1932

Abstract

Oxalic acid production in has long been associated with virulence. Research involving UV-induced, genetically undefined mutants that concomitantly lost oxalate accumulation, sclerotial formation, and pathogenicity supported the conclusion that oxalate is an essential pathogenicity determinant of . However, recent investigations showed that genetically defined mutants that lost oxalic acid production but accumulated fumaric acid could cause disease on many plants and substantiated the conclusion that acidic pH, not oxalic acid per se, is the necessary condition for disease development. Critical evaluation of available evidence showed that the UV-induced mutants harbored previously unrecognized confounding genetic defects in saprophytic growth and pH responsiveness, warranting reevaluation of the conclusions about virulence based on the UV-induced mutants. Furthermore, analyses of the evidence suggested a hypothesis for the existence of an unrecognized regulator responsive to acidic pH. Identifying the unknown pH regulator would offer a new avenue for investigating pH sensing/regulation in and novel targets for intervention in disease control strategies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-080417-050052
2018-08-25
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/phyto/56/1/annurev-phyto-080417-050052.html?itemId=/content/journals/10.1146/annurev-phyto-080417-050052&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Abawi GS, Grogan RG 1979. Epidemiology of diseases caused by Sclerotinia species. Phytopathology 69:899–904
    [Google Scholar]
  2. 2.  Alkan N, Espeso EA, Prusky D 2013. Virulence regulation of phytopathogenic fungi by pH. Antioxid. Redox Signal. 19:1012–25
    [Google Scholar]
  3. 3.  Alkan N, Meng XC, Friedlander G, Reuveni E, Sukno S et al. 2013. Global aspects of pacC regulation of pathogenicity genes in Colletotrichum gloeosporioides as revealed by transcriptome analysis. Mol. Plant-Microbe Interact. 26:1345–58
    [Google Scholar]
  4. 4.  Amselem J, Cuomo CA, van Kan JA, Viaud M, Benito EP et al. 2011. Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. . PLOS Genet 7:e1002230
    [Google Scholar]
  5. 5.  Anderson JB, Kohn LM 1995. Clonality in soilborne, plant-pathogenic fungi. Annu. Rev. Phytopathol. 33:369–91
    [Google Scholar]
  6. 6.  Arst HNJr., Penalva MA 2003. Recognizing gene regulation by ambient pH. Fungal Genet. Biol. 40:1–3
    [Google Scholar]
  7. 7.  Attanayake RN, Tennekoon V, Johnson DA, Porter LD, del Rio-Mendoza L et al. 2014. Inferring outcrossing in the homothallic fungus Sclerotinia sclerotiorum using linkage disequilibrium decay. Heredity 113:353–63
    [Google Scholar]
  8. 8.  Bashi ZD, Gyawali S, Bekkaoui D, Coutu C, Lee L et al. 2016. The Sclerotinia sclerotiorum Slt2 mitogen-activated protein kinase ortholog, SMK3, is required for infection initiation but not lesion expansion. Can. J. Microbiol. 62:836–50
    [Google Scholar]
  9. 9.  Bashi ZD, Hegedus DD, Buchwaldt L, Rimmer SR, Borhan MH 2010. Expression and regulation of Sclerotinia sclerotiorum necrosis and ethylene-inducing peptides (NEPs). Mol. Plant Pathol. 11:43–53
    [Google Scholar]
  10. 10.  Bashi ZD, Khachatourians G, Hegedus DD 2010. Isolation of fungal homokaryotic lines from heterokaryotic transformants by sonic disruption of mycelia. Biotechniques 48:41–46
    [Google Scholar]
  11. 11.  Bashi ZD, Rimmer SR, Khachatourians GG, Hegedus DD 2012. Factors governing the regulation of Sclerotinia sclerotiorum cutinase A and polygalacturonase 1 during different stages of infection. Can. J. Microbiol. 58:605–16
    [Google Scholar]
  12. 12.  Bashi ZD, Rimmer SR, Khachatourians GG, Hegedus DD 2013. Brassica napus polygalacturonase inhibitor proteins inhibit Sclerotinia sclerotiorum polygalacturonase enzymatic and necrotizing activities and delay symptoms in transgenic plants. Can. J. Microbiol. 59:79–86
    [Google Scholar]
  13. 13.  Billon-Grand G, Rascle C, Droux M, Rollins JA, Poussereau N 2012. pH modulation differs during sunflower cotyledon colonization by the two closely related necrotrophic fungi Botrytis cinerea and Sclerotinia sclerotiorum. Mol. . Plant Pathol 13:568–78
    [Google Scholar]
