1932

Abstract

Animals navigate a wide range of distances, from a few millimeters to globe-spanning journeys of thousands of kilometers. Despite this array of navigational challenges, similar principles underlie these behaviors across species. Here, we focus on the navigational strategies and supporting mechanisms in four well-known systems: the large-scale migratory behaviors of sea turtles and lepidopterans as well as navigation on a smaller scale by rats and solitarily foraging ants. In lepidopterans, rats, and ants we also discuss the current understanding of the neural architecture which supports navigation. The orientation and navigational behaviors of these animals are defined in terms of behavioral error-reduction strategies reliant on multiple goal-directed servomechanisms. We conclude by proposing to incorporate an additional component into this system: the observation that servomechanisms operate on oscillatory systems of cycling behavior. These oscillators and servomechanisms comprise the basis for directed orientation and navigational behaviors.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-psych-020821-111311
2022-01-04
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/psych/73/1/annurev-psych-020821-111311.html?itemId=/content/journals/10.1146/annurev-psych-020821-111311&mimeType=html&fmt=ahah

Literature Cited

  1. Adden A, Wibrand S, Pfeiffer K, Warrant E, Heinze S 2020. The brain of a nocturnal migratory insect, the Australian Bogong moth. J. Comp. Neurol. 528:1942–63
    [Google Scholar]
  2. Alexander AS, Carstensen LC, Hinman JR, Raudies F, Chapman GW, Hasselmo ME. 2020. Egocentric boundary vector tuning of the retrosplenial cortex. Sci. Adv. 6:eaaz2322
    [Google Scholar]
  3. Avens L, Lohmann KJ. 2004. Navigation and seasonal migratory orientation in juvenile sea turtles. J. Exp. Biol. 207:1771–78
    [Google Scholar]
  4. Avens L, Wang JH, Johnsen S, Dukes P, Lohmann KJ. 2003. Responses of hatchling sea turtles to rotational displacements. J. Exp. Mar. Biol. Ecol. 288:111–24
    [Google Scholar]
  5. Baddeley B, Graham P, Husbands P, Philippides A. 2012. A model of ant route navigation driven by scene familiarity. PLOS Comput. Biol. 8:e1002336
    [Google Scholar]
  6. Beetz MJ, el Jundi B. 2018. Insect orientation: Stay on course with the sun. Curr. Biol. 28:R933–36
    [Google Scholar]
  7. Berg HC, Brown DA. 1972. Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239:500–4
    [Google Scholar]
  8. Bingman VP, Cheng K. 2005. Mechanisms of animal global navigation: comparative perspectives and enduring challenges. Ethol. Ecol. Evol. 17:295–318
    [Google Scholar]
  9. Brothers JR, Lohmann KJ. 2015. Evidence for geomagnetic imprinting and magnetic navigation in the natal homing of sea turtles. Curr. Biol. 25:392–96
    [Google Scholar]
  10. Brothers JR, Lohmann KJ. 2018. Evidence that magnetic navigation and geomagnetic imprinting shape spatial genetic variation in sea turtles. Curr. Biol. 28:1325–29.e2
    [Google Scholar]
  11. Brower L. 1996. Monarch butterfly orientation: missing pieces of a magnificent puzzle. J. Exp. Biol. 199:93–103
    [Google Scholar]
  12. Buehlmann C, Mangan M, Graham P. 2020a. Multimodal interactions in insect navigation. Anim. Cogn. 23:1129–41
    [Google Scholar]
  13. Buehlmann C, Wozniak B, Goulard R, Webb B, Graham P, Niven JE 2020b. Mushroom bodies are required for learned visual navigation, but not for innate visual behavior, in ants. Curr. Biol. 30:3438–43.e2
    [Google Scholar]
