1932

Abstract

Rice stripe disease caused by (RSV) is one of the most devastating plant viruses of rice and causes enormous losses in production. RSV is transmitted from plant to plant by the small brown planthopper () in a circulative–propagative manner. The recent reemergence of this pathogen in East Asia since 2000 has made RSV one of the most studied plant viruses over the past two decades. Extensive studies of RSV have resulted in substantial advances regarding fundamental aspects of the virus infection. Here, we compile and analyze recent information on RSV with a special emphasis on the strategies that RSV has adopted to establish infections. These advances include RSV replication and movement in host plants and the small brown planthopper vector, innate immunity defenses against RSV infection, epidemiology, and recent advances in the management of rice stripe disease. Understanding these issues will facilitate the design of novel antiviral therapies for management and contribute to a more detailed understanding of negative-sense virus–host interactions at the molecular level.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-020620-113020
2021-08-25
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/phyto/59/1/annurev-phyto-020620-113020.html?itemId=/content/journals/10.1146/annurev-phyto-020620-113020&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Ashby J, Boutant E, Seemanpillai M, Groner A, Sambade A et al. 2006. Tobacco mosaic virus movement protein functions as a structural microtubule-associated protein. J. Virol. 80:8329–44
    [Google Scholar]
  2. 2. 
    Barbier P, Takahashi M, Nakamura I, Toriyama S, Ishihama A. 1992. Solubilization and promoter analysis of RNA polymerase from rice stripe virus. J. Virol. 66:6171–74
    [Google Scholar]
  3. 3. 
    Baumberger N, Baulcombe DC 2005. Arabidopsis ARGONAUTE1 is an RNA slicer that selectively recruits microRNAs and short interfering RNAs. PNAS 102:11928–33
    [Google Scholar]
  4. 4. 
    Chen B, Lin L, Lu Y, Peng J, Zheng H et al. 2020. Ubiquitin-like protein 5 interacts with the silencing suppressor p3 of rice stripe virus and mediates its degradation through the 26S proteasome pathway. PLOS Pathog 16:e1008780
    [Google Scholar]
  5. 5. 
    Chen H, Zheng L, Mao Q, Liu Q, Jia D, Wei T. 2014. Development of continuous cell culture of brown planthopper to trace the early infection process of oryzaviruses in insect vector cells. J. Virol. 88:4265–74
    [Google Scholar]
  6. 6. 
    Chen X, Yu J, Wang W, Lu H, Kang L, Cui F. 2020. A plant virus ensures viral stability in the hemolymph of vector insects through suppressing prophenoloxidase activation. mBio 11:4e01453–20
    [Google Scholar]
  7. 7. 
    Cho WK, Lian S, Kim SM, Park SH, Kim KH. 2013. Current insights into research on rice stripe virus. Plant Pathol. J. 29:223–33
    [Google Scholar]
  8. 8. 
    Cho WK, Lian S, Kim SM, Seo BY, Jung JK, Kim KH. 2015. Time-course RNA-seq analysis reveals transcriptional changes in rice plants triggered by rice stripe virus infection. PLOS ONE 10:e0136736
    [Google Scholar]
  9. 9. 
    Das S, Swetha C, Pachamuthu K, Nair A, Shivaprasad PV 2020. Loss of function of Oryza sativa Argonaute 18 induces male sterility and reduction in phased small RNAs. Plant Reprod 33:59–73
    [Google Scholar]
  10. 10. 
    de Miranda J, Munoz M, Madriz J, Wu R, Espinoza A. 1996. Sequence of Echinochloa hoja blanca tenuivirus RNA-3. Virus Genes 13:65–68
    [Google Scholar]
  11. 11. 
    den Boon JA, Diaz A, Ahlquist P. 2010. Cytoplasmic viral replication complexes. Cell Host Microbe 8:77–85
    [Google Scholar]
  12. 12. 
    Deng J, Li S, Hong J, Ji Y, Zhou Y 2013. Investigation on subcellular localization of rice stripe virus in its vector small brown planthopper by electron microscopy. Virol. J. 10:310
    [Google Scholar]
  13. 13. 
    Dobermann A, Fairhurst T. 2000. Rice: Nutrient Management and Nutrient Disorders Los Baños, Philipp.: Int. Rice Res. Inst.
    [Google Scholar]
  14. 14. 
    Du P, Wu J, Zhang J, Zhao S, Zheng H et al. 2011. Viral infection induces expression of novel phased microRNAs from conserved cellular microRNA precursors. PLOS Pathog 7:e1002176
    [Google Scholar]
  15. 15. 
    Du Z, Xiao D, Wu J, Jia D, Yuan Z et al. 2011. P2 of rice stripe virus (RSV) interacts with OsSGS3 and is a silencing suppressor. Mol. Plant Pathol. 12:808–14
    [Google Scholar]
  16. 16. 
