1932

Abstract

A continuing debate in language acquisition research is whether there are critical periods (CPs) in development during which the system is most responsive to environmental input. Recent advances in neurobiology provide a mechanistic explanation of CPs, with the balance between excitatory and inhibitory processes establishing the onset and molecular brakes establishing the offset of windows of plasticity. In this article, we review the literature on human speech perception development within the context of this CP model, highlighting research that reveals the interplay of maturational and experiential influences at key junctures in development and presenting paradigmatic examples testing CP models in human subjects. We conclude with a discussion of how a mechanistic understanding of CP processes changes the nature of the debate: The question no longer is, “Are there CPs?” but rather what processes open them, keep them open, close them, and allow them to be reopened.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-psych-010814-015104
2015-01-03
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/psych/66/1/annurev-psych-010814-015104.html?itemId=/content/journals/10.1146/annurev-psych-010814-015104&mimeType=html&fmt=ahah

Literature Cited

  1. Albareda-Castellot B, Pons F, Sebastián-Gallés N. 2011. The acquisition of phonetic categories in bilingual infants: new data from an anticipatory eye movement paradigm. Dev. Sci. 14:395–401 [Google Scholar]
  2. Aldridge MA, Braga ES, Walton GE, Bower TGR. 1999. The intermodal representation of speech in newborns. Dev. Sci. 2:42–46 [Google Scholar]
  3. Auer ET Jr, Bernstein LE. 2007. Enhanced visual speech perception in individuals with early-onset hearing impairment. J. Speech Lang. Hear. Res. 50:1157–65 [Google Scholar]
  4. Baker SA, Idsardi WJ, Golinkoff RM, Petitto LA. 2005. The perception of handshapes in American sign language. Mem. Cogn. 33:887–904 [Google Scholar]
  5. Balmer TS, Carels VM, Frisch JL, Nick TA. 2009. Modulation of perineuronal nets and parvalbumin with developmental song learning. J. Neurosci. 29:12878–85 [Google Scholar]
  6. Barkat TR, Polley DB, Hensch TK. 2011. A critical period for auditory thalamocortical connectivity. Nat. Neurosci. 14:1189–94 [Google Scholar]
  7. Bavelier D, Davidson RJ. 2013. Brain training: Games to do you good. Nature 494:425–26 [Google Scholar]
  8. Bavelier D, Levi DM, Li RW, Dan Y, Hensch TK. 2010. Removing brakes on adult brain plasticity: from molecular to behavioral interventions. J. Neurosci. 30:14964–71 [Google Scholar]
  9. Bergan JF, Ro P, Ro D, Knudsen EI. 2005. Hunting increases adaptive auditory map plasticity in adult barn owls. J. Neurosci. 25:9816–20 [Google Scholar]
  10. Bernhardt BM, Kemp N, Werker JF. 2007. Early word-object associations and later language development. First Lang. 27:315–28 [Google Scholar]
  11. Bosch L, Sebastián-Gallés N. 2003. Simultaneous bilingualism and the perception of a language-specific vowel contrast in the first year of life. Lang. Speech 46:217–43 [Google Scholar]
  12. Bowers JS, Mattys SL, Gage SH. 2009. Preserved implicit knowledge of a forgotten childhood language. Psychol. Sci. 20:1064–69 [Google Scholar]
  13. Bradlow A, Pisoni DB, Ahakane-Yamada R, Tokhura Y. 1997. Training Japanese listeners to identify English /r/ and /l/: IV. Some effects of perceptual learning on speech production. J. Acoust. Soc. Am. 101:2299–310 [Google Scholar]
  14. Brainard MS, Knudsen EI. 1998. Sensitive periods for visual calibration of the auditory space map in the barn owl optic tectum. J. Neurosci. 18:3929–42 [Google Scholar]