  14. 14.  Boland GJ, Hall R 1994. Index of plant hosts of Sclerotinia sclerotiorum. Can. J. . Plant Pathol 16:93–108
    [Google Scholar]
  15. 15.  Bolton MD, Thomma BP, Nelson BD 2006. Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol. Plant Pathol. 7:1–16
    [Google Scholar]
  16. 16.  Caddick MX, Brownlee AG, Arst HN 1986. Regulation of gene expression by pH of the growth medium in Aspergillus nidulans. Mol. Gen. . Genet 203:346–53
    [Google Scholar]
  17. 17.  Caracuel Z, Casanova C, Roncero MI, Di Pietro A, Ramos J 2003. pH response transcription factor PacC controls salt stress tolerance and expression of the P-Type Na+-ATPase Ena1 in Fusarium oxysporum. Eukaryot. . Cell 2:1246–52
    [Google Scholar]
  18. 18.  Carbone I, Kohn LM 2001. A microbial population-species interface: nested cladistic and coalescent inference with multilocus data. Mol. Ecol. 10:947–64
    [Google Scholar]
  19. 19.  Cessna SG, Sears VE, Dickman MB, Low PS 2000. Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant. Plant Cell 12:2191–200
    [Google Scholar]
  20. 20.  Chahed H, Ezzine A, Ben Mlouka A, Hardouin J, Jouenne T, Marzouki MN 2014. Biochemical characterization, molecular cloning, and structural modeling of an interesting β-1,4-glucanase from Sclerotinia sclerotiorum. Mol. . Biotechnol 56:340–50
    [Google Scholar]
  21. 21.  Chen C, Harel A, Gorovoits R, Yarden O, Dickman MB 2004. MAPK regulation of sclerotial development in Sclerotinia sclerotiorum is linked with pH and cAMP sensing. Mol. Plant-Microbe Interact. 17:404–13
    [Google Scholar]
  22. 22.  Cotton P, Kasza Z, Bruel C, Rascle C, Fevre M 2003. Ambient pH controls the expression of endopolygalacturonase genes in the necrotrophic fungus Sclerotinia sclerotiorum. FEMS Microbiol. . Lett 227:163–69
    [Google Scholar]
  23. 23.  Criscitiello M, Dickman M, Samuel J, de Figueiredo P 2013. Tripping on acid: trans-kingdom perspectives on biological acids in immunity and pathogenesis. PLOS Pathog 9:e1003402
    [Google Scholar]
  24. 24.  Cunha WG, Tinoco MLP, Pancoti HL, Ribeiro RE, Aragão FJL 2010. High resistance to Sclerotinia sclerotiorum in transgenic soybean plants transformed to express an oxalate decarboxylase gene. Plant Pathol 59:654–60
    [Google Scholar]
  25. 25.  Davidson AL, Blahut-Beatty L, Itaya A, Zhang Y, Zheng S, Simmonds D 2016. Histopathology of Sclerotinia sclerotiorum infection and oxalic acid function in susceptible and resistant soybean. Plant Pathol 65:878–87
    [Google Scholar]
  26. 26.  Davis D, Wilson RB, Mitchell AP 2000. RIM101-dependent and-independent pathways govern pH responses in Candida albicans. . Mol. Cell. Biol. 20:971–78
    [Google Scholar]
  27. 27.  Derbyshire M, Denton-Giles M, Hegedus D, Seifbarghy S, Rollins J et al. 2017. The complete genome sequence of the phytopathogenic fungus Sclerotinia sclerotiorum reveals insights into the genome architecture of broad host range pathogens. Genome Biol. Evol. 9:593–618
    [Google Scholar]
  28. 28.  Dickman MB 2007. Approaches for improving crop resistance to soilborne fungal diseases through biotechnology using Sclerotinia sclerotiorum as a case study. Australas. Plant Pathol. 36:116–23
    [Google Scholar]
  29. 29.  Dickman MB 2007. Subversion or coersion? Pathogenic deteminants in fungal phytopathogens. Fungal Biol. Rev. 21:125–29
    [Google Scholar]
  30. 30.  Dickman MB, Fluhr R 2013. Centrality of host cell death in plant-microbe interactions. Annu. Rev. Phytopathol. 51:543–70
    [Google Scholar]
  31. 31.  Dickman MB, Mitra A 1992. Arabidopsis thaliana as a model for studying Sclerotinia sclerotiorum pathogenesis. Physiol. Mol. Plant Pathol. 41:255–63
    [Google Scholar]
  32. 32.  Djamei A, Schipper K, Rabe F, Ghosh A, Vincon V et al. 2011. Metabolic priming by a secreted fungal effector. Nature 478:395–98
    [Google Scholar]
  33. 33.  Donaldson PA, Anderson T, Lane BG, Davidson AL, Simmonds DH 2001. Soybean plants expressing an active oligomeric oxalate oxidase from the wheat gf-2.8 (germin) gene are resistant to the oxalate-secreting pathogen Sclerotina sclerotiorum. . Physiol. Mol. Plant Pathol. 59:297–307
    [Google Scholar]
