1932

Abstract

Plant pathology has developed a wide range of concepts and tools for improving plant disease management, including models for understanding and responding to new risks from climate change. Most of these tools can be improved using new advances in artificial intelligence (AI), such as machine learning to integrate massive data sets in predictive models. There is the potential to develop automated analyses of risk that alert decision-makers, from farm managers to national plant protection organizations, to the likely need for action and provide decision support for targeting responses. We review machine-learning applications in plant pathology and synthesize ideas for the next steps to make the most of these tools in digital agriculture. Global projects, such as the proposed global surveillance system for plant disease, will be strengthened by the integration of the wide range of new data, including data from tools like remote sensors, that are used to evaluate the risk ofplant disease. There is exciting potential for the use of AI to strengthen global capacity building as well, from image analysis for disease diagnostics and associated management recommendations on farmers’ phones to future training methodologies for plant pathologists that are customized in real-time for management needs in response to the current risks. International cooperation in integrating data and models will help develop the most effective responses to new challenges from climate change.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-021021-042636
2022-08-26
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/phyto/60/1/annurev-phyto-021021-042636.html?itemId=/content/journals/10.1146/annurev-phyto-021021-042636&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Adadi A, Berrada M. 2018. Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access 6:52138–60
    [Google Scholar]
  2. 2.
    Andersen KF, Buddenhagen CE, Rachkara P, Gibson R, Kalule S et al. 2019. Modeling epidemics in seed systems and landscapes to guide management strategies: the case of sweet potato in Northern Uganda. Phytopathology 109:1519–32
    [Google Scholar]
  3. 3.
    Andersen Onofre KF, Forbes GA, Andrade-Piedra JL, Buddenhagen CE, Fulton J et al. 2021. An integrated seed health strategy and phytosanitary risk assessment: potato in the Republic of Georgia. Agric. Syst. 191:103144
    [Google Scholar]
  4. 4.
    Anderson W, You L, Wood S, Wood-Sichra U, Wu W. 2015. An analysis of methodological and spatial differences in global cropping systems models and maps. Glob. Ecol. Biogeogr. 24:180–91
    [Google Scholar]
  5. 5.
    Andrade-Piedra JL, Forbes GA, Shtienberg D, Grunwald NJ, Chacon MG et al. 2005. Qualification of a plant disease simulation model: performance of the LATEBLIGHT model across a broad range of environments. Phytopathology 95:1412–22
    [Google Scholar]
  6. 6.
    Andrade-Piedra JL, Hijmans RJ, Forbes GA, Fry WE, Nelson RJ. 2005. Simulation of potato late blight in the Andes. I: Modification and parameterization of the LATEBLIGHT model. Phytopathology 95:1191–99
    [Google Scholar]
  7. 7.
    Andrade-Piedra JL, Hijmans RJ, Juarez HS, Forbes GA, Shtienberg D, Fry WE. 2005. Simulation of potato late blight in the Andes. II: Validation of the LATEBLIGHT model. Phytopathology 95:1200–8
    [Google Scholar]
  8. 8.
    Atzori L, Iera A, Morabito G. 2010. The internet of things: a survey. Comput. Netw. 54:2787–805
    [Google Scholar]
  9. 9.
    Avelino J, Cristancho M, Georgiou S, Imbach P, Aguilar L et al. 2015. The coffee rust crises in Colombia and Central America (2008–2013): impacts, plausible causes and proposed solutions. Food Secur 7:303–21
    [Google Scholar]
  10. 10.
    Baker RE, Mahmud AS, Miller IF, Rajeev M, Rasambainarivo F et al. 2021. Infectious disease in an era of global change. Nat. Rev. Microbiol. 20:193–205
    [Google Scholar]
  11. 11.
    Bates S, Hastie T, Tibshirani R. 2021. Cross-validation: What does it estimate and how well does it do it?. arXiv:2104.00673 [stat.ME]
  12. 12.
    Bauer P, Stevens B, Hazeleger W. 2021. A digital twin of Earth for the green transition. Nat. Clim. Change 11:80–83
    [Google Scholar]
  13. 13.
    Bebber DP. 2015. Range-expanding pests and pathogens in a warming world. Annu. Rev. Phytopathol. 53:335–56
    [Google Scholar]
  14. 14.
    Benami E, Jin Z, Carter MR, Ghosh A, Hijmans RJ et al. 2021. Uniting remote sensing, crop modelling and economics for agricultural risk management. Nat. Rev. Earth Environ. 2:140–59
    [Google Scholar]
  15. 15.
    Bernard F, Sache I, Suffert F, Chelle M. 2013. The development of a foliar fungal pathogen does react to leaf temperature!. New Phytol 198:232–40
    [Google Scholar]
  16. 16.
    Bhattacharya B, Chattopadhyay C. 2013. A multi-stage tracking for mustard rot disease combining surface meteorology and satellite remote sensing. Comput. Electron. Agric. 90:35–44
    [Google Scholar]
  17. 17.