  15. Brauer J, Anwander A, Perani D, Friederici AD. 2013. Dorsal and ventral pathways in language development. Brain Lang. 127:289–95 [Google Scholar]
  16. Bristow D, Dehaene-Lambertz G, Mattout J, Soares C, Gliga T. et al. 2009. Hearing faces: how the infant brain matches the face it sees with the speech it hears. J. Cogn. Neurosci. 21:905–21 [Google Scholar]
  17. Brown CE, Sweetnam D, Beange M, Nahirney PC, Nashmi R. 2012. α4* Nicotinic acetylcholine receptors modulate experience-based cortical depression in the adult mouse somatosensory cortex. J. Neurosci. 32:1207–19 [Google Scholar]
  18. Burns TC, Yoshida KA, Hill K, Werker JF. 2007. The development of phonetic representation in bilingual and monolingual infants. Appl. Psycholinguist. 28:455–74 [Google Scholar]
  19. Carulli D, Pizzorusso T, Kwok JC, Putignano E, Poli A. et al. 2010. Animals lacking link protein have attenuated perineuronal nets and persistent plasticity. Brain 133:2331–47 [Google Scholar]
  20. Chang EF, Merzenich MM. 2003. Environmental noise retards auditory cortical development. Science 300:498–502 [Google Scholar]
  21. Conboy BT, Sommerville JA, Kuhl PK. 2008. Cognitive control factors in speech perception at 11 months. Dev. Psychol. 44:1505 [Google Scholar]
  22. Condé F, Lund JS, Lewis DA. 1996. The hierarchical development of monkey visual cortical regions as revealed by the maturation of parvalbumin-immunoreactive neurons. Dev. Brain Res. 96:261–76 [Google Scholar]
  23. Dehaene-Lambertz G, Dehaene S, Hertz-Pannier L. 2002. Functional neuroimaging of speech perception in infants. Science 298:2013–15 [Google Scholar]
  24. Dehaene-Lambertz G, Gliga T. 2004. Common neural basis for phoneme processing in infants and adults. J. Cogn. Neurosci. 16:1375–87 [Google Scholar]
  25. Dehaene-Lambertz G, Hertz-Pannier L, Dubois J, Dehaene S. 2008. How does early brain organization promote language acquisition in humans?. Eur. Rev. 16:399–411 [Google Scholar]
  26. de Villers-Sidani E, Simpson KL, Lu YF, Lin RC, Merzenich MM. 2008. Manipulating critical period closure across different sectors of the primary auditory cortex. Nat. Neurosci. 11:957–65 [Google Scholar]
  27. Donato F, Rompani SB, Caroni P. 2013. Parvalbumin-expressing basket-cell network plasticity induced by experience regulates adult learning. Nature 50:272–76 [Google Scholar]
  28. Doucet ME, Bergeron F, Lassonde M, Ferron P, Lepore F. 2006. Cross-modal reorganization and speech perception in cochlear implant users. Brain 129:3376–83 [Google Scholar]
  29. Doupe AJ, Kuhl PK. 1999. Birdsong and human speech: common themes and mechanisms. Annu. Rev. Neurosci. 22:567–631 [Google Scholar]
  30. Duffy KR, Mitchell DE. 2013. Darkness alters maturation of visual cortex and promotes fast recovery from monocular deprivation. Curr. Biol. 23:382–86 [Google Scholar]
  31. Elsabbagh M, Hohenberger A, Campos R, Van Herwegen J, Serres J. et al. 2013. Narrowing perceptual sensitivity to the native language in infancy: exogenous influences on developmental timing. Behav. Sci. 3:1120–32 [Google Scholar]
  32. Engineer ND, Riley JR, Seale JD, Vrana WA, Shetake JA. et al. 2011. Reversing pathological neural activity using targeted plasticity. Nature 470:101–6 [Google Scholar]
  33. Espinosa JS, Stryker MP. 2012. Development and plasticity of the primary visual cortex. Neuron 75:230–49 [Google Scholar]
  34. Fattal I, Friedmann N, Fattal-Valevski A. 2011. The crucial role of thiamine in the development of syntax and lexical retrieval: A study of infantile thiamine deficiency. Brain 134:61720–39 [Google Scholar]
  35. Faulkner KF, Pisoni DB. 2013. Some observations about cochlear implants: challenges and future directions. Neurosci. Discov. 1:9 [Google Scholar]
