1932

Abstract

Human speech perception results from neural computations that transform external acoustic speech signals into internal representations of words. The superior temporal gyrus (STG) contains the nonprimary auditory cortex and is a critical locus for phonological processing. Here, we describe how speech sound representation in the STG relies on fundamentally nonlinear and dynamical processes, such as categorization, normalization, contextual restoration, and the extraction of temporal structure. A spatial mosaic of local cortical sites on the STG exhibits complex auditory encoding for distinct acoustic-phonetic and prosodic features. We propose that as a population ensemble, these distributed patterns of neural activity give rise to abstract, higher-order phonemic and syllabic representations that support speech perception. This review presents a multi-scale, recurrent model of phonological processing in the STG, highlighting the critical interface between auditory and language systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-psych-022321-035256
2022-01-04
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/psych/73/1/annurev-psych-022321-035256.html?itemId=/content/journals/10.1146/annurev-psych-022321-035256&mimeType=html&fmt=ahah

Literature Cited

  1. Ahissar E, Nagarajan S, Ahissar M, Protopapas A, Mahncke H, Merzenich MM. 2001. Speech comprehension is correlated with temporal response patterns recorded from auditory cortex. PNAS 98:2313367–72
    [Google Scholar]
  2. Allen EJ, Burton PC, Olman CA, Oxenham AJ. 2017. Representations of pitch and timbre variation in human auditory cortex. J. Neurosci. 37:51284–93
    [Google Scholar]
  3. Anderson LA, Linden JF. 2011. Physiological differences between histologically defined subdivisions in the mouse auditory thalamus. Hear. Res. 274:1–248–60
    [Google Scholar]
  4. Bartlett EL. 2013. The organization and physiology of the auditory thalamus and its role in processing acoustic features important for speech perception. Brain Lang 126:129–48
    [Google Scholar]
  5. Benson RR, Richardson M, Whalen DH, Lai S 2006. Phonetic processing areas revealed by sinewave speech and acoustically similar non-speech. NeuroImage 31:1342–53
    [Google Scholar]
  6. Benson RR, Whalen DH, Richardson M, Swainson B, Clark VP et al. 2001. Parametrically dissociating speech and nonspeech perception in the brain using fMRI. Brain Lang 78:3364–96
    [Google Scholar]
  7. Binder JR, Frost JA, Hammeke TA, Bellgowan PS, Springer JA et al. 2000. Human temporal lobe activation by speech and nonspeech sounds. Cereb. Cortex 10:5512–28
    [Google Scholar]
  8. Blumstein SE. 2009. Auditory word recognition: evidence from aphasia and functional neuroimaging. Lang. Linguist. Compass 3:4824–38
    [Google Scholar]
  9. Blumstein SE, Myers EB, Rissman J. 2005. The perception of voice onset time: an fMRI investigation of phonetic category structure. J. Cogn. Neurosci. 17:91353–66
    [Google Scholar]
  10. Boatman D. 2004. Cortical bases of speech perception: evidence from functional lesion studies. Cognition 92:1–247–65
    [Google Scholar]
  11. Boatman D, Gordon B, Hart J, Selnes O, Miglioretti D, Lenz F. 2000. Transcortical sensory aphasia: revisited and revised. Brain 123:Pt. 81634–42
    [Google Scholar]
  12. Bonte M, Hausfeld L, Scharke W, Valente G, Formisano E. 2014. Task-dependent decoding of speaker and vowel identity from auditory cortical response patterns. J. Neurosci. 34:134548–57
    [Google Scholar]
  13. Chan AM, Dykstra AR, Jayaram V, Leonard MK, Travis KE et al. 2014. Speech-specific tuning of neurons in human superior temporal gyrus. Cereb. Cortex 24:102679–93
    [Google Scholar]
