1932

Abstract

Traditional brain–machine interfaces decode cortical motor commands to control external devices. These commands are the product of higher-level cognitive processes, occurring across a network of brain areas, that integrate sensory information, plan upcoming motor actions, and monitor ongoing movements. We review cognitive signals recently discovered in the human posterior parietal cortex during neuroprosthetic clinical trials. These signals are consistent with small regions of cortex having a diverse role in cognitive aspects of movement control and body monitoring, including sensorimotor integration, planning, trajectory representation, somatosensation, action semantics, learning, and decision making. These variables are encoded within the same population of cells using structured representations that bind related sensory and motor variables, an architecture termed partially mixed selectivity. Diverse cognitive signals provide complementary information to traditional motor commands to enable more natural and intuitive control of external devices.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-psych-030221-030214
2022-01-04
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/psych/73/1/annurev-psych-030221-030214.html?itemId=/content/journals/10.1146/annurev-psych-030221-030214&mimeType=html&fmt=ahah

Literature Cited

  1. Aflalo T, Kellis S, Klaes C, Lee B, Shi Y et al. 2015. Decoding motor imagery from the posterior parietal cortex of a tetraplegic human. Science 348:906–10
    [Google Scholar]
  2. Aflalo T, Zhang CY, Rosario ER, Pouratian N, Orban GA, Andersen RA. 2020. A shared neural substrate for action verbs and observed actions in human posterior parietal cortex. Sci. Adv. 6:43eabb3984
    [Google Scholar]
  3. Ajiboye AB, Willett FR, Young DR, Memberg WD, Murphy BA et al. 2017. Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration. Lancet 389:1821–30
    [Google Scholar]
  4. Allison BZ, Leeb R, Brunner C, Müller-Putz GR, Bauernfeind G et al. 2011. Toward smarter BCIs: extending BCIs through hybridization and intelligent control. J. Neural Eng. 9:013001
    [Google Scholar]
  5. Amemiya K, Ishizu T, Ayabe T, Kojima S 2010. Effects of motor imagery on intermanual transfer: a near-infrared spectroscopy and behavioural study. Brain Res 1343:93–103
    [Google Scholar]
  6. Andersen RA. 2019. Machines that translate wants into actions. Scientific American April. https://www.scientificamerican.com/article/machines-that-translate-wants-into-actions/
    [Google Scholar]
  7. Andersen RA, Buneo CA. 2002. Intentional maps in posterior parietal cortex. Annu. Rev. Neurosci. 25:189–220
    [Google Scholar]
  8. Andersen RA, Cui H. 2009. Intention, action planning, and decision making in parietal-frontal circuits. Neuron 63:568–83
    [Google Scholar]
  9. Andersen RA, Essick GK, Siegel RM. 1985. Encoding of spatial location by posterior parietal neurons. Science 230:456–58
    [Google Scholar]
  10. Andersen RA, Hwang EJ, Mulliken GH. 2010. Cognitive neural prosthetics. Annu. Rev. Psychol. 61:169–90
    [Google Scholar]
  11. Anumanchipalli GK, Chartier J, Chang EF. 2019. Speech synthesis from neural decoding of spoken sentences. Nature 568:493–98
    [Google Scholar]
  12. Armenta Salas M, Bashford L, Kellis S, Jafari M, Jo H et al. 2018. Proprioceptive and cutaneous sensations in humans elicited by intracortical microstimulation. eLife 7:e32904
    [Google Scholar]
  13. Astafiev SV, Shulman GL, Stanley CM, Snyder AZ, Van Essen DC, Corbetta M. 2003. Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing. J. Neurosci. 23:4689–99
    [Google Scholar]
  14. Avillac M, Ben Hamed S, Duhamel J-R 2007. Multisensory integration in the ventral intraparietal area of the macaque monkey. J. Neurosci. 27:1922–32