  14. Carr A. 1986. Rips, FADS, and little loggerheads. BioScience 36:92–100
    [Google Scholar]
  15. Chapman JW, Reynolds DR, Wilson K 2015. Long-range seasonal migration in insects: mechanisms, evolutionary drivers and ecological consequences. Ecol. Lett. 18:287–302
    [Google Scholar]
  16. Cheng K. 1986. A purely geometric module in the rat's spatial representation. Cognition 23:149–78
    [Google Scholar]
  17. Cheng K 2012. Arthropod navigation: ants, bees, crabs, spiders finding their way. The Oxford Handbook of Comparative Cognition TR Zentall, EA Wasserman 347–65 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  18. Cheng K, Spetch ML, Miceli P. 1996. Averaging temporal duration and spatial position. J. Exp. Psychol. Anim. Behav. Process. 22:175–82
    [Google Scholar]
  19. Dacke M, Baird E, Byrne M, Scholtz CH, Warrant EJ. 2013. Dung beetles use the Milky Way for orientation. Curr. Biol. 23:298–300
    [Google Scholar]
  20. Danjo T, Toyoizumi T, Fujisawa S. 2018. Spatial representations of self and other in the hippocampus. Science 359:213–18
    [Google Scholar]
  21. de Bono M, Maricq AV. 2005. Neuronal substrates of complex behaviors in C. elegans. Annu. Rev. Neurosci. 28:451–501
    [Google Scholar]
  22. de Lavilléon G, Lacroix MM, Rondi-Reig L, Benchenane K. 2015. Explicit memory creation during sleep demonstrates a causal role of place cells in navigation. Nat. Neurosci. 18:493–95
    [Google Scholar]
  23. Diehl GW, Hon OJ, Leutgeb S, Leutgeb JK. 2017. Grid and non-grid cells in medial entorhinal cortex represent spatial location and environmental features with complementary coding schemes. Neuron 94:83–92
    [Google Scholar]
  24. Dreyer D, el Jundi B, Kishkinev D, Suchentrunk C, Campostrini L et al. 2018. Evidence for a southward autumn migration of nocturnal noctuid moths in central Europe. J. Exp. Biol. 221:jeb179218
    [Google Scholar]
  25. Eichenbaum H. 2014. Time cells in the hippocampus: a new dimension for mapping memories. Nat. Rev. Neurosci. 15:732–44
    [Google Scholar]
  26. Fleischmann PN, Grob R, Müller VL, Wehner R, Rössler W. 2018. The geomagnetic field is a compass cue in Cataglyphis ant navigation. Curr. Biol. 28:1440–44.e2
    [Google Scholar]
  27. Foster DJ, Wilson MA. 2006. Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature 440:680–83
    [Google Scholar]
  28. Fraenkel GS, Gunn DL. 1961. The Orientation of Animals New York: Dover
  29. Freas CA, Cheng K. 2018. Landmark learning, cue conflict, and outbound view sequence in navigating desert ants. J. Exp. Psychol. Anim. Learn. Cogn. 44:409–21
    [Google Scholar]
  30. Freas CA, Cheng K. 2019. Panorama similarity and navigational knowledge in the nocturnal bull ant Myrmecia midas. J. Exp. Biol. 222:jeb193201
    [Google Scholar]
  31. Freas CA, Fleischmann PN, Cheng K. 2019. Experimental ethology of learning in desert ants: becoming expert navigators. Behav. Process. 158:181–91
    [Google Scholar]
  32. Freas CA, Spetch ML. 2019. Terrestrial cue learning and retention during the outbound and inbound foraging trip in the desert ant, Cataglyphis velox. J. Comp. Physiol. A 205:177–89
    [Google Scholar]
  33. Fuxjager MJ, Eastwood BS, Lohmann KJ. 2011. Orientation of hatchling loggerhead sea turtles to regional magnetic fields along a transoceanic migratory pathway. J. Exp. Biol. 214:2504–8
    [Google Scholar]
  34. Fyhn M, Molden S, Witter MP, Moser EI, Moser M. 2004. Spatial representation in the entorhinal cortex. Science 305:1258–64
    [Google Scholar]