  36. Friederici AD, Wartenburger I. 2010. Language and brain. Wiley Interdiscip Rev. Cogn. Sci. 1:150–59 [Google Scholar]
  37. Garcia-Sierra A, Rivera-Gaxiola M, Conboy BT, Romo H, Percaccio CR. et al. 2011. Socio-cultural environment and bilingual language learning: A longitudinal event related potential study. J. Phon. 39:456–57 [Google Scholar]
  38. Gaspar P, Cases O, Maroteaux L. 2003. The developmental role of serotonin: news from mouse molecular genetics. Nat. Rev. Neurosci. 4:1002–12 [Google Scholar]
  39. Gervain J, Vines BW, Chen LM, Seo RJ, Hensch TK. et al. 2013. Valproate reopens critical-period learning of absolute pitch. Front. Syst. Neurosci. 7:102 [Google Scholar]
  40. Gogolla N, Leblanc JJ, Quast KB, Südhof TC, Fagiolini M, Hensch TK. 2009. Common circuit defect of excitatory-inhibitory balance in mouse models of autism. J. Neurodev. Disord. 1:172–81 [Google Scholar]
  41. Gogolla N, Takesian AE, Feng G, Fagiolini M, Hensch TK. 2014. Sensory integration in mouse insular cortex reflects GABA circuit maturation. Neuron 20:894–905 [Google Scholar]
  42. Golestani N, Molko N, Dehaene S, LeBihan D, Pallier C. 2007. Brain structure predicts the learning of foreign speech sounds. Cereb. Cortex 17:575–82 [Google Scholar]
  43. He HY, Hodos W, Quinlan EM. 2006. Visual deprivation reactivates rapid ocular dominance plasticity in adult visual cortex. J. Neurosci. 26:2951–55 [Google Scholar]
  44. Hensch TK. 2004. Critical period regulation. Annu. Rev. Neurosci. 27:549–79 [Google Scholar]
  45. Hensch TK. 2005. Critical period plasticity in local cortical circuits. Nat. Rev. Neurosci. 6:877–88 [Google Scholar]
  46. Hofer SB, Mrsic-Flogel TD, Bonhoeffer T, Hübener M. 2006. Prior experience enhances plasticity in adult visual cortex. Nat. Neurosci. 9:127–32 [Google Scholar]
  47. Holmes JM, Clarke MP. 2006. Amblyopia. Lancet 367:1343–51 [Google Scholar]
  48. Houston DM, Stewart J, Moberly A, Hollich G, Miyamoto RT. 2012. Word learning in deaf children with cochlear implants: Effects of early auditory experience. Dev. Sci. 15:448–61 [Google Scholar]
  49. Houston DM, Ying EA, Pisoni DB, Kirk KI. 2001. Development of pre-word-learning skills in infants with cochlear implants. Volta Rev.303–26
  50. Ingvalson EM, Holt LL, McClelland JL. 2012. Can native Japanese listeners learn to differentiate /r–l/ on the basis of F3 onset frequency?. Biling. Lang. Cogn. 15:434–35 [Google Scholar]
  51. Ingvalson EM, McClelland JL, Holt LL. 2011. Predicting native English-like performance by native Japanese speakers. J. Phonetics 39:571–84 [Google Scholar]
  52. Innis SM, Gilley J, Werker JF. 2001. Are human milk long-chain polyunsaturated fatty acids related to visual and neural development in breast-fed term infants?. J. Pediatr. 139:532–38 [Google Scholar]
  53. Insel TR. 2010. Rethinking schizophrenia. Nature 468:187–93 [Google Scholar]
  54. Johnson JS, Newport EL. 1989. Critical period effects in language learning: The influence of maturational state on the acquisition of English as a second language. Cogn. Psychol. 21:60–99 [Google Scholar]
  55. Jusczyk PW. 2002. How infants adapt speech-processing capacities to native language structure. Curr. Dir. Psychol. Sci. 11:15–18 [Google Scholar]
  56. Jusczyk PW, Aslin RN. 1995. Infants' detection of the sound patterns of words in fluent speech. Cogn. Psychol. 29:1–23 [Google Scholar]
  57. Kaliman P, Alvarez-López MJ, Cosín-Tomás M, Rosenkranz MA, Lutz A, Davidson RJ. 2014. Rapid changes in histone deacetylases and inflammatory gene expression in expert meditators. Psychoneuroendocrinology 40:96–107 [Google Scholar]