  34. 34.  Dong X, Ji R, Guo X, Foster SJ, Chen H et al. 2008. Expressing a gene encoding wheat oxalate oxidase enhances resistance to Sclerotinia sclerotiorum in oilseed rape (Brassica napus). Planta 228:331–40
    [Google Scholar]
  35. 35.  Doughan B, Rollins JA 2016. Characterization of MAT gene functions in the life cycle of Sclerotinia sclerotiorum reveals a lineage-specific MAT gene functioning in apothecium morphogenesis. Fungal Biol 120:1105–17
    [Google Scholar]
  36. 36.  Duan Y, Ge C, Liu S, Wang J, Zhou M 2013. A two-component histidine kinase Shk1 controls stress response, sclerotial formation and fungicide resistance in Sclerotinia sclerotiorum. Mol. . Plant Pathol 14:708–18
    [Google Scholar]
  37. 37.  Dutton MV, Evans CS 1996. Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Can. J. Microbiol. 42:881–95
    [Google Scholar]
  38. 38.  Erental A, Dickman MB, Yarden O 2008. Sclerotial development in Sclerotinia sclerotiorum: awakening molecular analysis of a “Dormant” structure. Fungal Biol. Rev. 22:6–16
    [Google Scholar]
  39. 39.  Erental A, Harel A, Yarden O 2007. Type 2A phosphoprotein phosphatase is required for asexual development and pathogenesis of Sclerotinia sclerotiorum. Mol. . Plant-Microbe Interact 20:944–54
    [Google Scholar]
  40. 40.  Falkow S 1988. Molecular Koch's postulates applied to microbial pathogenicity. Rev. Infect. Dis. 10:Suppl. 2S274–76
    [Google Scholar]
  41. 41.  Fan H, Yu G, Liu Y, Zhang X, Liu J et al. 2017. An atypical forkhead-containing transcription factor SsFKH1 is involved in sclerotial formation and is essential for pathogenicity in Sclerotinia sclerotiorum. Mol. . Plant Pathol 18:963–75
    [Google Scholar]
  42. 42.  Favaron F, Sella L, D'Ovidio R 2004. Relationships among endo-polygalacturonase, oxalate, pH, and plant polygalacturonase-inhibiting protein (PGIP) in the interaction between Sclerotinia sclerotiorum and soybean. Mol. Plant-Microbe Interact. 17:1402–9
    [Google Scholar]
  43. 43.  Fraissinet-Tachet L, Fevre M 1996. Regulation by galacturonic acid of pectinolytic enzyme production by Sclerotinia sclerotiorum. Curr. . Microbiol 33:49–53
    [Google Scholar]
  44. 44.  Girard V, Fevre M, Bruel C 2004. Involvement of cyclic AMP in the production of the acid protease Acp1 by Sclerotinia sclerotiorum. FEMS Microbiol. . Lett 237:227–33
    [Google Scholar]
  45. 45.  Godoy G, Steadman JR, Dickman MB, Dam R 1990. Use of mutants to demonstrate the role of oxalic acid in pathogenicity of Sclerotinia sclerotiorum on Phaseolus vulgaris. Physiol. Mol. . Plant Pathol 37:179–91
    [Google Scholar]
  46. 46.  Guimaraes RL, Stotz HU 2004. Oxalate production by Sclerotinia sclerotiorum deregulates guard cells during infection. Plant Physiol 136:3703–11
    [Google Scholar]
  47. 47.  Guyon K, Balague C, Roby D, Raffaele S 2014. Secretome analysis reveals effector candidates associated with broad host range necrotrophy in the fungal plant pathogen Sclerotinia sclerotiorum. . BMC Genom 15:336
    [Google Scholar]
  48. 48.  Hancock J 1966. Degradation of pectic substances associated with pathogenesis by Sclerotinia sclerotiorum in sunflower and tomato stems. Phytopathology 56:975–79
    [Google Scholar]
  49. 49.  Harel A, Bercovich S, Yarden O 2006. Calcineurin is required for sclerotial development and pathogenicity of Sclerotinia sclerotiorum in an oxalic acid–independent manner. Mol. Plant-Microbe Interact. 19:682–93
    [Google Scholar]
  50. 50.  Harel A, Gorovits R, Yarden O 2005. Changes in protein kinase A activity accompany sclerotial development in Sclerotinia sclerotiorum. . Phytopathology 95:397–404
    [Google Scholar]
  51. 51.  Heard S, Brown NA, Hammond-Kosack K 2015. An interspecies comparative analysis of the predicted secretomes of the necrotrophic plant pathogens Sclerotinia sclerotiorum and Botrytis cinerea. . PLOS ONE 10:e0130534
    [Google Scholar]
  52. 52.  Hegedus DD, Gerbrandt K, Coutu C 2016. The eukaryotic protein kinase superfamily of the necrotrophic fungal plant pathogen, Sclerotinia sclerotiorum. Mol. Plant Pathol. 17:634–47
    [Google Scholar]
  53. 53.  Hegedus DD, Rimmer SR 2005. Sclerotinia sclerotiorum: when “to be or not to be” a pathogen?. FEMS Microbiol. Lett. 251:177–84
    [Google Scholar]