  35. Gallistel CR. 1980. The Organization of Action Hillsdale, NJ: Lawrence Erlbaum Assoc.
  36. Gauthier JL, Tank DW. 2018. A dedicated population for reward coding in the hippocampus. Neuron 99:179–93
    [Google Scholar]
  37. Giocomo LM, Stensola T, Bonnevie T, Van Cauter T, Moser M, Moser EI. 2014. Topography of head direction cells in medial entorhinal cortex. Curr. Biol. 24:252–62
    [Google Scholar]
  38. Graham P, Cheng K 2009. Ants use the panoramic skyline as a visual cue during navigation. Curr. Biol. 19:R935–37
    [Google Scholar]
  39. Grieves RM, Jeffery KJ. 2017. The representation of space in the brain. Behav. Process. 135:113–31
    [Google Scholar]
  40. Grob R, Fleischmann PN, Grübel K, Wehner R, Rössler W. 2017. The role of celestial compass information in Cataglyphis ants during learning walks and for neuroplasticity in the central complex and mushroom bodies. Front. Behav. Neurosci. 11:226
    [Google Scholar]
  41. Guerra PA, Gegear RJ, Reppert SM. 2014. A magnetic compass aids monarch butterfly migration. Nat. Commun. 5:1–8
    [Google Scholar]
  42. Guerra PA, Reppert SM. 2015. Sensory basis of lepidopteran migration: focus on the monarch butterfly. Curr. Opin. Neurobiol. 34:20–28
    [Google Scholar]
  43. Hafting T, Fyhn M, Molden S, Moser M, Moser EI. 2005. Microstructure of a spatial map in the entorhinal cortex. Nature 436:801–6
    [Google Scholar]
  44. Hägglund M, Mørreaunet M, Moser M, Moser EI. 2019. Grid-cell distortion along geometric borders. Curr. Biol. 29:1047–54
    [Google Scholar]
  45. Hays GC, Åkesson S, Broderick AC, Glen F, Godley BJ et al. 2003. Island-finding ability of marine turtles. Proc. R. Soc. B 270:S5–7
    [Google Scholar]
  46. Heinze S. 2017. Unraveling the neural basis of insect navigation. Curr. Opin. Insect Sci. 24:58–67
    [Google Scholar]
  47. Heinze S, Reppert SM. 2011. Sun compass integration of skylight cues in migratory monarch butterflies. Neuron 69:345–58
    [Google Scholar]
  48. Hinman JR, Chapman GW, Hasselmo ME. 2019. Neuronal representation of environmental boundaries in egocentric coordinates. Nat. Commun. 10:1–8
    [Google Scholar]
  49. Hoinville T, Wehner R. 2018. Optimal multi-guidance integration in insect navigation. PNAS 115:2824–29
    [Google Scholar]
  50. Jacob F. 1977. Evolution and tinkering. Science 196:1161–66
    [Google Scholar]
  51. Jacob P-Y, Casali G, Spieser L, Page H, Overington D, Jeffery K 2017. An independent, landmark-dominated head-direction signal in dysgranular retrosplenial cortex. Nat. Neurosci. 20:173–75
    [Google Scholar]
  52. Jones DS, MacFadden BJ. 1982. Induced magnetization in the monarch butterfly, Danaus plexippus (Insecta, Lepidoptera). J. Exp. Biol. 96:1–9
    [Google Scholar]
  53. Julian JB, Keinath AT, Marchette SA, Epstein RA. 2018. The neurocognitive basis of spatial reorientation. Curr. Biol. 28:R1059–73
    [Google Scholar]
  54. Julian JB, Keinath AT, Muzzio IA, Epstein RA. 2015. Place recognition and heading retrieval are mediated by dissociable cognitive systems in mice. PNAS 112:6503–8
    [Google Scholar]
  55. Kamhi JF, Barron AB, Narendra A. 2020. Vertical lobes of the mushroom bodies are essential for view-based navigation in Australian Myrmecia ants. Curr. Biol. 30:1–6