    Blandon-Diaz JU, Forbes GA, Andrade-Piedra JL, Yuen JE. 2011. Assessing the adequacy of the simulation model LATEBLIGHT under Nicaraguan conditions. Plant Dis 95:839–46
    [Google Scholar]
  18. 18.
    Bock CH, Barbedo JG, Del Ponte EM, Bohnenkamp D, Mahlein A-K. 2020. From visual estimates to fully automated sensor-based measurements of plant disease severity: status and challenges for improving accuracy. Phytopathol. Res. 2:9
    [Google Scholar]
  19. 19.
    Boeckhout M, Zielhuis GA, Bredenoord AL. 2018. The FAIR guiding principles for data stewardship: fair enough?. Eur. J. Hum. Genet. 26:931–36
    [Google Scholar]
  20. 20.
    Bohnenkamp D, Behmann J, Mahlein A-K. 2019. In-field detection of yellow rust in wheat on the ground canopy and UAV scale. Remote Sens. 11:2495
    [Google Scholar]
  21. 21.
    Bohnenkamp D, Behmann J, Paulus S, Steiner U, Mahlein A-K. 2021. A hyperspectral library of foliar diseases of wheat. Phytopathology 111:1583–93
    [Google Scholar]
  22. 22.
    Buddenhagen CE, Hernandez Nopsa JF, Andersen KF, Andrade-Piedra J, Forbes GA et al. 2017. Epidemic network analysis for mitigation of invasive pathogens in seed systems: potato in Ecuador. Phytopathology 107:1209–18
    [Google Scholar]
  23. 23.
    Buddenhagen CE, Xing Y, Andrade Piedra JL, Forbes GA, Kromann P et al. 2022. Where to invest project efforts for greater benefit: a framework for management performance mapping with examples for potato seed health. Phytopathology 112:143143
    [Google Scholar]
  24. 24.
    Bütikofer L, Anderson K, Bebber DP, Bennie JJ, Early RI, Maclean IM. 2020. The problem of scale in predicting biological responses to climate. Glob. Change Biol. 26:6657–66
    [Google Scholar]
  25. 25.
    Bzdok D, Altman N, Krzywinski M. 2018. Statistics versus machine learning. Nat. Methods 15:233–34
    [Google Scholar]
  26. 26.
    Camino C, Calderón R, Parnell S, Dierkes H, Chemin Y et al. 2021. Detection of Xylella fastidiosa in almond orchards by synergic use of an epidemic spread model and remotely sensed plant traits. Remote Sens. Environ. 260:112420
    [Google Scholar]
  27. 27.
    Carvajal-Yepes M, Cardwell K, Nelson A, Garrett KA, Giovani B et al. 2019. A global surveillance system for crop diseases. Science 364:1237–39
    [Google Scholar]
  28. 28.
    Chaloner TM, Gurr SJ, Bebber DP. 2020. Geometry and evolution of the ecological niche in plant-associated microbes. Nat. Commun. 11:2955
    [Google Scholar]
  29. 29.
    Chaloner TM, Gurr SJ, Bebber DP. 2021. Plant pathogen infection risk tracks global crop yields under climate change. Nat. Climate Change 11:710–15
    [Google Scholar]
  30. 30.
    Chapman D, Purse BV, Roy HE, Bullock JM. 2017. Global trade networks determine the distribution of invasive non-native species. Glob. Ecol. Biogeogr. 26:907–17
    [Google Scholar]
  31. 31.
    Chen QL, Hu HW, Yan ZZ, Li CY, Nguyen BAT et al. 2021. Precipitation increases the abundance of fungal plant pathogens in Eucalyptus phyllosphere. Environ. Microbiol. 23:7688–700
    [Google Scholar]
  32. 32.
    Chouhan SS, Singh UP, Jain S. 2020. Applications of computer vision in plant pathology: a survey. Arch. Comput. Methods Eng. 27:611–32
    [Google Scholar]
  33. 33.
    Clohessy JW, Sanjel S, O'Brien GK, Barocco R, Kumar S et al. 2021. Development of a high-throughput plant disease symptom severity assessment tool using machine learning image analysis and integrated geolocation. Comput. Electron. Agric. 184:106089
    [Google Scholar]
  34. 34.
    Coakley SM, Scherm H, Chakraborty S. 1999. Climate change and plant disease management. Annu. Rev. Phytopathol. 37:399–426
    [Google Scholar]
  35. 35.
    Cotrozzi L, Couture JJ. 2020. Hyperspectral assessment of plant responses to multi-stress environments: prospects for managing protected agrosystems. Plants People Planet 2:244–58
    [Google Scholar]
  36. 36.
    Couture JJ, Serbin SP, Townsend PA. 2013. Spectroscopic sensitivity of real-time, rapidly induced phytochemical change in response to damage. New Phytol. 198:311–19
    [Google Scholar]
  37. 37.