  58. Kaplan PS, Bachorowski J, Smoski MJ, Zinser M. 2001. Role of clinical diagnosis and medication use in effects of maternal depression on infant-directed speech. Infancy 2:537–48 [Google Scholar]
  59. Key AP, Lambert EW, Aschner JL, Maitre NL. 2012. Influence of gestational age and postnatal age on speech sound processing in NICU infants. Psychophysiology 49:720–31 [Google Scholar]
  60. Kilgard MP, Merzenich MM. 1998. Cortical map reorganization enabled by nucleus basalis activity. Science 279:1714–18 [Google Scholar]
  61. Knudsen EI. 1998. Capacity for plasticity in the adult owl auditory system expanded by juvenile experience. Science 279:1531–33 [Google Scholar]
  62. Knudsen EI. 2004. Sensitive periods in the development of the brain and behavior. J. Cogn. Neurosci. 16:1412–25 [Google Scholar]
  63. Kovács ÁM, Mehler J. 2009. Cognitive gains in 7-month-old bilingual infants. Proc. Natl. Acad. Sci. USA 106:6556–60 [Google Scholar]
  64. Kral A, Sharma A. 2012. Developmental neuroplasticity after cochlear implantation. Trends Neurosci. 35:111–22 [Google Scholar]
  65. Kuhl PK. 2007. Is speech learning “gated” by the social brain?. Dev. Sci. 10:110–20 [Google Scholar]
  66. Kuhl PK. 2010. Brain mechanisms in early language acquisition. Neuron 67:713–27 [Google Scholar]
  67. Kuhl PK, Meltzoff AN. 1982. The bimodal development of speech in infancy. Science 218:1138–41 [Google Scholar]
  68. Kuhl PK, Tsao FM, Liu HM. 2003. Foreign-language experience in infancy: Effects of short-term exposure and social interaction on phonetic learning. Proc. Natl. Acad. Sci. USA 100:9096–101 [Google Scholar]
  69. Kuhl PK, Williams KA, Lacerda F, Stevens KN, Lindblom B. 1992. Linguistic experience alters phonetic perception in infants by 6 months of age. Science 255:606–8 [Google Scholar]
  70. Kushnerenko E, Teinonen T, Volein A, Csibra G. 2008. Electrophysiological evidence of illusory audiovisual speech percept in human infants. Proc. Natl. Acad. Sci. USA 105:11442–45 [Google Scholar]
  71. Lee DS, Lee JS, Oh SH, Kim SK, Kim JW. et al. 2001. Cross-modal plasticity and cochlear implants. Nature 409:149–50 [Google Scholar]
  72. Lee HJ, Kang E, Oh SH, Kang H, Lee DS. et al. 2005. Preoperative differences of cerebral metabolism relate to the outcome of cochlear implants in congenitally deaf children. Hear. Res. 203:2–9 [Google Scholar]
  73. Lee S, Hjerling-Leffler J, Zagha E, Fishell G, Rudy B. 2010. The largest group of superficial neocortical GABAergic interneurons expresses ionotropic serotonin receptors. J. Neurosci. 30:16796–808 [Google Scholar]
  74. Lenneberg EH. 1967. Biological Foundations of Language New York: Wiley
  75. Letzkus JJ, Wolff SBE, Meyer EMM, Tovote P, Courtin J. et al. 2011. A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature 480:331–35 [Google Scholar]
  76. Levelt CN, Hübener M. 2012. Critical-period plasticity in the visual cortex. Annu. Rev. Neurosci. 35:309–30 [Google Scholar]
  77. Lewkowicz DJ, Hansen-Tift AM. 2012. Infants deploy selective attention to the mouth of a talking face when learning speech. Proc. Natl. Acad. Sci. USA 109:1431–36 [Google Scholar]
  78. Linkenhoker BA, Knudsen EI. 2002. Incremental training increases the plasticity of the auditory space map in adult barn owls. Nature 419:293–96 [Google Scholar]
  79. Lively SE, Pisoni DB, Yamada RA, Tohkura Y, Yamada T. 1994. Training Japanese listeners to identify English /r/ and /l/: III. Long-term retention of new phonetic categories. J. Acoust. Soc. Am. 96:2076–87 [Google Scholar]
  80. Lyness CR, Woll B, Campbell R, Cardin V. 2013. How does visual language affect crossmodal plasticity and cochlear implant success?. Neurosci. Biobehav. Rev. 37:2621–30 [Google Scholar]