    [Google Scholar]
  56. Keinath AT, Julian JB, Epstein RA, Muzzio IA. 2017. Environmental geometry aligns the hippocampal map during spatial reorientation. Curr. Biol. 27:309–17
    [Google Scholar]
  57. Koshland DE Jr 1980. Bacterial chemotaxis in relation to neurobiology. Annu. Rev. Neurosci. 3:43–75
    [Google Scholar]
  58. Kraus B, Brandon M, Robinson R, Connerney M, Hasselmo M, Eichenbaum H. 2015. During running in place, grid cells integrate elapsed time and distance run. Neuron 88:578–89
    [Google Scholar]
  59. Kropff E, Carmichael JE, Moser M, Moser EI. 2015. Speed cells in the medial entorhinal cortex. Nature 523:419–24
    [Google Scholar]
  60. Krupic J, Bauza M, Burton S, Barry C, O'Keefe J. 2015. Grid cell symmetry is shaped by environmental geometry. Nature 518:232–35
    [Google Scholar]
  61. Le Möel F, Wystrach A 2020. Opponent processes in visual memories: a model of attraction and repulsion in navigating insects’ mushroom bodies. PLOS Comput. Biol. 16:e1007631
    [Google Scholar]
  62. Legge EL, Wystrach A, Spetch ML, Cheng K. 2014. Combining sky and earth: Desert ants (Melophorus bagoti) show weighted integration of celestial and terrestrial cues. J. Exp. Biol. 217:4159–66
    [Google Scholar]
  63. Lever C, Burton S, Jeewajee A, O'Keefe J, Burgess N 2009. Boundary vector cells in the subiculum of the hippocampal formation. J. Neurosci. 29:9771–77
    [Google Scholar]
  64. Light P, Salmon M, Lohmann KJ 1993. Geomagnetic orientation of loggerhead sea turtles: evidence for an inclination compass. J. Exp. Biol. 182:1–10
    [Google Scholar]
  65. Liu H, Ravi S, Kolomenskiy D, Tanaka H 2016. Biomechanics and biomimetics in insect-inspired flight systems. Philos. Trans. R. Soc. B 371:20150390
    [Google Scholar]
  66. Lohmann KJ, Cain SD, Dodge SA, Lohmann CMF. 2001. Regional magnetic fields as navigational markers for sea turtles. Science 294:364–66
    [Google Scholar]
  67. Lohmann KJ, Lohmann CMF. 1993. A light-independent magnetic compass in the leatherback sea turtle. Biol. Bull. 185:149–51
    [Google Scholar]
  68. Lohmann KJ, Lohmann CMF. 1994. Detection of magnetic inclination angle by sea turtles: a possible mechanism for determining latitude. J. Exp. Biol. 194:23–32
    [Google Scholar]
  69. Lohmann KJ, Lohmann CMF. 1996a. Detection of magnetic field intensity by sea turtles. Nature 380:59–61
    [Google Scholar]
  70. Lohmann KJ, Lohmann CMF. 1996b. Orientation and open-sea navigation in sea turtles. J. Exp. Biol. 199:73–81
    [Google Scholar]
  71. Lohmann KJ, Lohmann CMF. 2006. Sea turtles, lobsters, and oceanic magnetic maps. Mar. Freshw. Behav. Physiol. 39:49–64
    [Google Scholar]
  72. Lohmann KJ, Lohmann CMF. 2019. There and back again: natal homing by magnetic navigation in sea turtles and salmon. J. Exp. Biol. 222:jeb184077
    [Google Scholar]
  73. Lohmann KJ, Lohmann CMF, Ehrhart LM, Bagley DA, Swing T. 2004. Geomagnetic map used in sea-turtle navigation. Nature 428:909–10
    [Google Scholar]
  74. Lohmann KJ, Lohmann CMF, Endres CS. 2008a. The sensory ecology of ocean navigation. J. Exp. Biol. 211:1719–28
    [Google Scholar]
