts LJ, Zwanenburg JJM, Klijn CJM, Luijten PR, Biessels GJ. 2018. Higher pulsatility in cerebral perforating arteries in patients with small vessel disease related stroke, a 7T MRI study. Stroke 50:62–68
    [Google Scholar]
  12. 12. 
    Skrobot OA, Attems J, Esiri M, Hortobagyi T, Ironside JW et al. 2016. Vascular cognitive impairment neuropathology guidelines (VCING): the contribution of cerebrovascular pathology to cognitive impairment. Brain 139:2957–69
    [Google Scholar]
  13. 13. 
    Bailey EL, Smith C, Sudlow CLM, Wardlaw JM. 2012. Pathology of lacunar ischaemic stroke in humans—a systematic review. Brain Pathol 22:583–91
    [Google Scholar]
  14. 14. 
    Fisher CM. 1969. The arterial lesions underlying lacunes. Acta Neuropathol 12:1–15
    [Google Scholar]
  15. 15. 
    Durand-Fardel M. 1842. Mémoire sur une altération particulière de la substance cérébrale. Gaz. Med. Paris 10:23–38
    [Google Scholar]
  16. 16. 
    Rodrigues MA, Samarasekera N, Lerpiniere C, Humphreys C, McCarron MO et al. 2018. The Edinburgh CT and genetic diagnostic criteria for lobar intracerebral haemorrhage associated with cerebral amyloid angiopathy: model development and diagnostic test accuracy study. Lancet Neurol 17:232–40
    [Google Scholar]
  17. 17. 
    Moody DM, Brown WR, Challa VR, Anderson RL. 1995. Periventricular venous collagenosis: association with leukoaraiosis. Radiology 194:469–76
    [Google Scholar]
  18. 18. 
    Mancuso M, Arnold M, Bersano A, Burlina A, Chabriat H et al. 2020. Monogenic cerebral small-vessel diseases: diagnosis and therapy. Consensus recommendations of the European Academy of Neurology. Eur. J. Neurol. 27:909–27
    [Google Scholar]
  19. 19. 
    Potter GM, Marlborough FJ, Wardlaw JM. 2010. Wide variation in definition, detection, and description of lacunar lesions on imaging. Stroke 42:359–66
    [Google Scholar]
  20. 20. 
    Pantoni L, Sarti C, Alafuzoff I, Jellinger K, Munoz DG et al. 2006. Postmortem examination of vascular lesions in cognitive impairment: a survey among neuropathological services. Stroke 37:1005–9
    [Google Scholar]
  21. 21. 
    Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F et al. 2013. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 12:822–38Describes the classification and inter-relationships of SVD lesions on brain MRI.
    [Google Scholar]
  22. 22. 
    Potter GM, Doubal FN, Jackson CA, Chappell FM, Sudlow CL et al. 2010. Counting cavitating lacunes underestimates the burden of lacunar infarction. Stroke 41:267–72
    [Google Scholar]
  23. 23. 
    Smith EE, Saposnik G, Biessels GJ, Doubal FN, Fornage M et al. 2017. Prevention of stroke in patients with silent cerebrovascular disease: a scientific statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 48:e44–71
    [Google Scholar]
  24. 24. 
    Staals J, Booth T, Morris Z, Bastin ME, Gow AJ et al. 2015. Total MRI load of cerebral small vessel disease and cognitive ability in older people. Neurobiol. Aging 36:2806–11
    [Google Scholar]
  25. 25. 
    Staals J, Makin SDJ, Doubal F, Dennis M, Wardlaw JM. 2014. Stroke subtype, vascular risk factors and total MRI brain small vessel disease burden. Neurology 83:1228–34
    [Google Scholar]
  26. 26. 
    Muñoz Maniega S, Meijboom R, Chappell FM, Valdes Hernandez MDC, Starr JM et al. 2019. Spatial gradient of microstructural changes in normal-appearing white matter in tracts affected by white matter hyperintensities in older age. Front. Neurol. 10:784
    [Google Scholar]
  27. 27. 
    Loos CMJ, Makin SDJ, Staals J, Dennis MS, van Oostenbrugge RJ, Wardlaw JM. 2018. Long-term morphological changes of symptomatic lacunar infarcts and surrounding white matter on structural magnetic resonance imaging. Stroke 49:1183–88
    [Google Scholar]
  28. 28. 
    De Guio F, Duering M, Fazekas F, De Leeuw FE, Greenberg SM et al. 2020. Brain atrophy in cerebral small vessel diseases: extent, consequences, technical limitations and perspectives: the HARNESS initiative. J. Cereb. Blood Flow Metab. 40:231–45
    [Google Scholar]
  29. 29. 