    Couture JJ, Singh A, Rubert-Nason KF, Serbin SP, Lindroth RL, Townsend PA. 2016. Spectroscopic determination of ecologically relevant plant secondary metabolites. Methods Ecol. Evol. 7:1402–12
    [Google Scholar]
  38. 38.
    Cunniffe NJ, Stutt RO, DeSimone RE, Gottwald TR, Gilligan CA. 2015. Optimising and communicating options for the control of invasive plant disease when there is epidemiological uncertainty. PLOS Comput. Biol. 11:e1004211
    [Google Scholar]
  39. 39.
    Curran PJ. 1989. Remote sensing of foliar chemistry. Remote Sens. Environ. 30:271–78
    [Google Scholar]
  40. 40.
    Dalla Lana F, Madden LV, Paul PA 2021. Logistic models derived using LASSO methods for quantifying the risk of natural contamination of maize grain with deoxynivalenol. Phytopathology 111:2250–67
    [Google Scholar]
  41. 41.
    Delgado C, Benitez H, Cruz M, Selvaraj M 2019. Digital disease phenotyping. Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium5702–5 New York: IEEE
    [Google Scholar]
  42. 42.
    Delgado-Baquerizo M, Guerra CA, Cano-Díaz C, Egidi E, Wang J-T et al. 2020. The proportion of soil-borne pathogens increases with warming at the global scale. Nat. Clim. Change 10:550–54
    [Google Scholar]
  43. 43.
    DeWolf ED, Francl LJ. 1997. Neural networks that distinguish infection periods of wheat tan spot in an outdoor environment. Phytopathology 87:83–87
    [Google Scholar]
  44. 44.
    Dormann CF, Schymanski SJ, Cabral J, Chuine I, Graham C et al. 2012. Correlation and process in species distribution models: bridging a dichotomy. J. Biogeogr. 39:2119–31
    [Google Scholar]
  45. 45.
    Dossa GS, Sparks A, Cruz CV, Oliva R. 2015. Decision tools for bacterial blight resistance gene deployment in rice-based agricultural ecosystems. Front. Plant Sci. 6:305
    [Google Scholar]
  46. 46.
    Drenth A, Kema G. 2021. The vulnerability of bananas to globally emerging disease threats. Phytopathology 111:2146–61
    [Google Scholar]
  47. 47.
    Duarte-Carvajalino JM, Alzate DF, Ramirez AA, Santa-Sepulveda JD, Fajardo-Rojas AE, Soto-Suárez M. 2018. Evaluating late blight severity in potato crops using unmanned aerial vehicles and machine learning algorithms. Remote Sens. 10:1513
    [Google Scholar]
  48. 48.
    Dudney J, Willing CE, Das AJ, Latimer AM, Nesmith JC, Battles JJ. 2021. Nonlinear shifts in infectious rust disease due to climate change. Nat. Commun. 12:5102
    [Google Scholar]
  49. 49.
    Dutta S, Singh SK, Khullar M. 2014. A case study on forewarning of yellow rust affected areas on wheat crop using satellite data. J. Indian Soc. Remote Sens. 42:335–42
    [Google Scholar]
  50. 50.
    Early R, Bradley BA, Dukes JS, Lawler JJ, Olden JD et al. 2016. Global threats from invasive alien species in the twenty-first century and national response capacities. Nat. Commun. 7:12485
    [Google Scholar]
  51. 51.
    Efron B. 2020. Prediction, estimation, and attribution. Int. Stat. Rev. 88:S28–S59
    [Google Scholar]
  52. 52.
    Eitzinger A, Binder CR, Meyer MA. 2018. Risk perception and decision-making: Do farmers consider risks from climate change?. Clim. Change 151:507–24
    [Google Scholar]
  53. 53.
    Erickson B, Fausti SW. 2021. The role of precision agriculture in food security. Agron. J. 113:4455–62
    [Google Scholar]
  54. 54.
    Evans SW, Beal J, Berger K, Bleijs DA, Cagnetti A et al. 2020. Embrace experimentation in biosecurity governance. Science 368:138–40
    [Google Scholar]
  55. 55.
    Fenu G, Malloci FM. 2021. Forecasting plant and crop disease: an explorative study on current algorithms. Big Data Cogn. Comput. 5:2
    [Google Scholar]
  56. 56.
    Fones HN, Bebber DP, Chaloner TM, Kay WT, Steinberg G, Gurr SJ. 2020. Threats to global food security from emerging fungal and oomycete crop pathogens. Nat. Food 1:332–42
    [Google Scholar]
  57. 57.
    Gao B-C. 1996. NDWI: a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 58:257–66
    [Google Scholar]
  58. 58.
    Garcia-Figuera S, Grafton-Cardwell EE, Babcock BA, Lubell MN, McRoberts N. 2021. Institutional approaches for plant health provision as a collective action problem. Food Secur 13:273–90
    [Google Scholar]
  59. 59.
    Garrett KA. 2021. Impact network analysis and the INA R package: decision support for regional management interventions. Methods Ecol. Evol. 12:1634–47
    [Google Scholar]
  60. 60.