  75. Lohmann KJ, Luschi P, Hays GC. 2008b. Goal navigation and island-finding in sea turtles. J. Exp. Mar. Biol. Ecol. 356:83–95
    [Google Scholar]
  76. Lohmann K, Swartz A, Lohmann C. 1995. Perception of ocean wave direction by sea turtles. J. Exp. Biol. 198:1079–85
    [Google Scholar]
  77. Luschi P. 2013. Long-distance animal migrations in the oceanic environment: orientation and navigation correlates. ISRN Zool. 2013:631839
    [Google Scholar]
  78. Luschi P, Hays GS, Del Seppia C, Marsh R, Papi F 1998. The navigational feats of green sea turtles migrating from Ascension Island investigated by satellite telemetry. Proc. R. Soc. B 265:2279–84
    [Google Scholar]
  79. Mallory CS, Giocomo LM. 2018. Heterogeneity in hippocampal place coding. Curr. Opin. Neurobiol. 49:158–67
    [Google Scholar]
  80. Mallory CS, Hardcastle K, Bant JS, Giocomo LM. 2018. Grid scale drives the scale and long-term stability of place maps. Nat. Neurosci. 21:270–82
    [Google Scholar]
  81. Mangan M, Webb B. 2012. Spontaneous formation of multiple routes in individual desert ants (Cataglyphis velox). Behav. Ecol. 23:944–54
    [Google Scholar]
  82. Mathejczyk TF, Wernet MF. 2017. Sensing polarized light in insects. Oxford Research Encyclopedia of Neuroscience Oxford, UK: Oxford Univ. Press https://doi.org/10.1093/acrefore/9780190264086.013.109
    [Crossref] [Google Scholar]
  83. Merlin C, Gegear RJ, Reppert SM. 2009. Antennal circadian clocks coordinate sun compass orientation in migratory monarch butterflies. Science 325:1700–4
    [Google Scholar]
  84. Möller R. 2012. A model of ant navigation based on visual prediction. J. Theor. Biol. 305:118–30
    [Google Scholar]
  85. Morris RGM, Garrud P, Rawlins JNP, O'Keefe J. 1982. Place navigation impaired in rats with hippocampal lesions. Nature 297:681–83
    [Google Scholar]
  86. Moser EI, Roudi Y, Witter MP, Kentros C, Bonhoeffer T, Moser M. 2014. Grid cells and cortical representation. Nat. Rev. Neurosci. 15:466–81
    [Google Scholar]
  87. Mouritsen H. 2018. Long-distance navigation and magnetoreception in migratory animals. Nature 558:50–59
    [Google Scholar]
  88. Mouritsen H, Derbyshire R, Stalleicken J, Mouritsen O, Frost BJ, Norris DR. 2013. An experimental displacement and over 50 years of tag-recoveries show that monarch butterflies are not true navigators. PNAS 110:7348–53
    [Google Scholar]
  89. Mouritsen H, Frost BJ. 2002. Virtual migration in tethered flying monarch butterflies reveals their orientation mechanisms. PNAS 99:10162–66
    [Google Scholar]
  90. Müller M, Wehner R. 2010. Path integration provides a scaffold for landmark learning in desert ants. Curr. Biol. 20:1368–71
    [Google Scholar]
  91. Murray T, Kocsi Z, Dahmen H, Narendra A, Le Möel F et al. 2020. The role of attractive and repellent scene memories in ant homing (Myrmecia croslandi). J. Exp. Biol. 223:jeb21002
    [Google Scholar]
  92. Murray T, Zeil J 2017. Quantifying navigational information: the catchment volumes of panoramic snapshots in outdoor scenes. PLOS ONE 12:e0187226
    [Google Scholar]
  93. Narendra A, Si A, Sulikowski D, Cheng K. 2007. Learning, retention and coding of nest-associated visual cues by the Australian desert ant, Melophorus bagoti. Behav. Ecol. Sociobiol. 61:1543–53