    Dykxhoorn DM, Novina CD, Sharp PA. 2003. Killing the messenger: short RNAs that silence gene expression. Nat. Rev. Mol. Cell Biol. 4:457–67
    [Google Scholar]
  17. 17. 
    Falk BW, Tsai JH. 1998. Biology and molecular biology of viruses in the genus Tenuivirus. Annu. Rev. Phytopathol. 36:139–63
    [Google Scholar]
  18. 18. 
    Fan F, Yang J, Wang J, Zhu J, Li W, Zhong W 2013. Correlation between rice stripe resistance and indica-japonica differentiation. Chin. J. Rice Sci. 27:553–58
    [Google Scholar]
  19. 19. 
    Feder ME, Hofmann GE. 1999. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 61:243–82
    [Google Scholar]
  20. 20. 
    Feng M, Cheng R, Chen M, Guo R, Li L et al. 2020. Rescue of tomato spotted wilt virus entirely from complementary DNA clones. PNAS 117:1181–90
    [Google Scholar]
  21. 21. 
    Fraser RSS. 1987. Biochemistry of Virus Infected Plants New York: Res. Stud. Press
  22. 22. 
    Fu S, Xu Y, Li C, Li Y, Wu J, Zhou X. 2018. Rice stripe virus interferes with S-acylation of remorin and induces its autophagic degradation to facilitate virus infection. Mol. Plant 11:269–87
    [Google Scholar]
  23. 23. 
    Gao Q, Xu WY, Yan T, Fang XD, Cao Q et al. 2019. Rescue of a plant cytorhabdovirus as versatile expression platforms for planthopper and cereal genomic studies. New Phytol 223:2120–33
    [Google Scholar]
  24. 24. 
    Godfray HC, Beddington JR, Crute IR, Haddad L, Lawrence D et al. 2010. Food security: the challenge of feeding 9 billion people. Science 327:812–18
    [Google Scholar]
  25. 25. 
    Hamamatsu C, Toriyama S, Toyoda T, Ishihama A. 1993. Ambisense coding strategy of the rice stripe virus genome: in vitro translation studies. J. Gen. Virol. 74:1125–31
    [Google Scholar]
  26. 26. 
    Han K, Huang H, Zheng H, Ji M, Yuan Q et al. 2020. Rice stripe virus coat protein induces the accumulation of jasmonic acid, activating plant defence against the virus while also attracting its vector to feed. Mol. Plant Pathol. 21:1647–53
    [Google Scholar]
  27. 27. 
    Hannun YA, Obeid LM. 2008. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat. Rev. Mol. Cell Biol. 9:139–50
    [Google Scholar]
  28. 28. 
    Harries PA, Schoelz JE, Nelson RS. 2010. Intracellular transport of viruses and their components: utilizing the cytoskeleton and membrane highways. Mol. Plant-Microbe Interact. 23:1381–93
    [Google Scholar]
  29. 29. 
    Hayano-Saito Y. 2014. Infection of Rice stripe virus in rice stripe–resistant cultivar harboring Stvb-i gene. Annu. Rep. Kanto Tosan Plant Protect. Soc. 61:9–12
    [Google Scholar]
  30. 30. 
    Hayano-Saito Y, Hayashi K. 2020. Stvb-i, a rice gene conferring durable resistance to Rice stripe virus, protects plant growth from heat stress. Front. Plant Sci. 11:519
    [Google Scholar]
  31. 31. 
    Hayano-Saito Y, Saito K, Nakamura S, Kawasaki S, Iwasaki M. 2000. Fine physical mapping of the rice stripe resistance gene locus, Stvb-i. Theor. Appl. Genet. 101:59–63
    [Google Scholar]
  32. 32. 
    Hayano-Saito Y, Tsuji T, Fujii K, Saito K, Iwasaki M, Saito A. 1998. Localization of the rice stripe disease resistance gene, Stv-bi, by graphical genotyping and linkage analyses with molecular markers. Theor. Appl. Genet. 96:1044–49
    [Google Scholar]
  33. 33. 
    Hayward A, Dinesh-Kumar SP. 2011. What can plant autophagy do for an innate immune response?. Annu. Rev. Phytopathol. 49:557–76
    [Google Scholar]
  34. 34. 
    He K, Lin K, Ding S, Wang G, Li F 2019. The vitellogenin receptor has an essential role in vertical transmission of Rice stripe virus during oogenesis in the small brown planthopper. Pest Manag. Sci. 75:1370–82
    [Google Scholar]
  35. 35. 
    Hemmes H, Lakatos L, Goldbach R, Burgyan J, Prins M. 2007. The NS3 protein of rice hoja blanca tenuivirus suppresses RNA silencing in plant and insect hosts by efficiently binding both siRNAs and miRNAs. RNA 13:1079–89
    [Google Scholar]
  36. 36. 