  81. MacKain K, Studdert-Kennedy M, Spieker S, Stern D. 1983. Infant intermodal speech perception is a left-hemisphere function. Science 219:1347–49 [Google Scholar]
  82. Mahmoudzadeh M, Dehaene-Lambertz G, Fournier M, Kongolo G, Goudjil S. et al. 2013. Syllabic discrimination in premature human infants prior to complete formation of cortical layers. Proc. Natl. Acad. Sci. USA 110:4846–51 [Google Scholar]
  83. Mampe B, Friederici AD, Christophe A, Wermke K. 2009. Newborns' cry melody is shaped by their native language. Curr. Biol. 19:1994–97 [Google Scholar]
  84. Mattock K, Molnar M, Polka L, Burnham D. 2008. The developmental course of lexical tone perception in the first year of life. Cognition 106:1367–81 [Google Scholar]
  85. Maurer D, Werker JF. 2014. Perceptual narrowing during infancy: a comparison of language and faces. Dev. Psychobiol. 56:154–78 [Google Scholar]
  86. May L, Byers-Heinlein K, Gervain J, Werker JF. 2011. Language and the newborn brain: Does prenatal language experience shape the neonate neural response to speech?. Front. Psychol. 2:222 [Google Scholar]
  87. Maya Vetencourt JF, Sale A, Viegi A, Baroncelli L, De Pasquale R. et al. 2008. The antidepressant fluoxetine restores plasticity in the adult visual cortex. Science 18:385–88 [Google Scholar]
  88. Maya Vetencourt JF, Tiraboschi E, Spolidoro M, Castrén E, Maffei L. 2011. Serotonin triggers a transient epigenetic mechanism that reinstates adult visual cortex plasticity in rats. Eur. J. Neurosci. 33:49–57 [Google Scholar]
  89. Mayberry RI, Lock E, Kazmi H. 2002. Linguistic ability and early language exposure. Nature 417:38 [Google Scholar]
  90. Maye J, Werker JF, Gerken LA. 2002. Infant sensitivity to distributional information can affect phonetic discrimination. Cognition 82:B101–11 [Google Scholar]
  91. McCandliss BD, Fiez JA, Protopapas A, Conway M, McClelland JL. 2002. Success and failure in teaching the [r]-[l] contrast to Japanese adults: Tests of a Hebbian model of plasticity and stabilization in spoken language perception. Cogn. Affect. Behav. Neurosci. 2:89–108 [Google Scholar]
  92. McGee AW, Yang Y, Fischer QS, Daw NW, Strittmater SM. 2005. Experience-driven plasticity of visual cortex limited by myelin and Nogo receptor. Science 309:2222–26 [Google Scholar]
  93. Mehler J, Jusczyk PW, Lambertz G, Halsted N, Bertoncini J, Amiel-Tison C. 1988. A precursor of language acquisition in young infants. Cognition 29:143–78 [Google Scholar]
  94. Minagawa-Kawai Y, van der Lely H, Ramus F, Sato Y, Mazuka R, Dupoux E. 2011. Optical brain imaging reveals general auditory and language-specific processing in early infant development. Cereb. Cortex 21:254–61 [Google Scholar]
  95. Miyata S, Komatsu Y, Yoshimura Y, Taya C, Kitagawa H. 2012. Persistent cortical plasticity by upregulation of chondroitin 6-sulfation. Nat. Neurosci. 15:3414–22S1–2 [Google Scholar]
  96. Molfese DL, Molfese VJ. 1985. Electrophysiological indices of auditory discrimination in newborn infants: The bases for predicting later language development?. Infant Behav. Dev. 8:197–211 [Google Scholar]
  97. Moon C, Cooper RP, Fifer WP. 1993. Two-day-olds prefer their native language. Infant Behav. Dev. 16:495–500 [Google Scholar]
  98. Moon C, Lagercrantz H, Kuhl PK. 2013. Language experienced in-utero affects vowel perception after birth: a two-country study. Acta Paediatr. 102:156–60 [Google Scholar]
  99. Morishita H, Miwa JM, Heintz N, Hensch TK. 2010. Lynx1, a cholinergic brake, limits plasticity in adult visual cortex. Science 330:1238–40 [Google Scholar]
  100. Nazzi T, Ramus F. 2003. Perception and acquisition of linguistic rhythm by infants. Speech Commun. 41:233–43 [Google Scholar]