    Wardlaw JM, Chappell FM, Valdes Hernandez MDC, Makin SDJ, Staals J et al. 2017. White matter hyperintensity reduction and outcomes after minor stroke. Neurology 89:1003–10
    [Google Scholar]
  30. 30. 
    van Leijsen EMC, van Uden IWM, Ghafoorian M, Bergkamp MI, Lohner V et al. 2017. Nonlinear temporal dynamics of cerebral small vessel disease: the RUN DMC study. Neurology 89:1569–77
    [Google Scholar]
  31. 31. 
    Wardlaw JM, Smith C, Dichgans M. 2019. Small vessel disease: mechanisms and clinical implications. Lancet Neurol. 18:684–96
    [Google Scholar]
  32. 32. 
    Clancy U, Jochems ACC, Doubal F, Wardlaw J, Gilmartin D, Knox L 2021. Neuropsychiatric symptoms associate with cerebral small vessel disease: systematic review and meta-analysis. Lancet Psychiatry 8:225–36
    [Google Scholar]
  33. 33. 
    Stringer MS, Lee H, Huuskonen MT, MacIntosh BJ, Brown R et al. 2021. A review of translational magnetic resonance imaging in human and rodent experimental models of small vessel disease. Transl. Stroke Res. 12:15–30
    [Google Scholar]
  34. 34. 
    Holland PR, Searcy JL, Salvadores N, Scullion G, Chen G et al. 2015. Gliovascular disruption and cognitive deficits in a mouse model with features of small vessel disease. J. Cereb. Blood Flow Metab. 35:1005–14
    [Google Scholar]
  35. 35. 
    Backhouse EV, McHutchison CA, Cvoro V, Shenkin SD, Wardlaw JM. 2017. Early life risk factors for cerebrovascular disease: a systematic review and meta-analysis. Neurology 88:976–84Summarizes all data on childhood cognitive ability and education and SVD in later life.
    [Google Scholar]
  36. 36. 
    Penke L, Muñoz Maniega S, Bastin ME, Valdes Hernandez MC, Murray C et al. 2012. Brain white matter tract integrity as a neural foundation for general intelligence. Mol. Psychiatry 17:1026–30
    [Google Scholar]
  37. 37. 
    Lopez L, Hill WD, Harris SE, Valdes Hernandez M, Muñoz Maniega S et al. 2015. Genes from a translational analysis support a multifactorial nature of white matter hyperintensities. Stroke 46:341–47
    [Google Scholar]
  38. 38. 
    Hillary RF, Stevenson AJ, Cox SR, McCartney DL, Harris SE et al. 2019. An epigenetic predictor of death captures multi-modal measures of brain health. Mol. Psychiatry 2019: https://doi.org/10.1038/s41380-019-0616-9
    [Crossref] [Google Scholar]
  39. 39. 
    Sargurupremraj M, Suzuki H, Jian X, Sarnowski C, Evans TE et al. 2020. Cerebral small vessel disease genomics and its implications across the lifespan. Nat. Commun. 11:6285
    [Google Scholar]
  40. 40. 
    Turner ST, Jack CR, Fornage M, Mosley TH, Boerwinkle E, de Andrade M. 2004. Heritability of leukoaraiosis in hypertensive sibships. Hypertension 43:483–87
    [Google Scholar]
  41. 41. 
    Duperron MG, Tzourio C, Sargurupremraj M, Mazoyer B, Soumare A et al. 2018. Burden of dilated perivascular spaces, an emerging marker of cerebral small vessel disease, is highly heritable. Stroke 49:282–87
    [Google Scholar]
  42. 42. 
    Joutel A, Haddad I, Ratelade J, Nelson MT 2016. Perturbations of the cerebrovascular matrisome: a convergent mechanism in small vessel disease of the brain?. J. Cereb. Blood Flow Metab. 36:143–57
    [Google Scholar]
  43. 43. 
    Henshall TL, Keller A, He L, Johansson BR, Wallgard E et al. 2015. Notch3 is necessary for blood vessel integrity in the central nervous system. Arterioscler. Thromb. Vasc. Biol. 35:409–20
    [Google Scholar]
  44. 44. 
    Beaufort N, Scharrer E, Kremmer E, Lux V, Ehrmann M et al. 2014. Cerebral small vessel disease-related protease HtrA1 processes latent TGF-β binding protein 1 and facilitates TGF-β signaling. PNAS 111:16496–501
    [Google Scholar]
  45. 45. 