    [Google Scholar]
  94. Nicholson DJ, Judd SP, Cartwright BA, Collett TS. 1999. Learning walks and landmark guidance in wood ants (Formica rufa). J. Exp. Biol. 202:1831–38
    [Google Scholar]
  95. O'Keefe J, Dostrovsky J 1971. The hippocampus as a spatial map: preliminary evidence from unit activity in the freely-moving rat. Brain Res 34:171–75
    [Google Scholar]
  96. O'Keefe J, Nadel L 1978. The Hippocampus as a Cognitive Map Oxford, UK: Clarendon Press
  97. Perez SM, Taylor OR, Jander R 1999. The effect of a strong magnetic field on monarch butterfly (Danaus plexippus) migratory behavior. Naturwissenschaften 86:140–43
    [Google Scholar]
  98. Pierce-Shimomura JT, Morse TM, Lockery SR 1999. The fundamental role of pirouettes in Caenorhabditis elegans chemotaxis. J. Neurosci. 19:9557–69
    [Google Scholar]
  99. Putman N, Endres C, Lohmann CF, Lohmann K. 2011. Longitude perception and bicoordinate magnetic maps in sea turtles. Curr. Biol. 21:463–66
    [Google Scholar]
  100. Raudies F, Hinman JR, Hasselmo ME. 2016. Modelling effects on grid cells of sensory input during self-motion. J. Physiol. 594:6513–26
    [Google Scholar]
  101. Reppert SM, de Roode JC. 2018. Demystifying monarch butterfly migration. Curr. Biol. 28:R1009–22
    [Google Scholar]
  102. Reppert SM, Gegear RJ, Merlin C. 2010. Navigational mechanisms of migrating monarch butterflies. Trends Neurosci 33:399–406
    [Google Scholar]
  103. Reppert SM, Zhu H, White RH. 2004. Polarized light helps monarch butterflies navigate. Curr. Biol. 14:155–58
    [Google Scholar]
  104. Rowland DC, Roudi Y, Moser M, Moser EI. 2016. Ten years of grid cells. Annu. Rev. Neurosci. 39:19–40
    [Google Scholar]
  105. Russell JC, McMorland AJC, MacKay JWB. 2010. Exploratory behaviour of colonizing rats in novel environments. Anim. Behav. 79:159–64
    [Google Scholar]
  106. Salmon M, Wyneken J. 1987. Orientation and swimming behavior of hatchling loggerhead turtles Caretta caretta L. during their offshore migration. J. Exp. Mar. Biol. Ecol. 109:137–53
    [Google Scholar]
  107. Salmon M, Wyneken J, Fritz E, Lucas M 1992. Seafinding by hatchling sea turtles: role of brightness, silhouette and beach slope as orientation cues. Behaviour 122:56–77
    [Google Scholar]
  108. Sanders H, Ji D, Sasaki T, Leutgeb JK, Wilson MA, Lisman JE 2019. Temporal coding and rate remapping: representation of nonspatial information in the hippocampus. Hippocampus 29:111–27
    [Google Scholar]
  109. Sanders H, Rennó-Costa C, Idiart M, Lisman J 2016. Grid cells and place cells: an integrated view of their navigational and memory function. Trends Neurosci 38:763–75
    [Google Scholar]
  110. Sargolini F, Fyhn M, Hafting T, McNaughton BL, Witter MP et al. 2006. Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science 312:758–62
    [Google Scholar]
  111. Schiller D, Eichenbaum H, Buffalo EA, Davachi L, Foster DJ et al. 2015. Memory and space: towards an understanding of the cognitive map. J. Neurosci. 35:13904–11
    [Google Scholar]