    Hibino H. 1989. Insect-borne viruses of rice. Advances in Disease Vector Research, Vol. 6 KF Harris 209–41 New York: Springer-Verlag
    [Google Scholar]
  37. 37. 
    Hibino H. 1996. Biology and epidemiology of rice viruses. Annu. Rev. Phytopathol. 34:249–74
    [Google Scholar]
  38. 38. 
    Hickey LT, Hafeez AN, Robinson H, Jackson SA, Leal-Bertioli SCM et al. 2019. Breeding crops to feed 10 billion. Nat. Biotechnol. 37:744–54
    [Google Scholar]
  39. 39. 
    Hong W, Qian D, Sun R, Jiang L, Wang Y et al. 2015. OsRDR6 plays role in host defense against double-stranded RNA virus, rice dwarf phytoreovirus. Sci. Rep. 5:11324
    [Google Scholar]
  40. 40. 
    Hu J, Huang J, Xu H, Wang Y, Li C et al. 2020. Rice stripe virus suppresses jasmonic acid-mediated resistance by hijacking brassinosteroid signaling pathway in rice. PLOS Pathog 16:e1008801
    [Google Scholar]
  41. 41. 
    Huang D, Chen R, Wang Y, Hong J, Zhou X, Wu J. 2019. Development of a colloidal gold-based immunochromatographic strip for rapid detection of Rice stripe virus. J. Zhejiang Univ. Sci. B 20:343–54
    [Google Scholar]
  42. 42. 
    Huang L, Li Z, Wu J, Xu Y, Yang X et al. 2015. Analysis of genetic variation and diversity of rice stripe virus populations through high-throughput sequencing. Front. Plant Sci. 6:176
    [Google Scholar]
  43. 43. 
    Huang L, Rao L, Zhou X, Wu J. 2013. Genetic variability and evolution of rice stripe virus. J. Zhejiang Univ. Sci. B 14:875–85
    [Google Scholar]
  44. 44. 
    Huo Y, Liu W, Zhang F, Chen X, Li L et al. 2014. Transovarial transmission of a plant virus is mediated by vitellogenin of its insect vector. PLOS Pathog 10:e1003949
    [Google Scholar]
  45. 45. 
    Huo Y, Yu Y, Chen L, Li Q, Zhang M et al. 2018. Insect tissue-specific vitellogenin facilitates transmission of plant virus. PLOS Pathog 14:e1006909
    [Google Scholar]
  46. 46. 
    Huo Y, Yu Y, Liu Q, Liu D, Zhang M et al. 2019. Rice stripe virus hitchhikes the vector insect vitellogenin ligand-receptor pathway for ovary entry. Philos. Trans. R. Soc. B 374:20180312
    [Google Scholar]
  47. 47. 
    Ishikawa K, Omura T, Hibino H. 1989. Morphological characteristics of rice stripe virus. J. Gen. Virol. 70:3465–68
    [Google Scholar]
  48. 48. 
    Jameson PE, Clarke SF. 2002. Hormone-virus interactions in plants. Crit. Rev. Plant Sci. 21:205–28
    [Google Scholar]
  49. 49. 
    Jia D, Chen Q, Mao Q, Zhang X, Wu W et al. 2018. Vector mediated transmission of persistently transmitted plant viruses. Curr. Opin. Virol. 28:127–32
    [Google Scholar]
  50. 50. 
    Jiang L, Lu Y, Zheng X, Yang X, Chen Y et al. 2020. The plant protein NbP3IP directs degradation of Rice stripe virus p3 silencing suppressor protein to limit virus infection through interaction with the autophagy-related protein NbATG8. New Phytol 229:1036–51
    [Google Scholar]
  51. 51. 
    Jiang S, Lu Y, Li K, Lin L, Zheng H et al. 2014. Heat shock protein 70 is necessary for Rice stripe virus infection in plants. Mol. Plant Pathol. 15:907–17
    [Google Scholar]
  52. 52. 
    Jiao W, Li F, Bai Y, Shi X, Zhu M et al. 2017. Rice stripe virus infection alters mRNA levels of sphingolipid-metabolizing enzymes and sphingolipids content in Laodelphax striatellus. J. Insect Sci. 17:16
    [Google Scholar]
  53. 53. 
    Kakutani T, Hayano Y, Hayashi T, Minobe Y. 1990. Ambisense segment 4 of rice stripe virus: possible evolutionary relationship with phleboviruses and uukuviruses (Bunyaviridae). J. Gen. Virol. 71:1427–32
    [Google Scholar]
  54. 54. 
    Kang BC, Yeam I, Jahn MM. 2005. Genetics of plant virus resistance. Annu. Rev. Phytopathol. 43:581–621
    [Google Scholar]
  55. 55. 
    Kim H, Cho WK, Lian S, Kim KH. 2017. Identification of residues or motif(s) of the rice stripe virus NS3 protein required for self-interaction and for silencing suppressor activity. Virus Res 235:14–23
    [Google Scholar]
  56. 56. 