    Rannikmae K, Sivakumaran V, Millar H, Malik R, Anderson CD et al. 2017. COL4A2 is associated with lacunar ischemic stroke and deep ICH: meta-analyses among 21,500 cases and 40,600 controls. Neurology 89:171829–39
    [Google Scholar]
  46. 46. 
    Horsburgh K, Wardlaw J, van Agtmael T, Allan S, Ashford M et al. 2018. Small vessels, dementia and chronic diseases—molecular mechanisms and pathophysiology. Clin. Sci. 132:851–68
    [Google Scholar]
  47. 47. 
    Wardlaw JM, Allerhand M, Doubal FN, Valdes Hernandez M, Morris Z et al. 2014. Vascular risk factors, large artery atheroma and brain white matter hyperintensities. Neurology 82:1331–38
    [Google Scholar]
  48. 48. 
    Nasrallah IM, Pajewski NM, Auchus AP, Chelune G, Cheung AK et al. 2019. Association of intensive vs standard blood pressure control with cerebral white matter lesions. JAMA 322:524–34Intensive blood pressure reduction has minimal effect on SVD lesion progression.
    [Google Scholar]
  49. 49. 
    Williamson JD, Pajewski NM, Auchus AP, Bryan NR, Chelune G et al. 2019. Effect of intensive versus standard blood pressure control on probable dementia: a randomized clinical trial. JAMA 321:553–61
    [Google Scholar]
  50. 50. 
    Benavente OR, Coffey CS, Conwit R, Hart RG, McClure LA et al. 2013. Blood-pressure targets in patients with recent lacunar stroke: the SPS3 randomised trial. Lancet 382:507–15Large clinical trial showed no benefit on cognition or stroke prevention of blood pressure reduction in small vessel stroke.
    [Google Scholar]
  51. 51. 
    Wardlaw J, Brazzelli M, Miranda H, Chappell F, McNamee P et al. 2014. An assessment of the cost-effectiveness of magnetic resonance, including diffusion-weighted imaging, in patients with transient ischaemic attack and minor stroke: a systematic review, meta-analysis and economic evaluation. Health Technol. Assess. 18:271–368
    [Google Scholar]
  52. 52. 
    Yong AW, Morris Z, Shuler K, Smith C, Wardlaw J 2012. Acute symptomatic hypoglycaemia mimicking ischaemic stroke on imaging: a systemic review. BMC Neurol 12:139
    [Google Scholar]
  53. 53. 
    Vinters HV, Zarow C, Borys E, Whitman JD, Tung S et al. 2018. Review: vascular dementia: clinicopathologic and genetic considerations. Neuropathol. Appl. Neurobiol. 44:247–66
    [Google Scholar]
  54. 54. 
    Fisher CM. 1982. Lacunar strokes and infarcts: a review. Neurology 32:871
    [Google Scholar]
  55. 55. 
    Wardlaw JM, Dennis MS, Warlow CP, Sandercock PA. 2001. Imaging appearance of the symptomatic perforating artery in patients with lacunar infarction: occlusion or other vascular pathology?. Ann. Neurol. 50:208–15
    [Google Scholar]
  56. 56. 
    Liu Q, Radwanski R, Babadjouni R, Patel A, Hodis DM et al. 2019. Experimental chronic cerebral hypoperfusion results in decreased pericyte coverage and increased blood–brain barrier permeability in the corpus callosum. J. Cereb. Blood Flow Metab. 39:240–50
    [Google Scholar]
  57. 57. 
    Potter GM, Doubal FN, Jackson CA, Sudlow CLM, Dennis MS, Wardlaw JM 2012. Lack of association of white matter lesions with ipsilateral carotid artery stenosis. Cerebrovasc. Dis. 33:378–84
    [Google Scholar]
  58. 58. 
    Del Bene A, Makin SDJ, Doubal FN, Wardlaw JM. 2012. Do risk factors for lacunar ischaemic stroke vary with the location or appearance of the lacunar infarct?. Cerebrovasc. Dis. 33:21
    [Google Scholar]
  59. 59. 
    Wardlaw JM, Allerhand M, Eadie E, Thomas A, Corley J et al. 2017. Carotid disease at age 73 and cognitive change from age 70 to 76 years: a longitudinal cohort study. J. Cereb. Blood Flow Metab. 37:3042–52
    [Google Scholar]
  60. 60. 
    Alhusaini S, Karama S, Nguyen T-V, Thiel A, Bernhardt BC et al. 2018. The association between carotid atheroma and cerebral cortex structure at age 73. Ann. Neurol. 84:576–87
    [Google Scholar]
  61. 61. 