  112. Schmidt-Koenig K. 1979. Directions of migrating monarch butterflies (Danaus plexippus; Danaidae; Lepidoptera) in some parts of the Eastern United States. Behav. Process. 4:73–78
    [Google Scholar]
  113. Schultheiss P, Cheng K, Reynolds AM. 2015. Searching behavior in social hymenoptera. Learn. Motiv. 50:59–67
    [Google Scholar]
  114. Schultheiss P, Wystrach A, Schwarz S, Tack A, Delor J et al. 2016. Crucial role of ultraviolet light for desert ants in determining direction from the terrestrial panorama. Anim. Behav. 115:19–28
    [Google Scholar]
  115. Schwarz S, Mangan M, Zeil J, Webb B, Wystrach A. 2017. How ants use vision when homing backward. Curr. Biol. 27:401–7
    [Google Scholar]
  116. Schwarz S, Narendra A, Zeil J. 2011. The properties of the visual system in the Australian desert ant Melophorus bagoti. Arthropod Struct. Dev. 40:128–34
    [Google Scholar]
  117. Seelig JD, Jayaraman V. 2015. Neural dynamics for landmark orientation and angular path integration. Nature 521:186–91
    [Google Scholar]
  118. Shlizerman E, Phillips-Portillo J, Forger D, Reppert S 2016. Neural integration underlying a time-compensated sun compass in the migratory monarch butterfly. Cell Rep 15:683–91
    [Google Scholar]
  119. Solstad T, Boccara CN, Kropff E, Moser M, Moser EI. 2008. Representation of geometric borders in the entorhinal cortex. Science 322:1865–68
    [Google Scholar]
  120. Srivastava N, Clark DA, Samuel ADT 2009. Temporal analysis of stochastic turning behavior of swimming C. elegans. J. Neurophysiol. 102:1172–79
    [Google Scholar]
  121. Stachenfeld KL, Botvinick MM, Gershman SJ. 2017. The hippocampus as a predictive map. Nat. Neurosci. 20:1643–53
    [Google Scholar]
  122. Stalleicken J, Labhart T, Mouritsen H. 2006. Physiological characterization of the compound eye in monarch butterflies with focus on the dorsal rim area. J. Comp. Physiol. A 192:321–31
    [Google Scholar]
  123. Stalleicken J, Mukhida M, Labhart T, Wehner R, Frost B, Mouritsen H. 2005. Do monarch butterflies use polarized skylight for migratory orientation?. J. Exp. Biol. 208:2399–408
    [Google Scholar]
  124. Stensola H, Stensola T, Solstad T, Frøland K, Moser M, Moser EI. 2012. The entorhinal grid map is discretized. Nature 492:72–78
    [Google Scholar]
  125. Stensola T, Stensola H, Moser M, Moser EI. 2015. Shearing-induced asymmetry in entorhinal grid cells. Nature 518:207–12
    [Google Scholar]
  126. Sterling P, Laughlin S. 2015. Principles of Neural Design Cambridge MA: MIT Press
  127. Stone T, Webb B, Adden A, Weddig NB, Honkanen A et al. 2017. An anatomically constrained model for path integration in the bee brain. Curr. Biol. 27:3069–85
    [Google Scholar]
  128. Taube JS. 2007. The head direction signal: origins and sensory-motor integration. Annu. Rev. Neurosci. 30:181–207
    [Google Scholar]
  129. Taube JS, Muller RU, Ranck J Jr 1990. Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J. Neurosci. 10:420–35
    [Google Scholar]
  130. Tolman EC. 1948. Cognitive maps in rats and men. Psychol. Rev. 55:189–208
    [Google Scholar]
  131. Tsao A, Moser M, Moser E. 2013. Traces of experience in the lateral entorhinal cortex. Curr. Biol. 23:399–405
    [Google Scholar]