  101. Oh JS, Au TKF, Jun SA. 2010. Early childhood language memory in the speech perception of international adoptees. J. Child Lang. 37:1123–32 [Google Scholar]
  102. Oh JS, Jun SA, Knightly LM, Au TK. 2003. Holding on to childhood language memory. Cognition 86:B53–64 [Google Scholar]
  103. Pallier C, Bosch L, Sebastián-Gallés N. 1997. A limit on behavioral plasticity in speech perception. Cognition 64:B9–17 [Google Scholar]
  104. Patterson ML, Werker JF. 2003. Two-month-old infants match phonetic information in lips and voice. Dev. Sci. 6:191–96 [Google Scholar]
  105. Peña M, Maki A, Kovacć D, Dehaene-Lambertz G, Koizumi H. et al. 2003. Sounds and silence: an optical topography study of language recognition at birth. Proc. Natl. Acad. Sci. USA 100:11702–5 [Google Scholar]
  106. Peña M, Pittaluga E, Mehler J. 2010. Language acquisition in premature and full-term infants. Proc. Natl. Acad. Sci. USA 107:3823–28 [Google Scholar]
  107. Peña M, Werker JF, Dehaene-Lambertz G. 2012. Earlier speech exposure does not accelerate speech acquisition. J. Neurosci. 32:11159–63 [Google Scholar]
  108. Perani D, Saccuman MC, Scifo P, Anwander A, Spada D. et al. 2011. Neural language networks at birth. Proc. Natl. Acad. Sci. USA 108:16056–61 [Google Scholar]
  109. Petitto LA, Berens MS, Kovelman I, Dubins MH, Jasinska K, Shalinsky M. 2012. The “Perceptual Wedge Hypothesis” as the basis for bilingual babies phonetic processing advantage: new insights from fNIRS brain imaging. Brain Lang. 121:130–43 [Google Scholar]
  110. Pivik RT, Andres A, Badger TM. 2012. Effects of diet on early stage cortical perception and discrimination of syllables differing in voice-onset time: a longitudinal ERP study in 3 and 6 month old infants. Brain Lang 120:27–41 [Google Scholar]
  111. Polka L, Werker JF. 1994. Developmental changes in perception of nonnative vowel contrasts. J. Exp. Psychol. Hum. 20:421–35 [Google Scholar]
  112. Pons F, Lewkowicz DJ, Soto-Faraco S, Sebastián-Gallés N. 2009. Narrowing of intersensory speech perception in infancy. Proc. Natl. Acad. Sci. USA 106:10598–602 [Google Scholar]
  113. Price CJ. 2012. A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. NeuroImage 62:816–47 [Google Scholar]
  114. Putignano E, Lonetti G, Cancedda L, Ratto G, Costa M. et al. 2007. Developmental down-regulation of histone post-translational modifications regulates visual cortical plasticity. Neuron 53:747–59 [Google Scholar]
  115. Ramírez-Esparza N, Garcia-Sierra A, Kuhl PK. 2014. Look who's talking: Speech style and social context in language input to infants are linked to concurrent and future speech development. Dev Sci In press
  116. Ramus F. 2014. Neuroimaging sheds new light on the phonological deficit in dyslexia. Trends Cogn. Sci. 18:274–75 [Google Scholar]
  117. Rosenblum LD, Schmuckler MA, Johnson JA. 1997. The McGurk effect in infants. Percept. Psychophys. 59:347–57 [Google Scholar]
  118. Rouger J, Lagleyre S, Fraysse B, Deneve S, Deguine O, Barone P. 2007. Evidence that cochlear-implanted deaf patients are better multisensory integrators. Proc. Natl. Acad. Sci. USA 104:7295–300 [Google Scholar]
  119. Rubenstein JL, Merzenich MM. 2003. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav. 2:255–67 [Google Scholar]
  120. Saffran JR, Aslin RN, Newport EK. 1996. Statistical learning by 8-month-old infants. Science 274:1926–28 [Google Scholar]
  121. Sale A, Maya Vetencourt JF, Medini P, Cenni MC, Baroncelli L. et al. 2007. Environmental enrichment in adulthood promotes amblyopia recovery through a reduction of intracortical inhibition. Nat. Neurosci. 10:679–81 [Google Scholar]