  14. Chang EF. 2015. Towards large-scale, human-based, mesoscopic neurotechnologies. Neuron 86:168–78
    [Google Scholar]
  15. Chang EF, Rieger JW, Johnson K, Berger MS, Barbaro NM et al. 2010. Categorical speech representation in human superior temporal gyrus. Nat. Neurosci. 13:111428–32
    [Google Scholar]
  16. Chistovich LA. 1980. Auditory processing of speech. Lang. Speech 23:167–73
    [Google Scholar]
  17. Crone NE, Boatman D, Gordon B, Hao L 2001. Induced electrocorticographic gamma activity during auditory perception. Clin. Neurophysiol. 112:4565–82
    [Google Scholar]
  18. Cutler A, Mehler J, Norris D, Segui J 1986. The syllable's differing role in the segmentation of French and English. J. Mem. Lang. 25:4385–400
    [Google Scholar]
  19. Cutler A, Otake T. 1994. Mora or phonemes? Further evidence for language-specific listening. J. Mem. Lang. 33:6824–44
    [Google Scholar]
  20. Dehaene-Lambertz G, Pallier C, Serniclaes W, Sprenger-Charolles L, Jobert A, Dehaene S 2005. Neural correlates of switching from auditory to speech perception. NeuroImage 24:121–33
    [Google Scholar]
  21. Diehl RL, Lotto AJ, Holt LL. 2004. Speech perception. Annu. Rev. Psychol. 55:149–79
    [Google Scholar]
  22. Douglas RJ, Martin KAC. 2007. Recurrent neuronal circuits in the neocortex. Curr. Biol. 17:13R496–500
    [Google Scholar]
  23. Drennan DP, Lalor EC. 2019. Cortical tracking of complex sound envelopes: modeling the changes in response with intensity. eNeuro 6:3 https://doi.org/10.1523/ENEURO.0082-19.2019
    [Crossref] [Google Scholar]
  24. Drullman R. 1995. Temporal envelope and fine structure cues for speech intelligibility. J. Acoust. Soc. Am. 97:1585–92
    [Google Scholar]
  25. Elman JL. 1990. Finding structure in time. Cogn. Sci. 14:2179–211
    [Google Scholar]
  26. Feng G, Gan Z, Wang S, Wong PCM, Chandrasekaran B 2018. Task-general and acoustic-invariant neural representation of speech categories in the human brain. Cereb. Cortex 28:93241–54
    [Google Scholar]
  27. Formisano E, De Martino F, Bonte M, Goebel R 2008. “Who” is saying “what”? Brain-based decoding of human voice and speech. Science 322:5903970–73
    [Google Scholar]
  28. Fox NP, Leonard MK, Sjerps MJ, Chang EF 2020. Transformation of a temporal speech cue to a spatial neural code in human auditory cortex. eLife 9:e53051
    [Google Scholar]
  29. Fox NP, Sjerps MJ, Chang EF. 2017. Dynamic emergence of categorical perception of voice-onset time in human speech cortex. J. Acoust. Soc. Am. 141:53571–71
    [Google Scholar]
  30. Frazier L, Carlson K, Clifton C Jr 2006. Prosodic phrasing is central to language comprehension. Trends Cogn. Sci. 10:6244–49
    [Google Scholar]
  31. Furl N, Kumar S, Alter K, Durrant S, Shawe-Taylor J, Griffiths TD. 2011. Neural prediction of higher-order auditory sequence statistics. NeuroImage 54:32267–77
    [Google Scholar]
  32. Garofolo JS, Lamel LF, Fisher WM, Fiscus JG, Pallett DS. 1993. DARPA TIMIT acoustic-phonetic continuous speech corpus CD-ROM. NIST speech disc 1–1.1. CD-ROM https://ui.adsabs.harvard.edu/abs/1993STIN…9327403G/abstract
    [Google Scholar]
  33. Geschwind N. 1970. The organization of language and the brain. Science 170:3961940–44
    [Google Scholar]
  34. Goldinger SD, Azuma T. 2003. Puzzle-solving science: the quixotic quest for units in speech perception. J. Phonet. 31:3–4305–20
    [Google Scholar]
  35. Halle M, Chomsky N. 1968. The Sound Pattern of English New York: Harper & Row
  36. Hamilton LS, Edwards E, Chang EF 2018. A spatial map of onset and sustained responses to speech in the human superior temporal gyrus. Curr. Biol. 28:121860–71.e4
    [Google Scholar]
  37. Hamilton LS, Oganian Y, Chang EF. 2020. Topography of speech-related acoustic and phonological feature encoding throughout the human core and parabelt auditory cortex. bioRxiv 121624. https://doi.org/10.1101/2020.06.08.121624