    [Google Scholar]
  15. Aziz-Zadeh L, Wilson SM, Rizzolatti G, Iacoboni M 2006. Congruent embodied representations for visually presented actions and linguistic phrases describing actions. Curr. Biol. 16:1818–23
    [Google Scholar]
  16. Bartels J, Andreasen D, Ehirim P, Mao H, Seibert S et al. 2008. Neurotrophic electrode: method of assembly and implantation into human motor speech cortex. J. Neurosci. Methods 174:168–76
    [Google Scholar]
  17. Bashford L, Rosenthal I, Kellis S, Pejsa K, Kramer D et al. 2021. The neurophysiological representation of imagined somatosensory percepts in human cortex. J. Neurosci. 41:102177–85
    [Google Scholar]
  18. Bensmaia SJ, Miller LE. 2014. Restoring sensorimotor function through intracortical interfaces: progress and looming challenges. Nat. Rev. Neurosci. 15:313–25
    [Google Scholar]
  19. Beurze SM, de Lange FP, Toni I, Medendorp WP 2009. Spatial and effector processing in the human parietofrontal network for reaches and saccades. J. Neurophysiol. 101:3053–62
    [Google Scholar]
  20. Beuter A, Lefaucheur J-P, Modolo J. 2014. Closed-loop cortical neuromodulation in Parkinson's disease: an alternative to deep brain stimulation?. Clin. Neurophysiol. 125:874–85
    [Google Scholar]
  21. Binder JR, Desai RH. 2011. The neurobiology of semantic memory. Trends Cogn. Sci. 15:527–36
    [Google Scholar]
  22. Bisiach E, Luzzatti C. 1978. Unilateral neglect of representational space. Cortex 14:129–33
    [Google Scholar]
  23. Bisley JW, Goldberg ME. 2003. Neuronal activity in the lateral intraparietal area and spatial attention. Science 299:81–86
    [Google Scholar]
  24. Bjånes DA, Moritz CT. 2019. A robust encoding scheme for delivering artificial sensory information via direct brain stimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 27:1994–2004
    [Google Scholar]
  25. Bocquelet F, Hueber T, Girin L, Savariaux C, Yvert B. 2016. Real-time control of an articulatory-based speech synthesizer for brain computer interfaces. PLOS Comput. Biol. 12:e1005119
    [Google Scholar]
  26. Bouton CE, Shaikhouni A, Annetta NV, Bockbrader MA, Friedenberg DA et al. 2016. Restoring cortical control of functional movement in a human with quadriplegia. Nature 533:247–50
    [Google Scholar]
  27. Broca P. 1861. Remarques sur le siège de la faculté du langage articulé, suivies d'une observation d'aphémie (perte de la parole). Bull. Mem. Soc. Anat. Paris 6:330–57
    [Google Scholar]
  28. Brumberg JS, Nieto-Castanon A, Kennedy PR, Guenther FH 2010. Brain–computer interfaces for speech communication. Speech Commun 52:367–79
    [Google Scholar]
  29. Caggiano V, Fogassi L, Rizzolatti G, Pomper JK, Thier P et al. 2011. View-based encoding of actions in mirror neurons of area F5 in macaque premotor cortex. Curr. Biol. 21:144–48
    [Google Scholar]
  30. Carmena JM, Lebedev MA, Crist RE, O'Doherty JE, Santucci DM et al. 2003. Learning to control a brain–machine interface for reaching and grasping by primates. PLOS Biol 1:e42
    [Google Scholar]
  31. Cavina-Pratesi C, Monaco S, Fattori P, Galletti C, McAdam TD et al. 2010. Functional magnetic resonance imaging reveals the neural substrates of arm transport and grip formation in reach-to-grasp actions in humans. J. Neurosci. 30:10306–23
    [Google Scholar]
  32. Chivukula S, Zhang C, Aflalo T, Jafari M, Pejsa K et al. 2021. Neural encoding of felt and imagined touch within human posterior parietal cortex. eLife 10:e61646
    [Google Scholar]
  33. Christopoulos VN, Bonaiuto J, Kagan I, Andersen RA 2015. Inactivation of parietal reach region affects reaching but not saccade choices in internally guided decisions. J. Neurosci. 35:11719–28
    [Google Scholar]