  54. 54.  Hogenhout SA, Van der Hoorn RAL, Terauchi R, Kamoun S 2009. Emerging concepts in effector biology of plant-associated organisms. Mol. Plant-Microbe Interact. 22:115–22
    [Google Scholar]
  55. 55.  Hu X, Bidney DL, Yalpani N, Duvick JP, Crasta O et al. 2003. Overexpression of a gene encoding hydrogen peroxide–generating oxalate oxidase evokes defense responses in sunflower. Plant Physiol 133:170–81
    [Google Scholar]
  56. 56.  Huysmans M, Lema AS, Coll NS, Nowack MK 2017. Dying two deaths: programmed cell death regulation in development and disease. Curr. Opin. Plant Biol. 35:37–44
    [Google Scholar]
  57. 57.  Idnurm A, Howlett BJ 2001. Pathogenicity genes of phytopathogenic fungi. Mol. Plant Pathol. 2:241–55
    [Google Scholar]
  58. 58.  Jiang D, Fu Y, Guoqing L, Ghabrial SA 2013. Viruses of the plant pathogenic fungus Sclerotinia sclerotiorum. Adv. Virus Res. 86:215–48
    [Google Scholar]
  59. 59.  Jurick WM, Dickman MB, Rollins JA 2004. Characterization and functional analysis of a cAMP-dependent protein kinase A catalytic subunit gene (pka1) in Sclerotinia sclerotiorum. Physiol. Mol. Plant Pathol. 64:155–63
    [Google Scholar]
  60. 60.  Jurick WM, Rollins JA 2007. Deletion of the adenylate cyclase (sac1) gene affects multiple developmental pathways and pathogenicity in Sclerotinia sclerotiorum. Fungal Genet. Biol. 44:521–30
    [Google Scholar]
  61. 61.  Kabbage M, Williams B, Dickman MB 2013. Cell death control: the interplay of apoptosis and autophagy in the pathogenicity of Sclerotinia sclerotiorum. . PLOS Pathog 9:e1003287
    [Google Scholar]
  62. 62.  Kabbage M, Yarden O, Dickman MB 2015. Pathogenic attributes of Sclerotinia sclerotiorum: switching from a biotrophic to necrotrophic lifestyle. Plant Sci 233:53–60
    [Google Scholar]
  63. 63.  Kane PM 2016. Proton transport and pH control in fungi. Yeast Membrane Transport, vol. 892 J Ramos, H Sychrová, M Kschischo 33–68 Cham, Switz.: Springer
    [Google Scholar]
  64. 64.  Kasza Z, Vagvolgyi C, Fevre M, Cotton P 2004. Molecular characterization and in planta detection of Sclerotinia sclerotiorum endopolygalacturonase genes. Curr. Microbiol. 48:208–13
    [Google Scholar]
  65. 65.  Kesarwani M, Azam M, Natarajan K, Mehta A, Datta A 2000. Oxalate decarboxylase from Collybia velutipes. Molecular cloning and its overexpression to confer resistance to fungal infection in transgenic tobacco and tomato. J. Biol. Chem. 275:7230–38
    [Google Scholar]
  66. 66.  Kim HJ, Chen C, Kabbage M, Dickman MB 2011. Identification and characterization of Sclerotinia sclerotiorum NADPH oxidases. Appl. Environ. Microbiol. 77:7721–29
    [Google Scholar]
  67. 67.  Kim KS, Min JY, Dickman MB 2008. Oxalic acid is an elicitor of plant programmed cell death during Sclerotinia sclerotiorum disease development. Mol. Plant-Microbe Interact. 21:605–12
    [Google Scholar]
  68. 68.  Kim YT, Prusky D, Rollins JA 2007. An activating mutation of the Sclerotinia sclerotiorum pac1 gene increases oxalic acid production at low pH but decreases virulence. Mol. Plant Pathol. 8:611–22
    [Google Scholar]
  69. 69.  Kohn LM 1995. The clonal dynamic in wild and agricultural plant-pathogen populations. Can. J. Bot. 73:1231–40
    [Google Scholar]
  70. 70.  Kumar V, Chattopadhyay A, Ghosh S, Irfan M, Chakraborty N et al. 2016. Improving nutritional quality and fungal tolerance in soya bean and grass pea by expressing an oxalate decarboxylase. Plant Biotechnol. J. 14:1394–405
    [Google Scholar]
  71. 71.  Lamb TM, Xu W, Diamond A, Mitchell AP 2001. Alkaline response genes of Saccharomyces cerevisiae and their relationship to the RIM101 pathway. J. Biol. Chem. 276:1850–56
    [Google Scholar]
  72. 72.  Lehner MS, Mizubuti ESG 2017. Are Sclerotinia sclerotiorum populations from the tropics more variable than those from subtropical and temperate zones?. Trop. Plant Pathol. 42:61–69
    [Google Scholar]
  73. 73.  Le Tourneau D 1979. Morphology, cytology, and physiology of Sclerotinia species in culture. Phytopathology 69:887–90
    [Google Scholar]
  74. 74.  Li J, Zhang Y, Pan H, Rollins JA 2017. Development of CRISPR-Cas9 for targeted gene disruption in the multinucleate filamentous pathogen Sclerotinia sclerotiorum. Abstract Book: 29th Fungal Genetics Conference104 Rockville, MD: Genet. Soc. Am http://www.genetics-gsa.org/fungal/2017/Abstract%20Book%202017%208x10.pdf