    Blevins BL, Vinters HV, Love S, Wilcock DM, Grinberg LT et al. 2021. Brain arteriolosclerosis.. Acta Neuropathol 141:1–24
    [Google Scholar]
  62. 62. 
    Zwartbol MH, van der Kolk AG, Kuijf HJ, Witkamp TD, Ghaznawi R et al. 2020. Intracranial vessel wall lesions on 7T MRI and MRI features of cerebral small vessel disease—the SMART-MR study. J. Cereb. Blood Flow Metab. 41:61219–28
    [Google Scholar]
  63. 63. 
    Shi Y, Thrippleton MJ, Makin SD, Marshall I, Geerlings MI et al. 2016. Cerebral blood flow in small vessel disease: a systematic review and meta-analysis. J. Cereb. Blood Flow Metab. 36:1653–67
    [Google Scholar]
  64. 64. 
    Stewart C, Stringer M, Shi Y, Thrippleton M, Wardlaw JM 2021. Associations between white matter hyperintensity burden, cerebral blood flow and transit time in small vessel disease: an updated meta-analysis. Front. Neurol. 12:621
    [Google Scholar]
  65. 65. 
    Iturria-Medina Y, Sotero RC, Toussaint PJ, Mateos-Perez JM, Evans ACAlzheimer's Dis. Neuroimaging Init 2016. Early role of vascular dysregulation on late-onset Alzheimer's disease based on multifactorial data-driven analysis. Nat. Commun. 7:11934
    [Google Scholar]
  66. 66. 
    Ghaznawi R, Zwartbol MHT, Zuithoff NPA, de Bresser J, Hendrikse J, Geerlings MI 2020. Reduced parenchymal cerebral blood flow is associated with greater progression of brain atrophy: the SMART-MR study. J. Cereb. Blood Flow Metab. 41:1229–39
    [Google Scholar]
  67. 67. 
    Nylander R, Fahlstrom M, Rostrup E, Kullberg J, Damangir S et al. 2017. Quantitative and qualitative MRI evaluation of cerebral small vessel disease in an elderly population: a longitudinal study. Acta Radiol 59:612–18
    [Google Scholar]
  68. 68. 
    Arba F, Mair G, Carpenter T, Sakka E, Sandercock PAG et al. 2017. Cerebral white matter hypoperfusion increases with small-vessel disease burden. Data from the third international stroke trial. J. Stroke Cerebrovasc. Dis. 26:1506–13
    [Google Scholar]
  69. 69. 
    Ostergaard L, Sondergaard T, Moreton F, Hansen MB, Wardlaw JM et al. 2016. Cerebral small vessel disease: capillary pathways to stroke and cognitive decline. J. Cereb. Blood Flow Metab. 36:302–25
    [Google Scholar]
  70. 70. 
    Wardlaw JM, Makin SJ, Hernandez MCV, Armitage PA, Heye AK et al. 2017. Blood-brain barrier failure as a core mechanism in cerebral small vessel disease and dementia: evidence from a cohort study. Alzheimer's Dement. 13:634–43
    [Google Scholar]
  71. 71. 
    Longden TA, Dabertrand F, Koide M, Gonzales AL, Tykocki NR et al. 2017. Capillary K+-sensing initiates retrograde hyperpolarization to increase local cerebral blood flow. Nat. Neurosci. 20:717–26Identifies capillary endothelial K+ channels enabling rapid signaling to increase local blood flow on metabolic demand.
    [Google Scholar]
  72. 72. 
    Blair GW, Thrippleton MJ, Shi Y, Hamilton I, Stringer M et al. 2020. Intracranial hemodynamic relationships in patients with cerebral small vessel disease. Neurology 94:e2258–69
    [Google Scholar]
  73. 73. 
    Aalkjær C, Boedtkjer D, Matchkov V. 2011. Vasomotion—What is currently thought?. Acta Physiol. 202:253–69
    [Google Scholar]
  74. 74. 
    Rayshubskiy A, Wojtasiewicz TJ, Mikell CB, Bouchard MB, Timerman D et al. 2014. Direct, intraoperative observation of ∼0.1 Hz hemodynamic oscillations in awake human cortex: implications for fMRI. NeuroImage 87:323–31
    [Google Scholar]
  75. 75. 
    Noordmans HJ, van Blooijs D, Siero JCW, Zwanenburg JJM, Klaessens JHGM, Ramsey NF. 2018. Detailed view on slow sinusoidal, hemodynamic oscillations on the human brain cortex by Fourier transforming oxy/deoxy hyperspectral images. Hum. Brain Mapp. 39:3558–73
    [Google Scholar]
  76. 76. 