    Kiritani K. 1983. Changes in cropping practices and the incidence of hopper-borne diseases of rice in Japan. Plant Virus Epidemiology: The Spread and Control of Insect-Borne Viruses RT Plumb, JM Thresh 239–47 Hoboken, NJ: Blackwell Sci. Publ.
    [Google Scholar]
  57. 57. 
    Klionsky DJ, Emr SD. 2000. Autophagy as a regulated pathway of cellular degradation. Science 290:1717–21
    [Google Scholar]
  58. 58. 
    Kong L, Wu J, Lu L, Xu Y, Zhou X. 2014. Interaction between Rice stripe virus disease-specific protein and host PsbP enhances virus symptoms. Mol. Plant 7:691–708
    [Google Scholar]
  59. 59. 
    Kwon T, Lee JH, Park SK, Hwang UH, Cho JH et al. 2012. Fine mapping and identification of candidate rice genes associated with qSTV11(SG), a major QTL for rice stripe disease resistance. Theor. Appl. Genet. 125:1033–46
    [Google Scholar]
  60. 60. 
    Lakatos L, Szittya G, Silhavy D, Burgyan J. 2004. Molecular mechanism of RNA silencing suppression mediated by p19 protein of tombusviruses. EMBO J 23:876–84
    [Google Scholar]
  61. 61. 
    Lee JH, Yae US, Kang HW, Hwang HG. 2008. Analysis on the occurrence of Rice stripe virus. Res. Plant Dis. 14:210–13
    [Google Scholar]
  62. 62. 
    Lefkowitz EJ, Dempsey DM, Hendrickson RC, Orton RJ, Siddell SG, Smith DB. 2018. Virus taxonomy: the database of the International Committee on Taxonomy of Viruses (ICTV). Nucleic Acids Res 46:D708–17
    [Google Scholar]
  63. 63. 
    Li CY, Xu Y, Fu S, Liu Y, Li Z et al. 2021. The unfolded protein response plays dual roles in rice stripe virus infection through fine-tuning the movement protein accumulation. PLOS Pathog 17:3e1009370
    [Google Scholar]
  64. 64. 
    Li J, Xiang C, Yang J, Chen J, Zhang H 2015. Interaction of HSP20 with a viral RdRp changes its sub-cellular localization and distribution pattern in plants. Sci. Rep. 5:14016
    [Google Scholar]
  65. 65. 
    Li S, Li X, Zhou Y. 2018. Ribosomal protein L18 is an essential factor that promote Rice stripe virus accumulation in small brown planthopper. Virus Res 247:15–20
    [Google Scholar]
  66. 66. 
    Li W, Deng Y, Ning Y, He Z, Wang G. 2020. Exploiting broad-spectrum disease resistance in crops: from molecular dissection to breeding. Annu. Rev. Plant Biol. 71:575–603
    [Google Scholar]
  67. 67. 
    Li Y, Chen D, Hu J, Zhang K, Kang L et al. 2020. The α-tubulin of Laodelphax striatellus mediates the passage of rice stripe virus (RSV) and enhances horizontal transmission. PLOS Pathog 16:e1008710
    [Google Scholar]
  68. 68. 
    Li Y, Zhou Z, Shen M, Ge L, Liu F. 2020. Ubiquitin-conjugating enzyme E2 E inhibits the accumulation of rice stripe virus in Laodelphax striatellus (Fallén). Viruses 12:908
    [Google Scholar]
  69. 69. 
    Liang D, Qu Z, Ma X, Hull R 2005. Detection and localization of Rice stripe virus gene products in vivo. Virus Genes 31:211–21
    [Google Scholar]
  70. 70. 
    Lin Q, Xie L, Zhou Z, Xie Y, Wu ZJ. 1990. Studies on rice stripe: I. Distribution of and losses caused by the disease. J. Fujian Agric. Forest. Univ. 19:421–25
    [Google Scholar]
  71. 71. 
    Lin W, Qiu P, Jin J, Liu S, Ul Islam S et al. 2017. The cap snatching of segmented negative sense RNA viruses as a tool to map the transcription start sites of heterologous co-infecting viruses. Front. Microbiol. 8:2519
    [Google Scholar]
  72. 72. 
    Liu W, Gray S, Huo Y, Li L, Wei T, Wang X 2015. Proteomic analysis of interaction between a plant virus and its vector insect reveals new functions of hemipteran cuticular protein. Mol. Cell. Proteom. 14:2229–42
    [Google Scholar]
  73. 73. 
    Liu X, Jin J, Qiu P, Gao F, Lin W et al. 2018. Rice stripe tenuivirus has a greater tendency to use the prime-and-realign mechanism in transcription of genomic than in transcription of antigenomic template RNAs. J. Virol. 92:e01414–17
    [Google Scholar]
  74. 74. 