    [Google Scholar]
  75. 75.  Li M, Liang X, Rollins JA 2012. Sclerotinia sclerotiorum γ-glutamyl transpeptidase (Ss-Ggt1) is required for regulating glutathione accumulation and development of sclerotia and compound appressoria. Mol. Plant-Microbe Interact. 25:412–20
    [Google Scholar]
  76. 76.  Li M, Rollins JA 2009. The development-specific protein (Ssp1) from Sclerotinia sclerotiorum is encoded by a novel gene expressed exclusively in sclerotium tissues. Mycologia 101:34–43
    [Google Scholar]
  77. 77.  Li M, Rollins JA 2010. The development-specific ssp1 and ssp2 genes of Sclerotinia sclerotiorum encode lectins with distinct yet compensatory regulation. Fungal Genet. Biol. 47:531–38
    [Google Scholar]
  78. 78.  Li R, Rimmer R, Buchwaldt L, Sharpe AG, Seguin-Swartz G, Hegedus DD 2004. Interaction of Sclerotinia sclerotiorum with Brassica napus: cloning and characterization of endo- and exo-polygalacturonases expressed during saprophytic and parasitic modes. Fungal Genet. Biol. 41:754–65
    [Google Scholar]
  79. 79.  Li X, Guo M, Xu D, Chen F, Zhang H et al. 2015. The nascent-polypeptide-associated complex alpha subunit regulates the polygalacturonases expression negatively and influences the pathogenicity of Sclerotinia sclerotiorum. . Mycologia 107:1130–37
    [Google Scholar]
  80. 80.  Liang X, Liberti D, Li M, Kim YT, Hutchens A et al. 2015. Oxaloacetate acetylhydrolase gene mutants of Sclerotinia sclerotiorum do not accumulate oxalic acid, but do produce limited lesions on host plants. Mol. Plant Pathol. 16:559–71
    [Google Scholar]
  81. 81.  Liang X, Moomaw EW, Rollins JA 2015. Fungal oxalate decarboxylase activity contributes to Sclerotinia sclerotiorum early infection by affecting both compound appressoria development and function. Mol. Plant Pathol. 16:825–36
    [Google Scholar]
  82. 82.  Liang Y, Xiong W, Steinkellner S, Feng J 2018. Deficiency of the melanin biosynthesis genes SCD1 and THR1 affects sclerotial development and vegetative growth, but not pathogenicity in Sclerotinia sclerotiorum. Mol. . Plant Pathol 19:1444–53
    [Google Scholar]
  83. 83.  Liang Y, Yajima W, Davis MR, Kav NNV, Strelkov SE 2013. Disruption of a gene encoding a hypothetical secreted protein from Sclerotinia sclerotiorum reduces its virulence on canola (Brassica napus). Can. J. Plant Pathol. 35:46–55
    [Google Scholar]
  84. 84.  Liberti D, Rollins JA, Dobinson KF 2013. Peroxysomal carnitine acetyl transferase influences host colonization capacity in Sclerotinia sclerotiorum. Mol. Plant-Microbe Interact. 26:768–80
    [Google Scholar]
  85. 85.  Lou Y, Han Y, Yang L, Wu M, Zhang J et al. 2015. CmpacC regulates mycoparasitism, oxalate degradation and antifungal activity in the mycoparasitic fungus Coniothyrium minitans. Environ. Microbiol. 17:4711–29
    [Google Scholar]
  86. 86.  Lumsden RD 1970. Phosphatidase of Sclerotinia sclerotiorum produced in culture and in infected bean. Phytopathology 60:1106–10
    [Google Scholar]
  87. 87.  Lumsden RD 1976. Pectolytic enzymes of Sclerotinia sclerotiorum and their localization in infected bean. Can. J. Bot. 54:2630–41
    [Google Scholar]
  88. 88.  Lumsden RD 1979. Histology and physiology of pathogenesis in plant disease caused by Sclerotinia species. Phytopathology 69:890–96
    [Google Scholar]
  89. 89.  Lyu X, Shen C, Fu Y, Xie J, Jiang D et al. 2016. The microbial opsin homolog Sop1 is involved in Sclerotinia sclerotiorum development and environmental stress response. Front. Microbiol. 6:1504
    [Google Scholar]
  90. 90.  Lyu X, Shen C, Fu Y, Xie J, Jiang D et al. 2016. A small secreted virulence-related protein is essential for the necrotrophic interactions of Sclerotinia sclerotiorum with its host plants. PLOS Pathog 12:e1005435
    [Google Scholar]
  91. 91.  Lyu XL, Shen CC, Fu YP, Xie JT, Jiang D et al. 2015. Comparative genomic and transcriptional analyses of the carbohydrate-active enzymes and secretomes of phytopathogenic fungi reveal their significant roles during infection and development. Sci. Rep. 5:15565
    [Google Scholar]