    Di Marco LY, Farkas E, Martin C, Venneri A, Frangi AF. 2015. Is vasomotion in cerebral arteries impaired in Alzheimer's disease?. J. Alzheimer's Dis. 46:35–53
    [Google Scholar]
  77. 77. 
    van Veluw SJ, Hou SS, Calvo-Rodriguez M, Arbel-Ornath M, Snyder AC et al. 2020. Vasomotion as a driving force for paravascular clearance in the awake mouse brain. Neuron 105:549–61.e5
    [Google Scholar]
  78. 78. 
    Dumas A, Dierksen GA, Gurol ME, Halpin A, Martinez-Ramirez S et al. 2012. Functional magnetic resonance imaging detection of vascular reactivity in cerebral amyloid angiopathy. Ann. Neurol. 72:76–81
    [Google Scholar]
  79. 79. 
    van Sloten TT, Protogerou AD, Henry RM, Schram MT, Launer LJ, Stehouwer CD. 2015. Association between arterial stiffness, cerebral small vessel disease and cognitive impairment: a systematic review and meta-analysis. Neurosci. Biobehav. Rev. 53:121–30
    [Google Scholar]
  80. 80. 
    Lau KK, Pego P, Mazzucco S, Li L, Howard DP et al. 2018. Age and sex-specific associations of carotid pulsatility with small vessel disease burden in transient ischemic attack and ischemic stroke. Int. J. Stroke 13:832–39
    [Google Scholar]
  81. 81. 
    Hughes TM, Wagenknecht LE, Craft S, Mintz A, Heiss G et al. 2018. Arterial stiffness and dementia pathology: Atherosclerosis Risk in Communities (ARIC)-PET study. Neurology 90:e1248–56
    [Google Scholar]
  82. 82. 
    Aribisala BS, Morris Z, Eadie E, Thomas A, Gow A et al. 2014. Blood pressure, internal carotid artery flow parameters and age-related white matter hyperintensities. Hypertension 63:1011–18
    [Google Scholar]
  83. 83. 
    Riba-Llena I, Jimenez-Balado J, Castane X, Girona A, Lopez-Rueda A et al. 2018. Arterial stiffness is associated with basal ganglia enlarged perivascular spaces and cerebral small vessel disease load. Stroke 49:1279–81
    [Google Scholar]
  84. 84. 
    Shi Y, Thrippleton MJ, Blair GW, Dickie DA, Marshall I et al. 2020. Small vessel disease is associated with altered cerebrovascular pulsatility but not resting cerebral blood flow. J. Cereb. Blood Flow Metab. 40:85–99
    [Google Scholar]
  85. 85. 
    Benveniste H, Liu X, Koundal S, Sanggaard S, Lee H, Wardlaw J 2019. The glymphatic system and waste clearance with brain aging: a review. Gerontology 65:106–19
    [Google Scholar]
  86. 86. 
    Mestre H, Tithof J, Du T, Song W, Peng WG et al. 2018. Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nat. Commun. 9:4878
    [Google Scholar]
  87. 87. 
    Rennels ML, Gregory TF, Blaumanis OR, Fujimoto K, Grady PA. 1985. Evidence for a ‘paravascular’ fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res 326:47–63
    [Google Scholar]
  88. 88. 
    Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W et al. 2012. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med. 4:147ra11
    [Google Scholar]
  89. 89. 
    Eide PK, Ringstad G. 2019. Delayed clearance of cerebrospinal fluid tracer from entorhinal cortex in idiopathic normal pressure hydrocephalus: a glymphatic magnetic resonance imaging study. J. Cereb. Blood Flow Metab. 39:1355–68
    [Google Scholar]
  90. 90. 
    Patel TK, Habimana-Griffin L, Gao X, Xu B, Achilefu S et al. 2019. Dural lymphatics regulate clearance of extracellular tau from the CNS. Mol. Neurodegen. 14:11
    [Google Scholar]
  91. 91. 
    Lundgaard I, Lu ML, Yang E, Peng W, Mestre H et al. 2017. Glymphatic clearance controls state-dependent changes in brain lactate concentration. J. Cereb. Blood Flow Metab. 37:2112–24
    [Google Scholar]
  92. 92. 
    Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S et al. 2015. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med. 212:991–99
    [Google Scholar]
  93. 93. 
    Maloveska M, Danko J, Petrovova E, Kresakova L, Vdoviakova K et al. 2018. Dynamics of Evans blue clearance from cerebrospinal fluid into meningeal lymphatic vessels and deep cervical lymph nodes. Neurol. Res. 40:372–80
    [Google Scholar]
  94. 94. 