    Liu Y, Bassham DC. 2012. Autophagy: pathways for self-eating in plant cells. Annu. Rev. Plant Biol. 63:215–37
    [Google Scholar]
  75. 75. 
    Liu Z, Li X, Sun F, Zhou T, Zhou Y. 2017. Overexpression of OsCIPK30 enhances plant tolerance to rice stripe virus. Front. Microbiol. 8:2322
    [Google Scholar]
  76. 76. 
    Lu G, Li S, Zhou C, Qian X, Xiang Q et al. 2019. Tenuivirus utilizes its glycoprotein as a helper component to overcome insect midgut barriers for its circulative and propagative transmission. PLOS Pathog 15:e1007655
    [Google Scholar]
  77. 77. 
    Lu L, Wu S, Jiang J, Liang J, Zhou X, Wu J. 2018. Whole genome deep sequencing revealed host impact on population structure, variation and evolution of Rice stripe virus. Virology 524:32–44
    [Google Scholar]
  78. 78. 
    Ma Y, Wu W, Chen H, Liu Q, Jia D et al. 2013. An insect cell line derived from the small brown planthopper supports replication of rice stripe virus, a tenuivirus. J. Gen. Virol. 94:1421–25
    [Google Scholar]
  79. 79. 
    Maeda H, Matsushita K, Iida S, Sunohara Y. 2006. Characterization of two QTLs controlling resistance to rice stripe virus detected in a Japanese upland rice line, Kanto 72. Breed. Sci. 56:359–64
    [Google Scholar]
  80. 80. 
    Muthayya S, Sugimoto JD, Montgomery S, Maberly GF. 2014. An overview of global rice production, supply, trade, and consumption. Ann. N.Y. Acad. Sci. 1324:7–14
    [Google Scholar]
  81. 81. 
    Novoa RR, Calderita G, Arranz R, Fontana J, Granzow H, Risco C. 2005. Virus factories: associations of cell organelles for viral replication and morphogenesis. Biol. Cell 97:147–72
    [Google Scholar]
  82. 82. 
    Otuka A, Matsumura M, Sanada-Morimura S, Takeuchi H, Watanabe T et al. 2010. The 2008 overseas mass migration of the small brown planthopper, Laodelphax striatellus, and subsequent outbreak of rice stripe disease in western Japan. Appl. Entomol. Zool 45:259–66
    [Google Scholar]
  83. 83. 
    Pan X, Liang G, Chen Z, Zhang Y 2005. Breeding strategy on resistance to rice stripe in Jiangsu. Jiangsu Acad. Agric. Sci. 5:22–23
    [Google Scholar]
  84. 84. 
    Qin F, Liu W, Wu N, Zhang L, Zhang Z et al. 2018. Invasion of midgut epithelial cells by a persistently transmitted virus is mediated by sugar transporter 6 in its insect vector. PLOS Pathog 14:e1007201
    [Google Scholar]
  85. 85. 
    Qu F, Ye X, Morris TJ 2008. Arabidopsis DRB4, AGO1, AGO7, and RDR6 participate in a DCL4-initiated antiviral RNA silencing pathway negatively regulated by DCL1. PNAS 105:14732–37
    [Google Scholar]
  86. 86. 
    Reichel C, Beachy R. 1999. Degradation of tobacco mosaic virus movement protein by the 26S proteasome. J. Virol. 74:3330–37
    [Google Scholar]
  87. 87. 
    Satoh K, Kondoh H, Sasaya T, Shimizu T, Choi IR et al. 2010. Selective modification of rice (Oryza sativa) gene expression by rice stripe virus infection. J. Gen. Virol. 91:294–305
    [Google Scholar]
  88. 88. 
    Schneider WL, Roossinck MJ. 2001. Genetic diversity in RNA virus quasispecies is controlled by host-virus interactions. J. Virol. 75:6566–71
    [Google Scholar]
  89. 89. 
    Schnettler E, Hemmes H, Goldbach R, Prins M. 2008. The NS3 protein of rice hoja blanca virus suppresses RNA silencing in mammalian cells. J. Gen. Virol. 89:336–40
    [Google Scholar]
  90. 90. 
    Schwartz M, Chen J, Janda M, Sullivan M, den Boon J, Ahlquist P. 2002. A positive-strand RNA virus replication complex parallels form and function of retrovirus capsids. Mol. Cell 9:505–14
    [Google Scholar]
  91. 91. 
    Shen M, Xu Y, Jia R, Zhou X, Ye K. 2010. Size-independent and noncooperative recognition of dsRNA by the Rice stripe virus RNA silencing suppressor NS3. J. Mol. Biol. 404:665–79
    [Google Scholar]
  92. 92. 
    Shi B, Lin L, Wang S, Guo Q, Zhou H et al. 2016. Identification and regulation of host genes related to Rice stripe virus symptom production. New Phytol 209:1106–19
    [Google Scholar]
  93. 93. 