    Garrett KA, Alcalá-Briseño RI, Andersen KF, Brawner J, Choudhury RA et al. 2020. Effective altruism as an ethical lens on research priorities. Phytopathology 110:708–22
    [Google Scholar]
  61. 61.
    Garrett KA, Alcalá-Briseño RI, Andersen KF, Choudhury RA, Dantes W et al. 2020. Adapting disease management systems under global change. Emerging Plant Diseases and Global Food Security J Ristaino, A Records 31–50 St. Paul, MN: APS Press
    [Google Scholar]
  62. 62.
    Garrett KA, Dendy SP, Frank EE, Rouse MN, Travers SE. 2006. Climate change effects on plant disease: genomes to ecosystems. Annu. Rev. Phytopathol. 44:489–509
    [Google Scholar]
  63. 63.
    Garrett KA, Forbes GA, Savary S, Skelsey P, Sparks AH et al. 2011. Complexity in climate-change impacts: an analytical framework for effects mediated by plant disease. Plant Pathol 60:15–30
    [Google Scholar]
  64. 64.
    Gillon D, Houssard C, Joffre R. 1999. Using near-infrared reflectance spectroscopy to predict carbon, nitrogen and phosphorus content in heterogeneous plant material. Oecologia 118:173–82
    [Google Scholar]
  65. 65.
    Gold KM. 2021. Plant disease sensing: studying plant-pathogen interactions at scale. mSystems 6:e01228–21
    [Google Scholar]
  66. 66.
    Gold KM, Townsend PA, Herrmann I, Gevens AJ 2020. Investigating potato late blight physiological differences across potato cultivars with spectroscopy and machine learning. Plant Sci 295:110316
    [Google Scholar]
  67. 67.
    Griffel L, Delparte D, Edwards J. 2018. Using Support Vector Machines classification to differentiate spectral signatures of potato plants infected with Potato virus Y. Comput. Electron. Agric. 153:318–24
    [Google Scholar]
  68. 68.
    Gunning D, Stefik M, Choi J, Miller T, Stumpf S, Yang G-Z. 2019. XAI—explainable artificial intelligence. Sci. Robot. 4:aay7120
    [Google Scholar]
  69. 69.
    Halliday FEB, Hampson K, Hanley N, Lembo T, Sharp JP et al. 2017. Driving improvements in emerging disease surveillance through locally relevant capacity strengthening. Science 357:146–48
    [Google Scholar]
  70. 70.
    Heim RH, Carnegie AJ, Zarco-Tejada PJ. 2019. Breaking down barriers between remote sensing and plant pathology. Trop. Plant Pathol. 44:398–400
    [Google Scholar]
  71. 71.
    Herrmann I, Vosberg SK, Ravindran P, Singh A, Chang H-X et al. 2018. Leaf and canopy level detection of Fusarium virguliforme (sudden death syndrome) in soybean. Remote Sens. 10:426
    [Google Scholar]
  72. 72.
    Hofman JM, Watts DJ, Athey S, Garip F, Griffiths TL et al. 2021. Integrating explanation and prediction in computational social science. Nature 595:181–88
    [Google Scholar]
  73. 73.
    IPCC 2013. Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, G-K Plattner, M Tignor, SK Allen, et al Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  74. 74.
    Ireland KB, Hardy GE, Kriticos DJ. 2013. Combining inferential and deductive approaches to estimate the potential geographical range of the invasive plant pathogen, Phytophthora ramorum. PLOS ONE 8:e63508
    [Google Scholar]
  75. 75.
    Jackson RD. 1986. Remote sensing of biotic and abiotic plant stress. Annu. Rev. Phytopathol. 24:265–87
    [Google Scholar]
  76. 76.
    Jeger MJ, Pautasso M. 2008. Plant disease and global change: the importance of long-term data sets. New Phytol 177:8–11
    [Google Scholar]
  77. 77.
    Jones RAC, Barbetti MJ. 2012. Influence of climate change on plant disease infections and epidemics caused by viruses and bacteria. CAB Rev 7:1–33
    [Google Scholar]
  78. 78.
    Juroszek P, Racca P, Link S, Farhumand J, Kleinhenz B. 2020. Overview on the review articles published during the past 30 years relating to the potential climate change effects on plant pathogens and crop disease risks. Plant Pathol. 69:179–93
    [Google Scholar]
  79. 79.
    Kamilaris A, Prenafeta-Boldú FX. 2018. Deep learning in agriculture: a survey. Comput. Electron. Agric. 147:70–90
    [Google Scholar]
  80. 80.
    Kokaly RF, Skidmore AK. 2015. Plant phenolics and absorption features in vegetation reflectance spectra near 1.66 μm. Int. J. Appl. Earth Obs. Geoinf. 43:55–83
    [Google Scholar]
  81. 81.