    [Crossref]
  38. Healy AF, Cutting JE. 1976. Units of speech perception: phoneme and syllable. J. Verb. Learn. Verb. Behav. 15:173–83
    [Google Scholar]
  39. Heil P, Neubauer H. 2001. Temporal integration of sound pressure determines thresholds of auditory-nerve fibers. J. Neurosci. 21:187404–15
    [Google Scholar]
  40. Heilbron M, Chait M. 2018. Great expectations: Is there evidence for predictive coding in auditory cortex?. Neuroscience 389:54–73
    [Google Scholar]
  41. Hickok G, Poeppel D. 2004. Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition 92:1–267–99
    [Google Scholar]
  42. Hickok G, Poeppel D. 2007. The cortical organization of speech processing. Nat. Rev. Neurosci. 8:5393–402
    [Google Scholar]
  43. Hillis AE, Rorden C, Fridriksson J. 2017. Brain regions essential for word comprehension: drawing inferences from patients. Ann. Neurol. 81:6759–68
    [Google Scholar]
  44. Holdgraf CR, de Heer W, Pasley B, Rieger J, Crone N et al. 2016. Rapid tuning shifts in human auditory cortex enhance speech intelligibility. Nat. Commun. 7:13654
    [Google Scholar]
  45. Holt LL, Lotto AJ. 2010. Speech perception as categorization. Attent. Percept. Psychophys. 72:51218–27
    [Google Scholar]
  46. Hopkins K, Moore BCJ. 2009. The contribution of temporal fine structure to the intelligibility of speech in steady and modulated noise. J. Acoust. Soc. Am. 125:1442–46
    [Google Scholar]
  47. Howie JM. 1976. Acoustical Studies of Mandarin Vowels and Tones Cambridge, UK: Cambridge Univ. Press
  48. Hullett PW, Hamilton LS, Mesgarani N, Schreiner CE, Chang EF. 2016. Human superior temporal gyrus organization of spectrotemporal modulation tuning derived from speech stimuli. J. Neurosci. 36:62014–26
    [Google Scholar]
  49. Humphries C, Sabri M, Lewis K, Liebenthal E 2014. Hierarchical organization of speech perception in human auditory cortex. Front. Neurosci. 8:406
    [Google Scholar]
  50. Hutchison ER, Blumstein SE, Myers EB. 2008. An event-related fMRI investigation of voice-onset time discrimination. NeuroImage 40:1342–52
    [Google Scholar]
  51. Jasmin K, Lima CF, Scott SK. 2019. Understanding rostral-caudal auditory cortex contributions to auditory perception. Nat. Rev. Neurosci. 20:7425–34
    [Google Scholar]
  52. Johnson K 2008. Speaker normalization in speech perception. The Handbook of Speech Perception DB Pisoni, RE Remez 363–89 Malden, MA: Blackwell
    [Google Scholar]
  53. Jordan MI. 1997. Serial order: a parallel distributed processing approach. Advances in Psychology JW Donahoe, V Packard Dorsel 471–95 Amsterdam: North-Holland
    [Google Scholar]
  54. Keshishian M, Akbari H, Khalighinejad B, Herrero JL, Mehta AD, Mesgarani N 2020. Estimating and interpreting nonlinear receptive field of sensory neural responses with deep neural network models. eLife 9:e53445
    [Google Scholar]
  55. Khoshkhoo S, Leonard MK, Mesgarani N, Chang EF 2018. Neural correlates of sine-wave speech intelligibility in human frontal and temporal cortex. Brain Lang 187:83–91
    [Google Scholar]
  56. Kuhl PK. 1991. Human adults and human infants show a “perceptual magnet effect” for the prototypes of speech categories, monkeys do not. Percept. Psychophys. 50:293–107
    [Google Scholar]
  57. Kuhl PK, Williams KA, Lacerda F, Stevens KN, Lindblom B. 1992. Linguistic experience alters phonetic perception in infants by 6 months of age. Science 255:5044606–8
    [Google Scholar]
  58. Ladd R. 2008. Intonational Phonology Cambridge, UK: Cambridge Univ. Press
  59. Ladefoged P, Broadbent DE. 1957. Information conveyed by vowels. J. Acoust. Soc. Am. 29:198–104
    [Google Scholar]