  122. Schorr EA, Fox NA, van Wassenhove V, Knudsen EI. 2005. Auditory-visual fusion in speech perception in children with cochlear implants. Proc. Natl. Acad. Sci. USA 102:18748–50 [Google Scholar]
  123. Scott LS, Pascalis O, Nelson CA. 2007. A domain-general theory of the development of perceptual discrimination. Curr. Dir. Psychol. Sci. 16:197–201 [Google Scholar]
  124. Sebastián-Gallés N, Albareda B, Weikum W, Werker JF. 2012. A bilingual advantage in visual language discrimination in infancy. Psychol. Sci. 23:994–99 [Google Scholar]
  125. Silingardi D, Scali M, Belluomini G, Pizzorusso T. 2010. Epigenetic treatments of adult rats promote recovery from visual acuity deficits induced by long-term monocular deprivation. Eur. J. Neurosci. 31:2185–92 [Google Scholar]
  126. Simpson KL, Weaver KJ, de Villers-Sidani E, Lu JYF, Cai Z. et al. 2011. Perinatal antidepressant exposure alters cortical network function in rodents. Proc. Natl. Acad. Sci. USA 108:18465–70 [Google Scholar]
  127. Singh L, Liederman J, Mierzejewski R, Barnes J. 2011. Rapid reacquisition of native phoneme contrasts after disuse: You do not always lose what you do not use. Dev. Sci. 14:949–59 [Google Scholar]
  128. Slagter HA, Davidson RJ, Lutz A. 2011. Mental training as a tool in the neuroscientific study of brain and cognitive plasticity. Front. Hum. Neurosci. 5:17 [Google Scholar]
  129. Sohal VS, Zhang F, Yizhar O, Deisseroth K. 2009. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459:698–702 [Google Scholar]
  130. Soto-Faraco S, Navarra J, Weikum WM, Vouloumanos A, Sebastián-Gallés N, Werker JF. 2007. Discriminating languages by speech reading. Percept. Psychophys. 69:218–37 [Google Scholar]
  131. Stager CL, Werker JF. 1997. Infants listen for more phonetic detail in speech perception than in word learning tasks. Nature 388:381–82 [Google Scholar]
  132. Streeter LA. 1976. Language perception of 2-month-old infants shows effects of both innate mechanisms and experience. Nature 259:39–41 [Google Scholar]
  133. Sumby WH, Pollack I. 1954. Visual contribution to speech intelligibility in noise. J. Acoust. Soc. Am. 26:212–15 [Google Scholar]
  134. Sundara M, Polka L, Molnar M. 2008. Development of coronal stop perception: Bilingual infants keep pace with their monolingual peers. Cognition 108:232–42 [Google Scholar]
  135. Swingley D, Aslin RN. 2002. Lexical neighborhoods and the word-form representations of 14-month-olds. Psychol. Sci. 13:480–84 [Google Scholar]
  136. Syken J, Grandpre T, Kanold PO, Shatz CJ. 2006. PirB restricts ocular dominance plasticity in visual cortex. Science 313:1795–800 [Google Scholar]
  137. Takesian AE, Hensch TK. 2013. Balancing plasticity/stability across brain development. Prog. Brain Res. 207:3–34 [Google Scholar]
  138. Tees RC, Werker JF. 1984. Perceptual flexibility: Maintenance or recovery of the ability to discriminate non-native speech sounds. Can. J. Psychol. 38:579–90 [Google Scholar]
  139. Tomalski P, Ribeiro H, Ballieux H, Axelsson EL, Murphy E. et al. 2013. Exploring early developmental changes in face scanning patterns during the perception of audiovisual mismatch of speech cues. Eur. J. Dev. Psychol. 10:611–24 [Google Scholar]
  140. Toyoizumi T, Miyamoto H, Yazaki-Sugiyama Y, Atapour N, Hensch TK, Miller KD. 2013. A theory of the transition to critical period plasticity: Inhibition selectively suppresses spontaneous activity. Neuron 80:51–63 [Google Scholar]
  141. Trehub SE. 1976. The discrimination of foreign speech contrasts by infants and adults. Child Dev. 47:466–72 [Google Scholar]