    Kreuze J, Adewopo J, Selvaraj M, Mwanzia L, Lava Kumar P et al. 2022. Innovative digital technologies to monitor and control pest and disease threats in root, tuber, and banana (RT&B) cropping systems: progress and prospects. Root, Tuber and Banana Food System Innovations G Thiele, M Friedmann, H Campos, V Polar, JW Bentley 261–88 Cham, Switz: Springer
    [Google Scholar]
  82. 82.
    Launay M, Zurfluh O, Huard F, Buis S, Bourgeois G et al. 2020. Robustness of crop disease response to climate change signal under modeling uncertainties. Agric. Syst. 178:102733
    [Google Scholar]
  83. 83.
    Lazer D, Kennedy R, King G, Vespignani A. 2014. The parable of Google Flu: traps in big data analysis. Science 343:1203–5
    [Google Scholar]
  84. 84.
    Lewis CM, Persoons A, Bebber DP, Kigathi RN, Maintz J et al. 2018. Potential for re-emergence of wheat stem rust in the United Kingdom. Commun. Biol. 1:13
    [Google Scholar]
  85. 85.
    Li Z, Paul R, Tis TB, Saville AC, Hansel JC et al. 2019. Non-invasive plant disease diagnostics enabled by smartphone-based fingerprinting of leaf volatiles. Nat. Plants 5:856–66
    [Google Scholar]
  86. 86.
    Liakos KG, Busato P, Moshou D, Pearson S, Bochtis D. 2018. Machine learning in agriculture: a review. Sensors 18:2674
    [Google Scholar]
  87. 87.
    Linardatos P, Papastefanopoulos V, Kotsiantis S. 2021. Explainable AI: a review of machine learning interpretability methods. Entropy 23:18
    [Google Scholar]
  88. 88.
    Lipkin WI. 2013. The changing face of pathogen discovery and surveillance. Nat. Rev. Microbiol. 11:133–41
    [Google Scholar]
  89. 89.
    Liu E, Gold KM, Combs D, Cadle-Davidson L, Jiang Y. 2021. Deep learning-based autonomous downy mildew detection and severity estimation in vineyards. Proceedings of the 2021 ASABE Annual International Virtual Meeting St. Joseph, MI: Am. Soc. Agric. Biol. Eng.
    [Google Scholar]
  90. 90.
    Magarey RD, Colunga-Garcia M, Fieselmann DA. 2009. Plant biosecurity in the United States: roles, responsibilities, and information needs. BioScience 59:875–84
    [Google Scholar]
  91. 91.
    Mahlein A-K. 2016. Plant disease detection by imaging sensors: parallels and specific demands for precision agriculture and plant phenotyping. Plant Dis 100:241–51
    [Google Scholar]
  92. 92.
    Mahlein A-K, Kuska MT, Behmann J, Polder G, Walter A. 2018. Hyperspectral sensors and imaging technologies in phytopathology: state of the art. Annu. Rev. Phytopathol. 56:535–58
    [Google Scholar]
  93. 93.
    Mahlein A-K, Kuska MT, Thomas S, Wahabzada M, Behmann J et al. 2019. Quantitative and qualitative phenotyping of disease resistance of crops by hyperspectral sensors: seamless interlocking of phytopathology, sensors, and machine learning is needed!. Curr. Opin. Plant Biol. 50:156–62
    [Google Scholar]
  94. 94.
    Mañez M, Carmona M, Haro D, Hanger S. 2016. Risk perception. Novel Multi-Sector Partnerships in Disaster Risk Management: Results of the ENHANCE Project J Aerts, J Mysiak 51–67 Brussels: Proj. ENHANCE
    [Google Scholar]
  95. 95.
    Marcus G. 2018. Deep learning: a critical appraisal. arXiv:1801.00631 [cs.AI]
  96. 96.
    Martinetti D, Soubeyrand S. 2019. Identifying lookouts for epidemio-surveillance: application to the emergence of Xylella fastidiosa in France. Phytopathology 109:265–76
    [Google Scholar]
  97. 97.
    Meyer M, Cox JA, Hitchings MDT, Burgin L, Hort MC et al. 2017. Quantifying airborne dispersal routes of pathogens over continents to safeguard global wheat supply. Nat. Plants 3:780–86
    [Google Scholar]
  98. 98.
    Mirik M, Jones D, Price J, Workneh F, Ansley R, Rush C 2011. Satellite remote sensing of wheat infected by wheat streak mosaic virus. Plant Dis 95:4–12
    [Google Scholar]
  99. 99.
    Mohanty SP, Hughes DP, Salathé M. 2016. Using deep learning for image-based plant disease detection. Front. Plant Sci. 7:1419
    [Google Scholar]
  100. 100.
    Mooney SJ, Pejaver V. 2018. Big data in public health: terminology, machine learning, and privacy. Annu. Rev. Public Health 39:95–112
    [Google Scholar]
  101. 101.
    Mrisho LM, Mbilinyi NA, Ndalahwa M, Ramcharan AM, Kehs AK et al. 2020. Accuracy of a smartphone-based object detection model, PlantVillage Nuru, in identifying the foliar symptoms of the viral diseases of cassava: CMD and CBSD. Front. Plant Sci. 11:590889
    [Google Scholar]
  102. 102.