  92. 92.  Magro P, Marciano P, di Lenna P 1984. Oxalic acid production and its role in pathogenesis of Sclerotinia sclerotiorum. FEMS Microbiol. Lett. 24:9–12
    [Google Scholar]
  93. 93.  Magro P, Marciano P, di Lenna P 1988. Enzymatic oxalate decarboxylation in isolates of Sclerotinia sclerotiorum. FEMS Microbiol. Lett. 49:49–52
    [Google Scholar]
  94. 94.  Marciano P, di Lenna P, Magro P 1983. Oxalic acid, cell wall–degrading enzymes and pH in pathogenesis and their significance in the virulence of two Sclerotinia sclerotiorum isolates on sunflower. Physiol. Plant Pathol. 22:339–45
    [Google Scholar]
  95. 95.  Maxwell DP 1973. Oxalate formation in Whetzelinia sclerotiorum by oxaloacetate acetylhydrolase. Physiol. Plant Pathol. 3:279–88
    [Google Scholar]
  96. 96.  Maxwell DP, Lumsden RD 1970. Oxalic acid production by Sclerotinia sclerotiorum in infected bean and in culture. Phytopathology 60:1395–98
    [Google Scholar]
  97. 97.  Mbiri A, Gatebe E, Ndung'u M, Kariuki W, Mwangi E 2013. Oxalate metabolism by Sclerotinia sclerotiorum, a fungal pathogen in soybeans. Afr. J. Biochem. Res. 7:19–25
    [Google Scholar]
  98. 98.  Munir E, Yoon JJ, Tokimatsu T, Hattori T, Shimada M 2001. A physiological role for oxalic acid biosynthesis in the wood-rotting basidiomycete Fomitopsis palustris. . PNAS 98:11126–30
    [Google Scholar]
  99. 99.  Oliveira MB, de Andrade RV, Grossi-de-Sa MF, Petrofeza S 2015. Analysis of genes that are differentially expressed during the Sclerotinia sclerotiorumPhaseolus vulgaris interaction. Front. Microbiol. 6:1162
    [Google Scholar]
  100. 100.  Pan Y, Wei J, Yao C, Reng H, Gao Z 2018. SsSm1, a cerato-platanin family protein, is involved in the hyphal development and pathogenic process of Sclerotinia sclerotiorum. . Plant Sci 270:37–46
    [Google Scholar]
  101. 101.  Pan YM, Xu YP, Li XL, Yao CC, Gao ZM 2015. SsPemG1 encodes an elicitor-homologous protein and regulates pathogenicity in Sclerotinia sclerotiorum. . Physiol. Mol. Plant Pathol. 92:70–78
    [Google Scholar]
  102. 102.  Peñalva MA, Arst HN 2002. Regulation of gene expression by ambient pH in filamentous fungi and yeasts. Microbiol. Mol. Biol. Rev. 66:426–46
    [Google Scholar]
  103. 103.  Peñalva MA, Arst HN 2004. Recent advances in the characterization of ambient pH regulation of gene expression in filamentous fungi and yeasts. Annu. Rev. Microbiol. 58:425–51
    [Google Scholar]
  104. 104.  Peng Q, Xie QX, Chen F, Zhou XY, Zhang W et al. 2017. Transcriptome analysis of Sclerotinia sclerotiorum at different infection stages on Brassica napus. Curr. Microbiol. 74:1237–45
    [Google Scholar]
  105. 105.  Poussereau N, Creton S, Billon-Grand G, Rascle C, Fevre M 2001. Regulation of acp1, encoding a non-aspartyl acid protease expressed during pathogenesis of Sclerotinia sclerotiorum. . Microbiology 147:717–26
    [Google Scholar]
  106. 106.  Poussereau N, Gente S, Rascle C, Billon-Grand G, Fevre M 2001. aspS encoding an unusual aspartyl protease from Sclerotinia sclerotiorum is expressed during phytopathogenesis. FEMS Microbiol. Lett. 194:27–32
    [Google Scholar]
  107. 107.  Prusky D, Yakoby N 2003. Pathogenic fungi: leading or led by ambient pH?. Mol. Plant Pathol. 4:509–16
    [Google Scholar]
  108. 108.  Purdy LH 1979. Sclerotinia sclerotiorum: history, diseases and symptomatology, host range, geographic distribution, and impact. Phytopathology 69:875–80
    [Google Scholar]
  109. 109.  Qiu D, Xu L, Vandemark G, Chen W 2016. Comparative transcriptome analysis between the fungal plant pathogens Sclerotinia sclerotiorum and S. trifoliorum using RNA sequencing. J. Hered. 107:163–72
    [Google Scholar]
  110. 110.  Qu X, Yu B, Liu J, Zhang X, Li G et al. 2014. MADS-box transcription factor SsMADS is involved in regulating growth and virulence in Sclerotinia sclerotiorum. Int. J. Mol. Sci. 15:8049–62
    [Google Scholar]
  111. 111.  Reymond P, Deleage G, Rascle C, Fevre M 1994. Cloning and sequence analysis of a polygalacturonase-encoding gene from the phytopathogenic fungus Sclerotinia sclerotiorum. . Gene 146:233–37
    [Google Scholar]
  112. 112.  Riou C, Freyssinet G, Fevre M 1992. Purification and characterization of extracellular pectinolytic enzymes produced by Sclerotinia sclerotiorum. Appl. Environ. Microbiol. 58:578–83