    Clement CC, Wang W, Dzieciatkowska M, Cortese M, Hansen KC et al. 2018. Quantitative profiling of the lymph node clearance capacity. Sci. Rep. 8:11253
    [Google Scholar]
  95. 95. 
    Bedussi B, Almasian M, de Vos J, VanBavel E, Bakker EN 2018. Paravascular spaces at the brain surface: low resistance pathways for cerebrospinal fluid flow. J. Cereb. Blood Flow Metab. 38:719–26
    [Google Scholar]
  96. 96. 
    Aktas G, Kollmeier JM, Joseph AA, Merboldt K-D, Ludwig H-C et al. 2019. Spinal CSF flow in response to forced thoracic and abdominal respiration. Fluids Barriers CNS 16:10
    [Google Scholar]
  97. 97. 
    Xie L, Kang H, Xu Q, Chen MJ, Liao Y et al. 2013. Sleep drives metabolite clearance from the adult brain. Science 342:373–77Links crucial role of sleep with brain waste clearance through increased perivascular space and glymphatic function.
    [Google Scholar]
  98. 98. 
    Cai X, Qiao J, Kulkarni P, Harding IC, Ebong E, Ferris CF 2020. Imaging the effect of the circadian light–dark cycle on the glymphatic system in awake rats. PNAS 117:668–76
    [Google Scholar]
  99. 99. 
    Zolla V, Nizamutdinova IT, Scharf B, Clement CC, Maejima D et al. 2015. Aging-related anatomical and biochemical changes in lymphatic collectors impair lymph transport, fluid homeostasis, and pathogen clearance. Aging Cell 14:582–94
    [Google Scholar]
  100. 100. 
    Peng W, Achariyar TM, Li B, Liao Y, Mestre H et al. 2016. Suppression of glymphatic fluid transport in a mouse model of Alzheimer's disease. Neurobiol. Dis. 93:215–25
    [Google Scholar]
  101. 101. 
    Mortensen KN, Sanggaard S, Mestre H, Lee H, Kostrikov S et al. 2019. Impaired glymphatic transport in spontaneously hypertensive rats. J. Neurosci. 39:6365–77
    [Google Scholar]
  102. 102. 
    Koundal S, Elkin R, Nadeem S, Xue Y, Constantinou S et al. 2020. Optimal mass transport with Lagrangian workflow reveals advective and diffusion driven solute transport in the glymphatic system. Sci. Rep. 10:1990MRI in vivo showing that CSF uptake into perivascular spaces is impaired in the SVD model rat.
    [Google Scholar]
  103. 103. 
    Wardlaw JM, Benveniste H, Nedergaard M, Zlokovic BV, Mestre H et al. 2020. Perivascular spaces in the brain: anatomy, physiology and pathology. Nat. Rev. Neurol. 16:137–53
    [Google Scholar]
  104. 104. 
    Elkin R, Nadeem S, Haber E, Steklova K, Lee H et al. 2018. GlymphVIS: visualizing glymphatic transport pathways using regularized optimal transport. International Conference on Medical Image Computing and Computer-Assisted Intervention–MICCAI 2018844–52 Cham, Switz: Springer
    [Google Scholar]
  105. 105. 
    Yang AC, Stevens MY, Chen MB, Lee DP, Stähli D et al. 2020. Physiological blood–brain transport is impaired with age by a shift in transcytosis. Nature 583:425–30
    [Google Scholar]
  106. 106. 
    Farrall AJ, Wardlaw JM. 2009. Blood–brain barrier: ageing and microvascular disease—systemic review and meta-analysis. Neurobiol. Aging 30:337–52
    [Google Scholar]
  107. 107. 
    Montagne A, Nation DA, Sagare AP, Barisano G, Sweeney MD et al. 2020. APOE4 leads to blood–brain barrier dysfunction predicting cognitive decline. Nature 581:71–76
    [Google Scholar]
  108. 108. 
    Zhao L, Li Z, Vong JS, Chen X, Lai H-M et al. 2020. Pharmacologically reversible zonation-dependent endothelial cell transcriptomic changes with neurodegenerative disease associations in the aged brain. Nat. Commun. 11:4413
    [Google Scholar]
  109. 109. 
    Raja R, Rosenberg GA, Caprihan A. 2018. MRI measurements of blood-brain barrier function in dementia: a review of recent studies. Neuropharmacology 134:259–71
    [Google Scholar]
  110. 110. 
    Thrippleton MJ, Backes WH, Sourbron S, Ingrisch M, van Osch MJP et al. 2019. Quantifying blood-brain barrier leakage in small vessel disease: review and consensus recommendations. Alzheimer's Dement 15:840–58
    [Google Scholar]
  111. 111. 