    Shimizu T, Toriyama S, Takahashi M, Akutsu K, Yoneyama K. 1996. Non-viral sequences at the 5' termini of mRNAs derived from virus-sense and virus-complementary sequences of the ambisense RNA segments of rice stripe tenuivirus. J. Gen. Virol. 77:541–46
    [Google Scholar]
  94. 94. 
    Sun F, Yuan X, Zhou T, Fan Y, Zhou Y 2011. Arabidopsis is susceptible to Rice stripe virus infections. J. Phytopathol. 159:767–72
    [Google Scholar]
  95. 95. 
    Takahashi M, Toriyama S, Hamamatsu C, Ishihama A. 1993. Nucleotide sequence and possible ambisense coding strategy of rice stripe virus RNA segment 2. J. Gen. Virol. 74:769–73
    [Google Scholar]
  96. 96. 
    Takahashi M, Toriyama S, Kikuchi Y, Hayakawa T, Ishihama A. 1990. Complementarity between the 5′-and 3′-terminal sequences of rice stripe virus RNAs. J. Gen. Virol. 71:2817–21
    [Google Scholar]
  97. 97. 
    Tong A, Yuan Q, Wang S, Peng J, Lu Y et al. 2017. Altered accumulation of osa-miR171b contributes to rice stripe virus infection by regulating disease symptoms. J. Exp. Bot. 68:4357–67
    [Google Scholar]
  98. 98. 
    Toriyama S. 1986. Rice stripe virus: prototype of a new group of viruses that replicate in plants and insects. Microbiol. Sci. 3:347–51
    [Google Scholar]
  99. 99. 
    Toriyama S, Takahashi M, Sano Y, Shimizu T, Ishihama A. 1994. Nucleotide sequence of RNA 1, the largest genomic segment of rice stripe virus, the prototype of the tenuiviruses. J. Gen. Virol. 75:3569–79
    [Google Scholar]
  100. 100. 
    Vierling E. 1991. The roles of heat shock proteins in plants. Annu. Rev. Plant Biol. 42:579–620
    [Google Scholar]
  101. 101. 
    Voges D, Zwickl P, Baumeister W. 1999. The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu. Rev. Biochem. 68:1015–68
    [Google Scholar]
  102. 102. 
    Wang A, Krishnaswamy S. 2012. Eukaryotic translation initiation factor 4E-mediated recessive resistance to plant viruses and its utility in crop improvement. Mol. Plant Pathol. 13:795–803
    [Google Scholar]
  103. 103. 
    Wang HD, Chen JP, Zhang HM, Sun XL, Zhu JL et al. 2008. Recent rice stripe virus epidemics in Zhejiang province, China, and experiments on sowing date, disease-yield loss relationships, and seedling susceptibility. Plant Dis 92:1190–96
    [Google Scholar]
  104. 104. 
    Wang Q, Liu Y, He J, Zheng X, Hu J et al. 2014. STV11 encodes a sulphotransferase and confers durable resistance to rice stripe virus. Nat. Commun. 5:4768
    [Google Scholar]
  105. 105. 
    Wang Q, Ma X, Qian S, Zhou X, Sun K et al. 2015. Rescue of a plant negative-strand RNA virus from cloned cDNA: insights into enveloped plant virus movement and morphogenesis. PLOS Pathog 11:e1005223
    [Google Scholar]
  106. 106. 
    Wang W, Zhao W, Li J, Luo L, Kang L, Cui F 2017. The c-Jun N-terminal kinase pathway of a vector insect is activated by virus capsid protein and promotes viral replication. eLife 6:e26591
    [Google Scholar]
  107. 107. 
    Wang XH, Aliyari R, Li WX, Li HW, Kim K et al. 2006. RNA interference directs innate immunity against viruses in adult Drosophila. Science 312:452–54
    [Google Scholar]
  108. 108. 
    Washio O, Ezuka A, Toriyama K, Sakurai Y. 1968. Studies on the breeding of rice varieties resistant to stripe disease: II. Genetic study on resistance to stripe disease in Japanese upland rice. Jpn. J. Breed. 18:96–101
    [Google Scholar]
  109. 109. 
    Washio O, Ezuka A, Toriyama K, Sakurai Y. 1968. Studies on the breeding of rice varieties resistant to stripe disease: III. Genetic studies on resistance to stripe disease in foreign varieties. Jpn. J. Breed. 18:167–72
    [Google Scholar]
  110. 110. 
    Waters ER, Vierling E. 2020. Plant small heat shock proteins: evolutionary and functional diversity. New Phytol 227:24–37
    [Google Scholar]
  111. 111. 
    Wei TY, Yang JG, Liao FL, Gao FL, Lu LM et al. 2009. Genetic diversity and population structure of rice stripe virus in China. J. Gen. Virol. 90:1025–34
    [Google Scholar]
  112. 112. 