    [Google Scholar]
  113. 113.  Rollins JA 2003. The Sclerotinia sclerotiorum pac1 gene is required for sclerotial development and virulence. Mol. Plant-Microbe Interact. 16:785–95
    [Google Scholar]
  114. 114.  Rollins JA, Dickman MB 1998. Increase in endogenous and exogenous cyclic AMP levels inhibits sclerotial development in Sclerotinia sclerotiorum. Appl. Environ. Microbiol. 64:2539–44
    [Google Scholar]
  115. 115.  Rollins JA, Dickman MB 2001. pH signaling in Sclerotinia sclerotiorum: identification of a pacC/RIM1 homolog. Appl. Environ. Microbiol. 67:75–81
    [Google Scholar]
  116. 116.  Seifbarghi S, Borhan MH, Wei Y, Coutu C, Robinson SJ, Hegedus DD 2017. Changes in the Sclerotinia sclerotiorum transcriptome during infection of Brassica napus. . BMC Genom 18:266
    [Google Scholar]
  117. 117.  Steadman JR 1979. Control of plant diseases caused by Sclerotinia species. Phytopathology 69:904–7
    [Google Scholar]
  118. 118.  Stefanato FL, Abou-Mansour E, van Kan J, Métraux JP, Schoonbeek HJ 2008. Oxaloacetate acetylhydrolase is responsible for oxalic acid production in Botrytis cinerea and required for lesion expansion on some, but not on most host plants. Abstract Book: 3rd Botrytis Genome Workshop24 San Cristóbal de la Laguna Spain: Univ. de la Laguna https://botrytis.webs.ull.es/BookAbst.pdf
    [Google Scholar]
  119. 119.  Tilburn J, Sarkar S, Widdick DA, Espeso EA, Orejas M et al. 1995. The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH. EMBO J 14:779–90
    [Google Scholar]
  120. 120.  Townsend BB, Willetts HJ 1954. The development of sclerotia of certain fungi. Trans. Br. Mycol. Soc. 37:213–21
    [Google Scholar]
  121. 121.  Tu JC 1997. An integrated control of white mold (Sclerotinia sclerotiorum) of beans, with emphasis on recent advances in biological control. Bot. Bull. Acad. Sin. 38:73–76
    [Google Scholar]
  122. 122.  Van De Wouw AP, Howlett BJ 2011. Fungal pathogenicity genes in the age of ‘omics’. Mol. Plant Pathol. 12:507–14
    [Google Scholar]
  123. 123.  Vautard G, Cotton P, Fevre M 1999. The glucose repressor CRE1 from Sclerotinia sclerotiorum is functionally related to CREA from Aspergillus nidulans but not to the Mig proteins from Saccharomyces cerevisiae. . FEBS Lett 453:54–58
    [Google Scholar]
  124. 124.  Vautard-Mey G, Cotton P, Fevre M 1999. Expression and compartmentation of the glucose repressor CRE1 from the phytopathogenic fungus Sclerotinia sclerotiorum. Eur. J. . Biochem 266:252–59
    [Google Scholar]
  125. 125.  Vautard-Mey G, Fevre M 2003. Carbon and pH modulate the expression of the fungal glucose repressor encoding genes. Curr. Microbiol. 46:146–50
    [Google Scholar]
  126. 126.  Vega RR, Corsini D, Le Tourneau D 1970. Nonvolatile organic acids produced by Sclerotinia sclerotiorum in synthetic liquid media. Mycologia 62:332–38
    [Google Scholar]
  127. 127.  Veluchamy S, Rollins JA 2008. A CRY-DASH-type photolyase/cryptochrome from Sclerotinia sclerotiorum mediates minor UV-A-specific effects on development. Fungal Genet. Biol. 45:1265–76
    [Google Scholar]
  128. 128.  Veluchamy S, Williams B, Kim K, Dickman MB 2012. The CuZn superoxide dismutase from Sclerotinia sclerotiorum is involved with oxidative stress tolerance, virulence, and oxalate production. Physiol. Mol. Plant Pathol. 78:14–23
    [Google Scholar]
  129. 129.  Vylkova S 2017. Environmental pH modulation by pathogenic fungi as a strategy to conquer the host. PLOS Pathog 13:e1006149
    [Google Scholar]
  130. 130.  Waksman G, Keon JP, Turner G 1991. Purification and characterization of two endopolygalacturonases from Sclerotinia sclerotiorum. Biochim. Biophys. Acta 1073:43–48
    [Google Scholar]
  131. 131.  Walz A, Zingensell I, Loeffler M, Sauer M 2008. Expression of an oxalate oxidase gene in tomato and severity of disease caused by Botrytis cinerea and Sclerotinia sclerotiorum. . Plant Pathol 57:453–58
    [Google Scholar]
  132. 132.  Wang L, Liu Y, Liu J, Zhang Y, Zhang X, Pan H 2016. The Sclerotinia sclerotiorum FoxE2 gene is required for apothecial development. Phytopathology 106:484–90
    [Google Scholar]
  133. 133.  Weld RJ, Eady CC, Ridgway HJ 2006. Agrobacterium-mediated transformation of Sclerotinia sclerotiorum. . J. Microbiol. Methods 65:202–7