  60. Ladefoged P, Johnson K. 2014. A Course in Phonetics Toronto: Nelson Educ.
  61. Lakertz Y, Ossmy O, Friedmann N, Mukamel R, Fried I 2021. Single-cell activity in human STG during perception of phonemes is organized according to manner of articulation. NeuroImage 226:117499
    [Google Scholar]
  62. Leech R, Holt LL, Devlin JT, Dick F. 2009. Expertise with artificial nonspeech sounds recruits speech-sensitive cortical regions. J. Neurosci. 29:165234–39
    [Google Scholar]
  63. Leonard MK, Baud MO, Sjerps MJ, Chang EF. 2016. Perceptual restoration of masked speech in human cortex. Nat. Commun. 7:13619
    [Google Scholar]
  64. Leonard MK, Bouchard KE, Tang C, Chang EF. 2015. Dynamic encoding of speech sequence probability in human temporal cortex. J. Neurosci. 35:187203–14
    [Google Scholar]
  65. Leonard MK, Cai R, Babiak MC, Ren A, Chang EF. 2019. The peri-Sylvian cortical network underlying single word repetition revealed by electrocortical stimulation and direct neural recordings. Brain Lang 193:58–72
    [Google Scholar]
  66. Lesogor LV, Chistovich LA. 1978. Detection of consonant in two-component complex sounds and interpretation of stimulus as a sequence of elements. Fiziol. Cheloveka 4:213–19
    [Google Scholar]
  67. Leszczyński M, Barczak A, Kajikawa Y, Ulbert I, Falchier AY et al. 2020. Dissociation of broadband high-frequency activity and neuronal firing in the neocortex. Sci. Adv. 6:33eabb0977
    [Google Scholar]
  68. Li Y, Tang C, Lu J, Wu J, Chang EF. 2021. Human cortical encoding of pitch in tonal and non-tonal languages. Nat. Commun. 12:1161
    [Google Scholar]
  69. Liang B, Du Y. 2018. The functional neuroanatomy of lexical tone perception: an activation likelihood estimation meta-analysis. Front. Neurosci. 12:495
    [Google Scholar]
  70. Liberman AM, Cooper FS, Shankweiler DP, Studdert-Kennedy M. 1967. Perception of the speech code. Psychol. Rev. 74:6431–61
    [Google Scholar]
  71. Liberman AM, Delattre PC, Cooper FS. 1952. The role of selected stimulus-variables in the perception of the unvoiced stop consonants. Am. J. Psychol. 65:4497–516
    [Google Scholar]
  72. Liberman AM, Delattre PC, Cooper FS. 1958. Some cues for the distinction between voiced and voiceless stops in initial position. Lang. Speech 1:3153–67
    [Google Scholar]
  73. Liberman AM, Harris KS, Hoffman HS, Griffith BC. 1957. The discrimination of speech sounds within and across phoneme boundaries. J. Exp. Psychol. 54:5358–68
    [Google Scholar]
  74. Liberman AM, Mattingly IG. 1985. The motor theory of speech perception revised. Cognition 21:11–36
    [Google Scholar]
  75. Liebenthal E, Binder JR, Spitzer SM, Possing ET, Medler DA. 2005. Neural substrates of phonemic perception. Cereb. Cortex 15:101621–31
    [Google Scholar]
  76. Liebenthal E, Desai R, Ellingson MM, Ramachandran B, Desai A, Binder JR. 2010. Specialization along the left superior temporal sulcus for auditory categorization. Cereb. Cortex 20:122958–70
    [Google Scholar]
  77. Liégeois-Chauvel C, Lorenzi C, Trébuchon A, Régis J, Chauvel P. 2004. Temporal envelope processing in the human left and right auditory cortices. Cereb. Cortex 14:7731–40
    [Google Scholar]
  78. Lindblom B, Sussman HM. 2012. Dissecting coarticulation: how locus equations happen. J. Phonet. 40:11–19
    [Google Scholar]
  79. Lisker L, Abramson AS. 1964. A cross-language study of voicing in initial stops: acoustical measurements. Word World 20:3384–422
    [Google Scholar]
  80. Liu R, Holt LL. 2011. Neural changes associated with nonspeech auditory category learning parallel those of speech category acquisition. J. Cogn. Neurosci. 23:3683–98
    [Google Scholar]
  81. Lorenzi C, Gilbert G, Carn H, Garnier S, Moore BCJ 2006. Speech perception problems of the hearing impaired reflect inability to use temporal fine structure. PNAS 103:4918866–69
    [Google Scholar]
  82. Lublinskaja V, Ross J, Ogorodnikova EV 2006. Auditory perception and processing of amplitude modulation in speech-like signals: legacy of the Chistovich-Kozhevnikov group. Dynamics of Speech Production and Perception PL Divenyi, S Greenberg, G Meyer 87–101 Clifton, VA: IOS Press