    Nagarajan S, Seibold G, Kranza J, Saari E, Joshi L. 1984. Monitoring wheat rust epidemics with the Landsat-2 satellite. Phytopathology 74:585–87
    [Google Scholar]
  103. 103.
    Narouei-Khandan HA, Shakya SK, Garrett KA, Goss EM, Dufault NS et al. 2020. BLIGHTSIM: A new potato late blight model simulating the response of phytophthora infestans to diurnal temperature and humidity fluctuations in relation to climate change. Pathogens 9:659
    [Google Scholar]
  104. 104.
    Naudé W. 2020. Artificial intelligence versus COVID-19: limitations, constraints and pitfalls. AI Soc. 35:761–65
    [Google Scholar]
  105. 105.
    Newlands NK. 2018. Model-based forecasting of agricultural crop disease risk at the regional scale, integrating airborne inoculum, environmental, and satellite-based monitoring data. Front. Environ. Sci. 6:63
    [Google Scholar]
  106. 106.
    Nieke J, Rast M. 2018. Towards the Copernicus Hyperspectral Imaging Mission for the Environment (CHIME). Proceedings of the IGARSS 20182018 IEEE International Geoscience and Remote Sensing Symposium157–59 New York: IEEE
    [Google Scholar]
  107. 107.
    Nilsson HE. 1969. Studies of root and foot rot diseases of cereals and grasses. I. On resistance to Ophiobolus graminis Sacc. Lantbr. Ann. 35:275–807
    [Google Scholar]
  108. 108.
    Oberti R, Marchi M, Tirelli P, Calcante A, Iriti M et al. 2016. Selective spraying of grapevines for disease control using a modular agricultural robot. Biosyst. Eng. 146:203–15
    [Google Scholar]
  109. 109.
    Ocimati W, Bouwmeester H, Groot JC, Tittonell P, Brown D, Blomme G. 2019. The risk posed by Xanthomonas wilt disease of banana: mapping of disease hotspots, fronts and vulnerable landscapes. PLOS ONE 14:e0213691
    [Google Scholar]
  110. 110.
    Oerke E-C. 2020. Remote sensing of diseases. Annu. Rev. Phytopathol. 58:225–52
    [Google Scholar]
  111. 111.
    Onofre RB, Gadoury DM, Stensvand A, Bierma A, Rea MS, Peres NA. 2021. Use of ultraviolet light to suppress powdery mildew in strawberry fruit production fields. Plant Dis. 105:2402–9
    [Google Scholar]
  112. 112.
    Oren R, Schulze E-D, Matyssek R, Zimmermann R. 1986. Estimating photosynthetic rate and annual carbon gain in conifers from specific leaf weight and leaf biomass. Oecologia 70:187–93
    [Google Scholar]
  113. 113.
    Parnell S, Gottwald TR, Gilligan CA, Cunniffe NJ, van den Bosch F. 2010. The effect of landscape pattern on the optimal eradication zone of an invading epidemic. Phytopathology 100:638–44
    [Google Scholar]
  114. 114.
    Parnell S, van den Bosch F, Gottwald T, Gilligan CA. 2017. Surveillance to inform control of emerging plant diseases: an epidemiological perspective. Annu. Rev. Phytopathol. 55:591–610
    [Google Scholar]
  115. 115.
    Pautasso M, Doring TF, Garbelotto M, Pellis L, Jeger MJ. 2012. Impacts of climate change on plant disease—opinions and trends. Eur. J. Plant Pathol. 133:295–313
    [Google Scholar]
  116. 116.
    Phillips SJ, Anderson RP, Schapire RE. 2006. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190:231–59
    [Google Scholar]
  117. 117.
    Polder G, Blok PM, De Villiers HA, Van der Wolf JM, Kamp J. 2019. Potato virus Y detection in seed potatoes using deep learning on hyperspectral images. Front. Plant Sci. 10:209
    [Google Scholar]
  118. 118.
    Poudel R, Jumpponen A, Schlatter DC, Paulitz TC, McSpadden Gardener B et al. 2016. Microbiome networks: a systems framework for identifying candidate microbial assemblages for disease management. Phytopathology 106:1083–96
    [Google Scholar]
  119. 119.
    Prank M, Kenaley SC, Bergstrom GC, Acevedo M, Mahowald NM. 2019. Climate change impacts the spread potential of wheat stem rust, a significant crop disease. Environ. Res. Lett. 14:124053
    [Google Scholar]
  120. 120.
    Prosperi M, Min JS, Bian J, Modave F. 2018. Big data hurdles in precision medicine and precision public health. BMC Med. Inf. Decis. Mak. 18:139
    [Google Scholar]
  121. 120a.