  142. Tsao FM, Liu HM, Kuhl PK. 2004. Speech perception in infancy predicts language development in the second year of life: a longitudinal study. Child Dev. 75:1067–84 [Google Scholar]
  143. van Versendaal D, Rajendran R, Saiepour MH, Klooster J, Smit-Rigter L. et al. 2012. Elimination of inhibitory synapses is a major component of adult ocular dominance plasticity. Neuron 7:374–83 [Google Scholar]
  144. Ventureya VAG, Pallier C, Yoo HY. 2004. The loss of first language phonetic perception in adopted Koreans. J. Neurolinguist. 17:79–91 [Google Scholar]
  145. Wang BS, Sarnaik R, Cang J. 2010. Critical period plasticity matches binocular orientation preference in the visual cortex. Neuron 65:246–56 [Google Scholar]
  146. Weikum WM, Oberlander TF, Hensch TK, Werker JF. 2012. Prenatal exposure to antidepressants and depressed maternal mood alter trajectory of infant speech perception. Proc. Natl. Acad. Sci. USA 109:17221–27 [Google Scholar]
  147. Weikum W, Vouloumanos A, Navarra J, Soto-Faraco S, Sebastián-Gallés N, Werker JF. 2007. Visual language discrimination in infancy. Science 316:1159 [Google Scholar]
  148. Weikum WM, Vouloumanos A, Navarra J, Soto-Faraco S, Sebastián-Gallés N, Werker JF. 2013. Age-related sensitive periods influence visual language discrimination in adults. Front. Syst. Neurosci. 7:86 [Google Scholar]
  149. Werker JF, Curtin S. 2005. PRIMIR: A developmental framework of infant speech processing. Lang. Learn. Dev. 1:197–234 [Google Scholar]
  150. Werker JF, Fennell CT, Corcoran K, Stager CL. 2002. Infants' ability to learn phonetically similar words: Effects of age and vocabulary size. Infancy 3:1–30 [Google Scholar]
  151. Werker JF, Gervain J. 2013. Speech perception in infancy. A foundation for language acquisition. The Oxford Handbook of Developmental Psychology 1 Body and Mind PD Zelazo 909–25 Oxford, UK: Oxford Univ. Press [Google Scholar]
  152. Werker JF, Tees RC. 1984. Cross-language speech perception: Evidence for perceptual reorganization during the first year of life. Infant. Behav. Dev. 7:49–63 [Google Scholar]
  153. Werker JF, Tees RC. 2005. Speech perception as a window for understanding plasticity and commitment in language systems of the brain. Dev. Psychobiol. 46:233–51 [Google Scholar]
  154. Whitton JP, Polley DB. 2011. Evaluating the perceptual and pathophysiological consequences of auditory deprivation in early postnatal life: a comparison of basic and clinical studies. J. Assoc. Res. Otolaryngol. 12:535–47 [Google Scholar]
  155. Wiesel TN, Hubel DH. 1963. Single-cell responses in striate cortex of kittens deprived of vision in one eye. J. Neurophysiol. 26:1003–17 [Google Scholar]
  156. Yang EJ, Lin EW, Hensch TK. 2012. Critical period for acoustic preference in mice. Proc. Natl. Acad. Sci. USA 109:17213–20 [Google Scholar]
  157. Yeung HH, Chen KH, Werker JF. 2013. When does native language input affect phonetic perception? The precocious case of lexical tone. J. Mem. Lang. 68:123–39 [Google Scholar]
  158. Yeung HH, Werker JF. 2009. Learning words' sounds before learning how words sound: 9-month-olds use distinct objects as cues to categorize speech information. Cognition 113:234–43 [Google Scholar]
  159. Yoshida KA, Pons F, Maye J, Werker JF. 2010. Distributional phonetic learning at 10 months of age. Infancy 15:420–33 [Google Scholar]
  160. Zhou X, Panizutti R, de Villers-Sidani E, Madeira C, Merzenich MM. 2011. Natural restoration of critical period plasticity in the juvenile and adult primary auditory cortex. J. Neurosci. 31:5625–34 [Google Scholar]
/content/journals/10.1146/annurev-psych-010814-015104
Loading
/content/journals/10.1146/annurev-psych-010814-015104
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error