    [Google Scholar]
  83. Mann VA. 1980. Influence of preceding liquid on stop-consonant perception. Percept. Psychophys. 28:5407–12
    [Google Scholar]
  84. Mann VA, Repp BH. 1980. Influence of vocalic context on perception of the [∫]-[s] distinction. Percept. Psychophys. 28:3213–28
    [Google Scholar]
  85. Marslen-Wilson WD, Welsh A 1978. Processing interactions and lexical access during word recognition in continuous speech. Cogn. Psychol. 10:129–63
    [Google Scholar]
  86. Massaro DW. 1974. Perceptual units in speech recognition. J. Exp. Psychol. 102:2199–208
    [Google Scholar]
  87. Matsumoto R, Imamura H, Inouchi M, Nakagawa T, Yokoyama Y et al. 2011. Left anterior temporal cortex actively engages in speech perception: a direct cortical stimulation study. Neuropsychologia 49:51350–54
    [Google Scholar]
  88. McClelland JL, Elman JL. 1986. The TRACE model of speech perception. Cogn. Psychol. 18:11–86
    [Google Scholar]
  89. Mesgarani N, Cheung C, Johnson K, Chang EF 2014. Phonetic feature encoding in human superior temporal gyrus. Science 343:61741006–10
    [Google Scholar]
  90. Moon IJ, Hong SH. 2014. What is temporal fine structure and why is it important?. Korean J. Audiol. 18:11–7
    [Google Scholar]
  91. Möttönen R, Calvert GA, Jääskeläinen IP, Matthews PM, Thesen T et al. 2006. Perceiving identical sounds as speech or non-speech modulates activity in the left posterior superior temporal sulcus. NeuroImage 30:2563–69
    [Google Scholar]
  92. Nittrouer S, Miller ME, Crowther CS, Manhart MJ. 2000. The effect of segmental order on fricative labeling by children and adults. Percept. Psychophys. 62:2266–84
    [Google Scholar]
  93. Norris D, McQueen JM, Cutler A. 2000. Merging information in speech recognition: Feedback is never necessary. Behav. Brain Sci. 23:3299–325; discuss 325–70
    [Google Scholar]
  94. Nourski KV, Reale RA, Oya H, Kawasaki H, Kovach CK et al. 2009. Temporal envelope of time-compressed speech represented in the human auditory cortex. J. Neurosci. 29:4915564–74
    [Google Scholar]
  95. Nourski KV, Steinschneider M, Rhone AE, Kovach CK, Kawasaki H, Howard MA. 2019. Differential responses to spectrally degraded speech within human auditory cortex: an intracranial electrophysiology study. Hear. Res. 371:53–65
    [Google Scholar]
  96. Oganian Y, Chang EF. 2019. A speech envelope landmark for syllable encoding in human superior temporal gyrus. Sci. Adv. 5:11eaay6279
    [Google Scholar]
  97. Ohala JJ. 1975. The temporal regulation of speech. Auditory Analysis and Perception of Speech G Fant, MAA Tatham 431–53 San Diego, CA: Academic
    [Google Scholar]
  98. Overath T, McDermott JH, Zarate JM, Poeppel D. 2015. The cortical analysis of speech-specific temporal structure revealed by responses to sound quilts. Nat. Neurosci. 18:6903–11
    [Google Scholar]
  99. Ozker M, Schepers IM, Magnotti JF, Yoshor D, Beauchamp MS 2017. A double dissociation between anterior and posterior superior temporal gyrus for processing audiovisual speech demonstrated by electrocorticography. J. Cogn. Neurosci. 29:61044–60
    [Google Scholar]
  100. Parvizi J, Kastner S. 2018. Promises and limitations of human intracranial electroencephalography. Nat. Neurosci. 21:4474–83
    [Google Scholar]
  101. Peelle JE, Davis MH. 2012. Neural oscillations carry speech rhythm through to comprehension. Front. Psychol. 3:320
    [Google Scholar]
  102. Pisoni DB. 1973. Auditory and phonetic memory codes in the discrimination of consonants and vowels. Percept. Psychophys. 13:2253–60
    [Google Scholar]
  103. Rauschecker JP, Scott SK. 2009. Maps and streams in the auditory cortex: Nonhuman primates illuminate human speech processing. Nat. Neurosci. 12:6718–24
    [Google Scholar]
  104. Ray S, Maunsell JHR 2011. Different origins of gamma rhythm and high-gamma activity in macaque visual cortex. PLOS Biol 9:4e1000610
    [Google Scholar]
  105. Remez RE, Rubin PE, Pisoni DB, Carrell TD. 1981. Speech perception without traditional speech cues. Science 212:4497947–49