    [Google Scholar]
  134. 134.  Whipps JM, Gerlagh M 1992. Biology of Coniothyrium minitans and its potential for use in disease biocontrol. Mycol. Res. 96:897–907
    [Google Scholar]
  135. 135.  Williams B, Kabbage M, Kim HJ, Britt R, Dickman MB 2011. Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment. PLOS Pathog 7:e1002107
    [Google Scholar]
  136. 136.  Williamson B, Tudzynski B, Tudzynski P, van Kan JA 2007. Botrytis cinerea: the cause of grey mould disease. Mol. Plant Pathol. 8:561–80
    [Google Scholar]
  137. 137.  Xiao X, Xie J, Cheng J, Li G, Yi X et al. 2014. Novel secretory protein Ss-Caf1 of the plant-pathogenic fungus Sclerotinia sclerotiorum is required for host penetration and normal sclerotial development. Mol. Plant-Microbe Interact. 27:40–55
    [Google Scholar]
  138. 138.  Xie J, Jiang D 2014. New insights into mycoviruses and exploration for the biological control of crop fungal diseases. Annu. Rev. Phytopathol. 52:45–68
    [Google Scholar]
  139. 139.  Xu L, Chen W 2013. Random T-DNA mutagenesis identifies a Cu/Zn superoxide dismutase gene as a virulence factor of Sclerotinia sclerotiorum. Mol. Plant-Microbe Interact 26:431–41
    [Google Scholar]
  140. 140.  Xu L, Xiang M, White D, Chen W 2015. pH dependency of sclerotial development and pathogenicity revealed by using genetically defined oxalate-minus mutants of Sclerotinia sclerotiorum. Environ. Microbiol. 17:2896–909
    [Google Scholar]
  141. 141.  Yajima W, Liang Y, Kav NN 2009. Gene disruption of an arabinofuranosidase/β-xylosidase precursor decreases Sclerotinia sclerotiorum virulence on canola tissue. Mol. Plant-Microbe Interact. 22:783–89
    [Google Scholar]
  142. 142.  Yang G, Tang L, Gong Y, Xie J, Fu Y et al. 2017. A cerato-platanin protein SsCP1 targets plant PR1 and contributes to virulence of Sclerotinia sclerotiorum. . New Phytol 217:739–55
    [Google Scholar]
  143. 143.  Yarden O, Veluchamy S, Dickman MB, Kabbage M 2014. Sclerotinia sclerotiorum catalase SCAT1 affects oxidative stress tolerance, regulates ergosterol levels and controls pathogenic development. Physiol. Mol. Plant Pathol. 85:34–41
    [Google Scholar]
  144. 144.  Yu Y, Jiang D, Xie J, Cheng J, Li G et al. 2012. Ss-Sl2, a novel cell wall protein with PAN modules, is essential for sclerotial development and cellular integrity of Sclerotinia sclerotiorum. . PLOS ONE 7:e34962
    [Google Scholar]
  145. 145.  Yu Y, Xiao J, Du J, Yang Y, Bi C, Qing L 2016. Disruption of the gene encoding endo-β-1, 4-xylanase affects the growth and virulence of Sclerotinia sclerotiorum. Front. Microbiol. 7:1787
    [Google Scholar]
  146. 146.  Yu Y, Xiao J, Yang YH, Bi CW, Qing L, Tan WZ 2015. Ss-Bi1 encodes a putative BAX inhibitor-1 protein that is required for full virulence of Sclerotinia sclerotiorum. . Physiol. Mol. Plant Pathol. 90:115–22
    [Google Scholar]
  147. 147.  Yu Y, Xiao J, Zhu W, Yang Y, Mei J et al. 2017. Ss-Rhs1, a secretory Rhs repeat-containing protein, is required for the virulence of Sclerotinia sclerotiorum. Mol. . Plant Pathol 18:1052–61
    [Google Scholar]
  148. 148.  Zhang H, Wu Q, Cao S, Zhao T, Chen L et al. 2014. A novel protein elicitor (SsCut) from Sclerotinia sclerotiorum induces multiple defense responses in plants. Plant Mol. Biol. 86:495–511
    [Google Scholar]
  149. 149.  Zhu W, Wei W, Fu Y, Cheng J, Xie J et al. 2013. A secretory protein of necrotrophic fungus Sclerotinia sclerotiorum that suppresses host resistance. PLOS ONE 8:e53901
    [Google Scholar]
  150. 150.  Zhuang X, McPhee KE, Coram TE, Peever TL, Chilvers MI 2012. Rapid transcriptome characterization and parsing of sequences in a non-model host-pathogen interaction; pea–Sclerotinia sclerotiorum. . BMC Genom 13:668
    [Google Scholar]
  151. 151.  Zuppini A, Navazio L, Sella L, Castiglioni C, Favaron F, Mariani P 2005. An endopolygalacturonase from Sclerotinia sclerotiorum induces calcium-mediated signaling and programmed cell death in soybean cells. Mol. Plant-Microbe Interact. 18:849–55
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-080417-050052
Loading
/content/journals/10.1146/annurev-phyto-080417-050052
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error