    Ramcharan A, Baranowski K, McCloskey P, Ahmed B, Legg J, Hughes DP 2017. Deep learning for image-based cassava disease detection. Front. Plant Sci 8:1852
    [Google Scholar]
  122. 121.
    Ristaino JB, Anderson PK, Bebber DP, Brauman KAC, Cunniffe NJ et al. 2021. The persistent threat of emerging plant disease pandemics to global food security. PNAS 118:e20222239118
    [Google Scholar]
  123. 122.
    Rosenzweig C, Iglesias A, Yang XB, Epstein PR, Chivian E. 2001. Climate change and extreme weather events: implications for food production, plant diseases, and pests. Glob. Change Hum. Health 2:90–104
    [Google Scholar]
  124. 123.
    Rosenzweig C, Jones JW, Hatfield JL, Ruane AC, Boote KJ et al. 2013. The Agricultural Model Intercomparison and Improvement Project (AgMIP): protocols and pilot studies. Agric. For. Meteorol. 170:166–82
    [Google Scholar]
  125. 124.
    Rosenzweig C, Ruane AC, Antle J, Elliott J, Ashfaq M et al. 2018. Coordinating AgMIP data and models across global and regional scales for 1.5 C and 2.0 C assessments. Philos. Trans. R. Soc. A 376:20160455
    [Google Scholar]
  126. 125.
    Samek W, Müller K-R 2019. Towards explainable artificial intelligence. Explainable AI: Interpreting, Explaining and Visualizing Deep Learning W Samek, G Montavon, A Vedaldi, LK Hansen, KR Müller 5–22 New York: Springer
    [Google Scholar]
  127. 126.
    Savary S, Willocquet L, Pethybridge SJ, Esker P, McRoberts N, Nelson A 2019. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 3:43039
    [Google Scholar]
  128. 127.
    Scherm H, Thomas CS, Garrett KA, Olsen JM. 2014. Meta-analysis and other approaches for synthesizing structured and unstructured data in plant pathology. Annu. Rev. Phytopathol. 52:453–76
    [Google Scholar]
  129. 128.
    Schmale DG III, Ross SD. 2015. Highways in the sky: scales of atmospheric transport of plant pathogens. Annu. Rev. Phytopathol. 53:591–611
    [Google Scholar]
  130. 129.
    Schneider F, Ferraz A, Schimel D. 2019. Watching Earth's interconnected systems at work. Eos https://eos.org/science-updates/watching-earths-interconnected-systems-at-work
    [Google Scholar]
  131. 130.
    Schramowski P, Stammer W, Teso S, Brugger A, Herbert F et al. 2020. Making deep neural networks right for the right scientific reasons by interacting with their explanations. Nat. Mach. Intell. 2:476–86
    [Google Scholar]
  132. 131.
    Schultz M, Betancourt C, Gong B, Kleinert F, Langguth M et al. 2021. Can deep learning beat numerical weather prediction?. Philos. Trans. R. Soc. A 379:20200097
    [Google Scholar]
  133. 132.
    Selvaraj MG, Vergara A, Montenegro F, Ruiz HA, Safari N et al. 2020. Detection of banana plants and their major diseases through aerial images and machine learning methods: a case study in DR Congo and Republic of Benin. ISPRS J. Photogr. Remote Sens. 169:110–24
    [Google Scholar]
  134. 133.
    Selvaraj MG, Vergara A, Ruiz H, Safari N, Elayabalan S et al. 2019. AI-powered banana diseases and pest detection. Plant Methods 15:92
    [Google Scholar]
  135. 134.
    Serbin SP, Wu J, Ely KS, Kruger EL, Townsend PA et al. 2019. From the Arctic to the tropics: multibiome prediction of leaf mass per area using leaf reflectance. New Phytol 224:1557–68
    [Google Scholar]
  136. 135.
    Shah D, Paul P, De Wolf E, Madden L. 2019. Predicting plant disease epidemics from functionally represented weather series. Philos. Trans. R. Soc. B 374:20180273
    [Google Scholar]
  137. 136.
    Shakoor N, Lee S, Mockler TC. 2017. High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field. Curr. Opin. Plant Biol. 38:184–92
    [Google Scholar]
  138. 137.
    Sidey-Gibbons JA, Sidey-Gibbons CJ. 2019. Machine learning in medicine: a practical introduction. BMC Med. Res. Methodol. 19:64
    [Google Scholar]
  139. 138.
    Singh A, Serbin SP, McNeil BE, Kingdon CC, Townsend PA. 2015. Imaging spectroscopy algorithms for mapping canopy foliar chemical and morphological traits and their uncertainties. Ecol. Appl. 25:2180–97
    [Google Scholar]
  140. 139.
    Skelsey P. 2021. Forecasting risk of crop disease with anomaly detection algorithms. Phytopathology 111:321–32
    [Google Scholar]
  141. 140.
    Small IM, Joseph L, Fry WE 2015. Development and implementation of the BlightPro decision support system for potato and tomato late blight management. Comput. Electron. Agric. 115:57–65
    [Google Scholar]
  142. 141.