    Wardlaw JM, Doubal F, Armitage P, Chappell F, Carpenter T et al. 2009. Lacunar stroke is associated with diffuse blood–brain barrier dysfunction. Ann. Neurol. 65:194–202
    [Google Scholar]
  112. 112. 
    Muñoz Maniega S, Chappell FM, Valdes Hernandez MC, Armitage PA, Makin SD et al. 2017. Integrity of normal-appearing white matter: influence of age, visible lesion burden and hypertension in patients with small-vessel disease. J. Cereb. Blood Flow Metab. 37:644–56
    [Google Scholar]
  113. 113. 
    Taheri S, Gasparovic C, Huisa BN, Adair JC, Edmonds E et al. 2011. Blood–brain barrier permeability abnormalities in vascular cognitive impairment. Stroke 42:2158–63
    [Google Scholar]
  114. 114. 
    Zhang CE, Wong SM, van de Haar HJ, Staals J, Jansen JF et al. 2017. Blood–brain barrier leakage is more widespread in patients with cerebral small vessel disease. Neurology 88:426–32
    [Google Scholar]
  115. 115. 
    Simpson JE, Wharton SB, Cooper J, Gelsthorpe C, Baxter L et al. 2010. Alterations of the blood–brain barrier in cerebral white matter lesions in the ageing brain. Neurosci. Lett. 486:246–51
    [Google Scholar]
  116. 116. 
    Wong SM, Jansen JFA, Zhang CE, Hoff EI, Staals J et al. 2019. Blood-brain barrier impairment and hypoperfusion are linked in cerebral small vessel disease. Neurology 92:e1669–77
    [Google Scholar]
  117. 117. 
    Wardlaw JM, Doubal FN, Valdes Hernandez MC, Wang X, Chappell FM et al. 2013. Blood–brain barrier permeability and long term clinical and imaging outcomes in cerebral small vessel disease. Stroke 44:525–27
    [Google Scholar]
  118. 118. 
    Huisa BN, Caprihan A, Thompson J, Prestopnik J, Qualls CR, Rosenberg GA. 2015. Long-term blood–brain barrier permeability changes in Binswanger disease. Stroke 46:2413–18
    [Google Scholar]
  119. 119. 
    Makin SD, Doubal FN, Shuler K, Chappell FM, Staals J et al. 2018. The impact of early-life intelligence quotient on post stroke cognitive impairment. Eur. Stroke J. 3:145–56
    [Google Scholar]
  120. 120. 
    Nation DA, Sweeney MD, Montagne A, Sagare AP, D'Orazio LM et al. 2019. Blood–brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat. Med. 25:270–76
    [Google Scholar]
  121. 121. 
    Bailey EL, Smith C, Sudlow CL, Wardlaw JM. 2011. Is the spontaneously hypertensive stroke prone rat a pertinent model of subcortical ischaemic stroke? A systematic review. Int. J. Stroke 6:434–44
    [Google Scholar]
  122. 122. 
    Schreiber S, Bueche CZ, Garz C, Braun H. 2013. Blood brain barrier breakdown as the starting point of cerebral small vessel disease? New insights from a rat model. Exp. Transl. Stroke Med. 5:4
    [Google Scholar]
  123. 123. 
    Montagne A, Nikolakopoulou AM, Zhao Z, Sagare AP, Si G et al. 2018. Pericyte degeneration causes white matter dysfunction in the mouse central nervous system. Nat. Med. 24:326–37
    [Google Scholar]
  124. 124. 
    Bailey EL, McCulloch J, Sudlow C, Wardlaw JM. 2009. Potential animal models of lacunar stroke: a systematic review. Stroke 40:e451–58
    [Google Scholar]
  125. 125. 
    Bailey EL, McBride MW, Crawford W, McClure JD, Graham D et al. 2014. Differential gene expression in multiple neurological, inflammatory and connective tissue pathways in a spontaneous model of human small vessel stroke. Neuropathol. Appl. Neurobiol. 40:855–72
    [Google Scholar]
  126. 126. 
    Bailey EL, Wardlaw JM, Graham D, Dominiczak AF, Sudlow CL, Smith C. 2011. Cerebral small vessel endothelial structural changes predate hypertension in stroke-prone spontaneously hypertensive rats: a blinded, controlled immunohistochemical study of 5- to 21-week-old rats. Neuropathol. Appl. Neurobiol. 37:711–26
    [Google Scholar]
  127. 127. 
    Bailey EL, McBride MW, McClure JD, Beattie W, Graham D et al. 2018. Effects of dietary salt on gene and protein expression in brain tissue of a model sporadic small vessel disease. Clin. Sci. 132:1315–28
    [Google Scholar]
  128. 128. 