    [Google Scholar]
  106. Roux F-E, Miskin K, Durand J-B, Sacko O, Réhault E et al. 2015. Electrostimulation mapping of comprehension of auditory and visual words. Cortex 71:398–408
    [Google Scholar]
  107. Samuel AG. 1987. Lexical uniqueness effects on phonemic restoration. J. Mem. Lang. 26:136–56
    [Google Scholar]
  108. Santoro R, Moerel M, De Martino F, Valente G, Ugurbil K et al. 2017. Reconstructing the spectrotemporal modulations of real-life sounds from fMRI response patterns. PNAS 114:184799–804
    [Google Scholar]
  109. Savin HB, Bever TG. 1970. The nonperceptual reality of the phoneme. J. Verb. Learn. Verb. Behav. 9:3295–302
    [Google Scholar]
  110. Schönwiesner M, Zatorre RJ. 2009. Spectro-temporal modulation transfer function of single voxels in the human auditory cortex measured with high-resolution fMRI. PNAS 106:3414611–16
    [Google Scholar]
  111. Sendlmeier WF. 1995. Feature, phoneme, syllable or word: How is speech mentally represented?. Phonetica 52:3131–43
    [Google Scholar]
  112. Shannon RV, Zeng FG, Kamath V, Wygonski J, Ekelid M 1995. Speech recognition with primarily temporal cues. Science 270:5234303–4
    [Google Scholar]
  113. Sjerps MJ, Fox NP, Johnson K, Chang EF 2019. Speaker-normalized sound representations in the human auditory cortex. Nat. Commun. 10:12465
    [Google Scholar]
  114. Steinschneider M, Fishman YI, Arezzo JC. 2008. Spectrotemporal analysis of evoked and induced electroencephalographic responses in primary auditory cortex (A1) of the awake monkey. Cereb. Cortex 18:3610–25
    [Google Scholar]
  115. Steinschneider M, Nourski KV, Kawasaki H, Oya H, Brugge JF, Howard MA. 2011. Intracranial study of speech-elicited activity on the human posterolateral superior temporal gyrus. Cereb. Cortex 21:102332–47
    [Google Scholar]
  116. Steinschneider M, Volkov IO, Noh MD, Garrell PC, Howard MA. 1999. Temporal encoding of the voice onset time phonetic parameter by field potentials recorded directly from human auditory cortex. J. Neurophysiol. 82:52346–57
    [Google Scholar]
  117. Tang C, Hamilton LS, Chang EF 2017. Intonational speech prosody encoding in the human auditory cortex. Science 357:6353797–801
    [Google Scholar]
  118. Towle VL, Yoon H-A, Castelle M, Edgar JC, Biassou NM et al. 2008. ECoG gamma activity during a language task: differentiating expressive and receptive speech areas. Brain 131:Pt. 82013–27
    [Google Scholar]
  119. Tuller B, Nguyen N, Lancia L, Vallabha GK 2011. Nonlinear dynamics in speech perception. Nonlinear Dynamics in Human Behavior R Huys, VK Jirsa 135–50 Berlin: Springer
    [Google Scholar]
  120. Warren RM. 1970. Perceptual restoration of missing speech sounds. Science 167:3917392–93
    [Google Scholar]
  121. Warren RM, Sherman GL. 1974. Phonemic restorations based on subsequent context. Percept. Psychophys. 16:1150–56
    [Google Scholar]
  122. Wernicke C. 1874. Der aphasische Symptomencomplex: Eine psychologische Studie auf anatomischer Basis Breslau, Ger: Max Cohn & Weigert
  123. Yi HG, Leonard MK, Chang EF 2019. The encoding of speech sounds in the superior temporal gyrus. Neuron 102:61096–110
    [Google Scholar]
  124. Zatorre RJ, Delhommeau K, Zarate JM. 2012. Modulation of auditory cortex response to pitch variation following training with microtonal melodies. Front. Psychol. 3:544
    [Google Scholar]
  125. Zatorre RJ, Evans AC, Meyer E, Gjedde A 1992. Lateralization of phonetic and pitch discrimination in speech processing. Science 256:5058846–49
    [Google Scholar]
  126. Zatorre RJ, Gandour JT. 2008. Neural specializations for speech and pitch: moving beyond the dichotomies. Philos. Trans. R. Soc. B 363: 1493.1087–104
    [Google Scholar]
  127. Zeng F-G, Nie K, Stickney GS, Kong Y-Y, Vongphoe M et al. 2005. Speech recognition with amplitude and frequency modulations. PNAS 102:72293–98
    [Google Scholar]
/content/journals/10.1146/annurev-psych-022321-035256
Loading
/content/journals/10.1146/annurev-psych-022321-035256
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error