    Soberón J, Peterson AT. 2005. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers. Inf. http://doi.org/10.17161/bi.v2i0.4
    [Crossref] [Google Scholar]
  143. 142.
    Sousa D, Fisher JB, Galvan FR, Pavlick RP, Cordell S et al. 2021. Tree canopies reflect mycorrhizal composition. Geophys. Res. Lett. 48:e2021GL092764
    [Google Scholar]
  144. 143.
    Sparks AH, Forbes GA, Hijmans RJ, Garrett KA. 2014. Climate change may have limited effect on the global risk of potato late blight. Glob. Change Biol. 20:3621–31
    [Google Scholar]
  145. 144.
    Stokes DE. 1997. Pasteur's Quadrant: Basic Science and Technological Innovation Washington, DC: Brookings
    [Google Scholar]
  146. 145.
    Suthaparan A, Solhaug K, Bjugstad N, Gislerød H, Gadoury D, Stensvand A. 2016. Suppression of powdery mildews by UV-B: application frequency and timing, dose, reflectance, and automation. Plant Dis 100:1643–50
    [Google Scholar]
  147. 146.
    Topçuoğlu BD, Lesniak NA, Ruffin MT IV, Wiens J, Schloss PD 2020. A framework for effective application of machine learning to microbiome-based classification problems. mBio 11:e00434–20
    [Google Scholar]
  148. 147.
    Trolley G, Romero F, Pavlick R, Starr C, Gold K. 2021. Grapevine variety discrimination using airborne hyperspectral imagery Paper presented at the 2021 AGU Fall Meeting Chicago:
  149. 148.
    Tzounis A, Katsoulas N, Bartzanas T, Kittas C. 2017. Internet of Things in agriculture, recent advances and future challenges. Biosyst. Eng. 164:31–48
    [Google Scholar]
  150. 149.
    Varshney RK, Singh VK, Hickey JM, Xun X, Marshall DF et al. 2016. Analytical and decision support tools for genomics-assisted breeding. Trends Plant Sci 21:354–63
    [Google Scholar]
  151. 150.
    Venette RC, Cohen SD. 2006. Potential climatic suitability for establishment of Phytophthora ramorum within the contiguous United States. For. Ecol. Manag. 231:18–26
    [Google Scholar]
  152. 151.
    Větrovský T, Kohout P, Kopecký M, Machac A, Man M et al. 2019. A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat. Commun. 10:5142
    [Google Scholar]
  153. 152.
    Wang C, Wang X, Jin Z, Müller C, Pugh TA et al. 2021. Occurrence of crop pests and diseases has largely increased in China since 1970. Nat. Food 3:57–65
    [Google Scholar]
  154. 153.
    Wang Z, Chlus A, Geygan R, Ye Z, Zheng T et al. 2020. Foliar functional traits from imaging spectroscopy across biomes in eastern North America. New Phytol 228:494–511
    [Google Scholar]
  155. 154.
    Wang Z, Townsend PA, Schweiger AK, Couture JJ, Singh A et al. 2019. Mapping foliar functional traits and their uncertainties across three years in a grassland experiment. Remote Sens. Environ. 221:405–16
    [Google Scholar]
  156. 155.
    Wood JR, Díaz FP, Latorre C, Wilmshurst JM, Burge OR, Gutiérrez RA. 2018. Plant pathogen responses to Late Pleistocene and Holocene climate change in the central Atacama Desert, Chile. Sci. Rep. 8:17208
    [Google Scholar]
  157. 156.
    Xing Y, Hernandez Nopsa JF, Andersen KF, Andrade-Piedra JL, Beed FD et al. 2020. Global cropland connectivity: a risk factor for invasion and saturation by emerging pathogens and pests. BioScience 70:744–58
    [Google Scholar]
  158. 157.
    Yuan M, Couture JJ, Townsend PA, Ruark MD, Bland WL. 2016. Spectroscopic determination of leaf nitrogen concentration and mass per area in sweet corn and snap bean. Agron. J. 108:2519–26
    [Google Scholar]
  159. 158.
    Zarco-Tejada P, Poblete T, Camino C, Gonzalez-Dugo V, Calderon R et al. 2021. Divergent abiotic spectral pathways unravel pathogen stress signals across species. Nat. Commun. 12:6088
    [Google Scholar]
  160. 159.
    Zhai Y, Cui L, Zhou X, Gao Y, Fei T, Gao W. 2013. Estimation of nitrogen, phosphorus, and potassium contents in the leaves of different plants using laboratory-based visible and near-infrared reflectance spectroscopy: comparison of partial least-square regression and support vector machine regression methods. Int. J. Remote Sens. 34:2502–18
    [Google Scholar]
  161. 160.
    Zhang M, Qin Z, Liu X. 2005. Remote sensed spectral imagery to detect late blight in field tomatoes. Precis. Agric. 6:489–508
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-021021-042636
Loading
/content/journals/10.1146/annurev-phyto-021021-042636
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error