    Wilson RC, Doudna JA. 2013. Molecular mechanisms of RNA interference. Annu. Rev. Biophys. 42:217–39
    [Google Scholar]
  113. 113. 
    Wu G, Zheng G, Hu Q, Ma M, Li M et al. 2018. NS3 protein from Rice stripe virus affects the expression of endogenous genes in Nicotiana benthamiana. Virol. J. 15:105
    [Google Scholar]
  114. 114. 
    Wu J, Yang R, Yang Z, Yao S, Zhao S et al. 2017. ROS accumulation and antiviral defence control by microRNA528 in rice. Nat. Plants 3:16203
    [Google Scholar]
  115. 115. 
    Wu J, Yang Z, Wang Y, Zheng L, Ye R et al. 2015. Viral-inducible Argonaute18 confers broad-spectrum virus resistance in rice by sequestering a host microRNA. eLife 4:e05733
    [Google Scholar]
  116. 116. 
    Wu S, Zhong H, Zhou Y, Zuo H, Zhou L et al. 2009. Identification of QTLs for the resistance to rice stripe virus in the indica rice variety Dular. Euphytica 165:557–65
    [Google Scholar]
  117. 117. 
    Wu W, Zheng L, Chen H, Jia D, Li F, Wei T 2014. Nonstructural protein NS4 of Rice stripe virus plays a critical role in viral spread in the body of vector insects. PLOS ONE 9:e88636
    [Google Scholar]
  118. 118. 
    Wu X, Zuo S, Chen Z, Zhang Y, Zhu J et al. 2011. Fine mapping of qSTV11TQ, a major gene conferring resistance to rice stripe disease. Theor. Appl. Genet. 122:915–23
    [Google Scholar]
  119. 119. 
    Xiong R, Wu J, Zhou Y, Zhou X. 2008. Identification of a movement protein of the Tenuivirus rice stripe virus. J. Virol. 82:12304–11
    [Google Scholar]
  120. 120. 
    Xiong R, Wu J, Zhou Y, Zhou X. 2009. Characterization and subcellular localization of an RNA silencing suppressor encoded by rice stripe tenuivirus. Virology 387:29–40
    [Google Scholar]
  121. 121. 
    Xu Y, Huang L, Fu S, Wu J, Zhou X. 2012. Population diversity of rice stripe virus-derived siRNAs in three different hosts and RNAi-based antiviral immunity in Laodelphgax striatellus. PLOS ONE 7:e46238
    [Google Scholar]
  122. 122. 
    Xu Y, Wu J, Fu S, Li C, Zhu Z, Zhou X. 2015. Rice stripe tenuivirus nonstructural protein 3 hijacks the 26S proteasome of the small brown planthopper via direct interaction with regulatory particle non-ATPase subunit 3. J. Virol. 89:4296–310
    [Google Scholar]
  123. 123. 
    Xu Y, Zhou X. 2012. Role of rice stripe virus NSvc4 in cell-to-cell movement and symptom development in Nicotiana benthamiana. Front. Plant Sci. 3:269
    [Google Scholar]
  124. 124. 
    Yamaguchi T, Yasuo S, Ishi M. 1965. Studies on rice stripe disease. III. Study on varietal resistance to stripe disease of rice plant. J. Cent. Agric. Exp. Stn. 8:109–60
    [Google Scholar]
  125. 125. 
    Yang J, Wang W, Ding X, Guo L, Fang Z et al. 2009. Auxin regulation in the interaction between Rice stripe virus and rice. Chin. J. Agric. Biotechnol. 6:27–33
    [Google Scholar]
  126. 126. 
    Yang Z, Huang Y, Yang J, Yao S, Zhao K et al. 2020. Jasmonate signaling enhances RNA silencing and antiviral defense in rice. Cell Host Microbe 28:89–103
    [Google Scholar]
  127. 127. 
    Yao M, Liu X, Li S, Xu Y, Zhou Y et al. 2014. Rice stripe tenuivirus NSvc2 glycoproteins targeted to the Golgi body by the N-terminal transmembrane domain and adjacent cytosolic 24 amino acids via the COP I- and COP II-dependent secretion pathway. J. Virol. 88:3223–34
    [Google Scholar]
  128. 128. 
    Yao M, Zhang T, Zhou T, Zhou Y, Zhou X, Tao X. 2012. Repetitive prime-and-realign mechanism converts short capped RNA leaders into longer ones that may be more suitable for elongation during rice stripe virus transcription initiation. J. Gen. Virol. 93:194–202
    [Google Scholar]
  129. 129. 
    Yao S, Yang Z, Yang R, Huang Y, Guo G et al. 2019. Transcriptional regulation of miR528 by OsSPL9 orchestrates antiviral response in rice. Mol. Plant 12:1114–22
    [Google Scholar]
  130. 130. 
    Yarwood CE. 1956. Obligate parasitism. Annu. Rev. Plant Biol. 7:115–42
    [Google Scholar]
  131. 131. 