    Rajani RM, Quick S, Ruigrok SR, Graham D, Harris SE et al. 2018. Reversal of endothelial dysfunction reduces white matter vulnerability in cerebral small vessel disease in rats. Sci. Transl. Med. 10:eaam9507Identified a gene and protein defect causing endothelial dysfunction in an SVD model rat.
    [Google Scholar]
  129. 129. 
    van der Mark VA, Elferink RPJO, Paulusma CC. 2013. P4 ATPases: flippases in health and disease. Int. J. Mol. Sci. 14:7897–922
    [Google Scholar]
  130. 130. 
    Zachowski A. 1993. Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement. Biochem. J. 294:1–14
    [Google Scholar]
  131. 131. 
    Yang Y, Sun K, Liu W, Zhang L, Peng K et al. 2018. Disruption of Tmem30a results in cerebellar ataxia and degeneration of Purkinje cells. Cell Death Dis 9:899
    [Google Scholar]
  132. 132. 
    Sage AT, Besant JD, Mahmoudian L, Poudineh M, Bai X et al. 2015. Fractal circuit sensors enable rapid quantification of biomarkers for donor lung assessment for transplantation. Sci. Adv. 1:e1500417
    [Google Scholar]
  133. 133. 
    Moreno-Smith M, Halder JB, Meltzer PS, Gonda TA, Mangala LS et al. 2013. ATP11B mediates platinum resistance in ovarian cancer. J. Clin. Investig. 123:2119–30
    [Google Scholar]
  134. 134. 
    Zhang Q, Church JE, Jagnandan D, Catravas JD, Sessa WC, Fulton D. 2006. Functional relevance of Golgi- and plasma membrane-localized endothelial NO synthase in reconstituted endothelial cells. Arterioscler. Thromb. Vasc. Biol. 26:1015–21
    [Google Scholar]
  135. 135. 
    Harraz OF, Hill-Eubanks D, Nelson MT. 2020. PIP2: a critical regulator of vascular ion channels hiding in plain sight. PNAS 117:20378–89
    [Google Scholar]
  136. 136. 
    Moshkforoush A, Ashenagar B, Harraz OF, Dabertrand F, Longden TA et al. 2020. The capillary Kir channel as sensor and amplifier of neuronal signals: modeling insights on K+-mediated neurovascular communication. PNAS 117:16626–37
    [Google Scholar]
  137. 137. 
    Fleming I, Busse R 1999. Signal transduction of eNOS activation. Cardiovasc. Res. 43:532–41
    [Google Scholar]
  138. 138. 
    Félétou M. 2009. Calcium-activated potassium channels and endothelial dysfunction: therapeutic options?. Br. J. Pharmacol. 156:545–62
    [Google Scholar]
  139. 139. 
    Bern MM. 2017. Extracellular vesicles: how they interact with endothelium, potentially contributing to metastatic cancer cell implants. Clin. Transl. Med. 6:33
    [Google Scholar]
  140. 140. 
    Wang J, Li W, Zhou F, Feng R, Wang F et al. 2019. ATP11B deficiency leads to impairment of hippocampal synaptic plasticity. J. Mol. Cell Biol. 11:688–702
    [Google Scholar]
  141. 141. 
    Munji RN, Soung AL, Weiner GA, Sohet F, Semple BD et al. 2019. Profiling the mouse brain endothelial transcriptome in health and disease models reveals a core blood–brain barrier dysfunction module. Nat. Neurosci. 22:1892–902
    [Google Scholar]
  142. 142. 
    McGuinness B, Craig D, Bullock R, Passmore P 2016. Statins for the prevention of dementia. Cochrane Database Syst. Rev. 1:CD003160
    [Google Scholar]
  143. 143. 
    Georgakis MK, Gill D, Webb AJS, Evangelou E, Elliott P et al. 2020. Genetically determined blood pressure, antihypertensive drug classes, and risk of stroke subtypes. Neurology 95:e353–61
    [Google Scholar]
  144. 144. 
    McHutchison C, Blair GW, Appleton JP, Chappell FM, Doubal F et al. 2020. Cilostazol for secondary prevention of stroke and cognitive decline: systematic review and meta-analysis. Stroke 51:2374–85
    [Google Scholar]
  145. 145. 
    Bath PM, Wardlaw JM. 2015. Pharmacological treatment and prevention of cerebral small vessel disease: a review of potential interventions. Int. J. Stroke 10:469–78
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-060821-014521
Loading
/content/journals/10.1146/annurev-physiol-060821-014521
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error