  132. Urquhart FA. 1965. Monarch butterfly (Danaus plexippus) migration studies: autumnal movement. Proc. Entomol. Soc. Ont. 95:23–33
    [Google Scholar]
  133. Urquhart FA. 1987. The Monarch Butterfly: International Traveler Chicago: Nelson-Hall
  134. van Houten J. 1978. Two mechanisms of chemotaxis in Paramecium. J. Comp. Physiol. 127:167–74
    [Google Scholar]
  135. Walsh V. 2003. A theory of magnitude: common cortical metrics of time, space and quantity. Trends Cogn. Sci. 7:483–88
    [Google Scholar]
  136. Warrant E, Dacke M. 2011. Vision and visual navigation in nocturnal insects. Annu. Rev. Entomol. 56:239–54
    [Google Scholar]
  137. Warrant E, Frost B, Green K, Mouritsen H, Dreyer D et al. 2016. The Australian Bogong moth Agrotis infusa: a long-distance nocturnal navigator. Front. Behav. Neurosci. 10:77
    [Google Scholar]
  138. Wehner R. 2020. Desert Navigator Cambridge, MA: Belknap Press
  139. Wehner R, Hoinville T, Cruse H, Cheng K. 2016. Steering intermediate courses: Desert ants combine information from various navigational routines. J. Comp. Physiol. A 202:459–72
    [Google Scholar]
  140. Wehner R, Wehner S. 1990. Insect navigation: use of maps or Ariadne's thread?. Ethol. Ecol. Evol. 2:27–48
    [Google Scholar]
  141. Wilson M, McNaughton B 1994. Reactivation of hippocampal ensemble memories during sleep. Science 265:676–79
    [Google Scholar]
  142. Wyneken J, Salmon M, Lohmann KJ 1990. Orientation by hatchling loggerhead sea turtles Caretta caretta L. in a wave tank. J. Exp. Mar. Biol. Ecol. 139:43–50
    [Google Scholar]
  143. Wystrach A, Beugnon G, Cheng K. 2011. Landmarks or panoramas: What do navigating ants attend to for guidance?. Front. Zool. 8:21
    [Google Scholar]
  144. Wystrach A, Beugnon G, Cheng K. 2012. Ants might use different view-matching strategies on and off the route. J. Exp. Biol. 215:44–55
    [Google Scholar]
  145. Wystrach A, Buehlmann C, Schwarz S, Cheng K, Graham P. 2020. Rapid aversive and memory trace learning during route navigation in desert ants. Curr. Biol. 30:1927–33
    [Google Scholar]
  146. Wystrach A, Mangan M, Webb B. 2015. Optimal cue integration in ants. Proc. R. Soc. B 282:20151484
    [Google Scholar]
  147. Wystrach A, Schwarz S, Graham P, Cheng K 2019. Running paths to nowhere: Repetition of routes shows how navigating ants modulate online the weights accorded to cues. Anim. Cogn. 22:213–22
    [Google Scholar]
  148. Zeil J, Fleischmann PN. 2019. The learning walks of ants (Hymenoptera: Formicidae). Myrmecol. News 29:93–110
    [Google Scholar]
  149. Zeil J, Hofmann MI, Chahl JS. 2003. Catchment areas of panoramic snapshots in outdoor scenes. J. Opt. Soc. A 20:450
    [Google Scholar]
  150. Zeil J, Narendra A, Stürzl W. 2014. Looking and homing: how displaced ants decide where to go. Philos. Trans. R. Soc. B 369:20130034
    [Google Scholar]
  151. Ziegler PE, Wehner R. 1997. Time-courses of memory decay in vector-based and landmark-based systems of navigation in desert ants, Cataglyphis fortis. J. Comp. Physiol. A 181:13–20
    [Google Scholar]
/content/journals/10.1146/annurev-psych-020821-111311
Loading
/content/journals/10.1146/annurev-psych-020821-111311
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error