    Yasuo S, Ishii M, Yamaguchi T. 1968. Studies on rice stripe disease. I. Epidemiological and ecological studies on rice stripe disease in the Kanto-Tosan district of central part of Japan. Rev. Plant Prot. Res 1:96–104
    [Google Scholar]
  132. 132. 
    Yu Y, Zhang M, Huo Y, Tang J, Liu Q et al. 2020. Laodelphax striatellus Atg8 facilitates rice stripe virus infection in an autophagy-independent manner. Insect Sci 28:2315–29
    [Google Scholar]
  133. 133. 
    Yuan Z, Chen H, Chen Q, Omura T, Xie L et al. 2011. The early secretory pathway and an actin-myosin VIII motility system are required for plasmodesmatal localization of the NSvc4 protein of rice stripe virus. Virus Res 159:62–68
    [Google Scholar]
  134. 134. 
    Zhang H, Li L, He Y, Qin Q, Chen C et al. 2020. Distinct modes of manipulation of rice auxin response factor OsARF17 by different plant RNA viruses for infection. PNAS 117:9112–21
    [Google Scholar]
  135. 135. 
    Zhang Y, Wang Q, Jiang L, Liu L, Wang B et al. 2011. Fine mapping of qSTV11KAS, a major QTL for rice stripe disease resistance. Theor. Appl. Genet. 122:1591–604
    [Google Scholar]
  136. 136. 
    Zhao J, Xu J, Chen B, Cui W, Zhou Z et al. 2019. Characterization of proteins involved in chloroplast targeting disturbed by rice stripe virus by novel protoplast-chloroplast proteomics. Int. J. Mol. Sci. 20:2253
    [Google Scholar]
  137. 137. 
    Zhao S, Xu G, He G, Peng Y, Liang C. 2019. Characterization of an endonuclease in rice stripe tenuivirus pc1 in vitro. Virus Res 260:33–37
    [Google Scholar]
  138. 138. 
    Zhao S, Zhang G, Dai X, Hou Y, Li M et al. 2012. Processing and intracellular localization of rice stripe virus pc2 protein in insect cells. Virology 429:148–54
    [Google Scholar]
  139. 139. 
    Zhao W, Lu L, Yang P, Cui N, Kang L, Cui F. 2016. Organ-specific transcriptome response of the small brown planthopper toward rice stripe virus. Insect Biochem. Mol. Biol. 70:60–72
    [Google Scholar]
  140. 140. 
    Zhao W, Wang Q, Xu Z, Liu R, Cui F. 2019. Distinct replication and gene expression strategies of the Rice stripe virus in vector insects and host plants. J. Gen. Virol. 100:877–88
    [Google Scholar]
  141. 141. 
    Zhao W, Wang Q, Xu Z, Liu R, Cui F. 2019. Immune responses induced by different genotypes of the disease-specific protein of rice stripe virus in the vector insect. Virology 527:122–31
    [Google Scholar]
  142. 142. 
    Zhao W, Xu Z, Zhang X, Yang M, Kang L et al. 2018. Genomic variations in the 3′-termini of Rice stripe virus in the rotation between vector insect and host plant. New Phytol 219:1085–96
    [Google Scholar]
  143. 143. 
    Zhao W, Yang P, Kang L, Cui F. 2016. Different pathogenicities of Rice stripe virus from the insect vector and from viruliferous plants. New Phytol 210:196–207
    [Google Scholar]
  144. 144. 
    Zheng L, Zhang C, Shi C, Yang Z, Wang Y et al. 2017. Rice stripe virus NS3 protein regulates primary miRNA processing through association with the miRNA biogenesis factor OsDRB1 and facilitates virus infection in rice. PLOS Pathog 13:e1006662
    [Google Scholar]
  145. 145. 
    Zhou T, Fan Y, Cheng Z, Zhou Y. 2008. Studies on the methodology for resistance identification of rice cultivar to the rice stripe disease. Plant Prot 34:77–80
    [Google Scholar]
  146. 146. 
    Zhou T, Fan Y, Cheng Z, Zhou Y. 2009. Advances on resistance to rice stripe disease in rice cultivars. J. Plant Genet. Resour. 10:328–33
    [Google Scholar]
  147. 147. 
    Zhu Y, Hayakawa T, Toriyama S. 1992. Complete nucleotide sequence of RNA 4 of rice stripe virus isolate T, and comparison with another isolate and with maize stripe virus. J. Gen. Virol. 73:1309–12
    [Google Scholar]
  148. 148. 
    Zhu Y, Hayakawa T, Toriyama S, Takahashi M. 1991. Complete nucleotide sequence of RNA 3 of rice stripe virus: an ambisense coding strategy. J. Gen. Virol. 72:763–67
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-020620-113020
Loading
/content/journals/10.1146/annurev-phyto-020620-113020
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error