  34. Christopoulos VN, Kagan I, Andersen RA 2018. Lateral intraparietal area (LIP) is largely effector-specific in free-choice decisions. Sci. Rep. 8:8611
    [Google Scholar]
  35. Collinger JL, Wodlinger B, Downey JE, Wang W, Tyler-Kabara EC et al. 2013. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 381:557–64
    [Google Scholar]
  36. Connolly JD, Andersen RA, Goodale MA. 2003. FMRI evidence for a ‘parietal reach region’ in the human brain. Exp. Brain Res. 153:140–45
    [Google Scholar]
  37. Crammond DJ, Kalaska JF. 2000. Prior information in motor and premotor cortex: activity during the delay period and effect on pre-movement activity. J. Neurophysiol. 84:986–1005
    [Google Scholar]
  38. Culham JC, Danckert SL, DeSouza JF, Gati JS, Menon RS, Goodale MA. 2003. Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas. Exp. Brain Res. 153:180–89
    [Google Scholar]
  39. Dadarlat MC, Sabes PN. 2016. Encoding and decoding of multi-channel ICMS in macaque somatosensory cortex. IEEE Trans. Haptics 9:508–14
    [Google Scholar]
  40. Desmurget M, Reilly KT, Richard N, Szathmari A, Mottolese C, Sirigu A. 2009. Movement intention after parietal cortex stimulation in humans. Science 324:811–13
    [Google Scholar]
  41. Desmurget M, Richard N, Beuriat P-A, Szathmari A, Mottolese C et al. 2018. Selective inhibition of volitional hand movements after stimulation of the dorsoposterior parietal cortex in humans. Curr. Biol. 28:3303–9.e3
    [Google Scholar]
  42. Dickstein R, Deutsch JE. 2007. Motor imagery in physical therapist practice. Phys. Ther. 87:942–53
    [Google Scholar]
  43. Fetz EE. 1969. Operant conditioning of cortical unit activity. Science 163:955–58
    [Google Scholar]
  44. Fetz EE, Baker MA. 1973. Operantly conditioned patterns on precentral unit activity and correlated responses in adjacent cells and contralateral muscles. J. Neurophysiol. 36:179–204
    [Google Scholar]
  45. Fifer MS, McMullen DP, Thomas TM, Osborn L, Nickl RW et al. 2020. Intracortical microstimulation elicits human fingertip sensations. medRxiv 20117374. https://doi.org/10.1101/2020.05.29.20117374
    [Crossref]
  46. Flesher SN, Collinger JL, Foldes ST, Weiss JM, Downey JE et al. 2016. Intracortical microstimulation of human somatosensory cortex. Sci. Transl. Med. 8:361ra141
    [Google Scholar]
  47. Flesher SN, Downey JE, Weiss JM, Hughes CL, Herrera AJ et al. 2021. A brain-computer interface that evokes tactile sensations improves robotic arm control. Science 372:831–36
    [Google Scholar]
  48. Fox KCR, Shi L, Baek S, Raccah O, Foster BL et al. 2020. Intrinsic network architecture predicts the effects elicited by intracranial electrical stimulation of the human brain. Nat. Hum. Behav. 4:1039–52
    [Google Scholar]
  49. Freedman DJ, Assad JA. 2006. Experience-dependent representation of visual categories in parietal cortex. Nature 443:85–88
    [Google Scholar]
  50. Fried I, Mukamel R, Kreiman G. 2011. Internally generated preactivation of single neurons in human medial frontal cortex predicts volition. Neuron 69:548–62
    [Google Scholar]
  51. Friedenberg DA, Schwemmer MA, Landgraf AJ, Annetta NV, Bockbrader MA et al. 2017. Neuroprosthetic-enabled control of graded arm muscle contraction in a paralyzed human. Sci. Rep. 7:8386
    [Google Scholar]
  52. Fusi S, Miller EK, Rigotti M. 2016. Why neurons mix: high dimensionality for higher cognition. Curr. Opin. Neurobiol. 37:66–74
    [Google Scholar]
  53. Gall FJ. 1798. Schreiben über seinen bereits geendigten Prodromus über die Verichtungen des Gehirns der Menschen und der Thiere an Herrn Jos. Fr. von Retzer.. Der Neue Teutsche Merkur 3:311–32
    [Google Scholar]
  54. Gallivan JP, McLean DA, Flanagan JR, Culham JC. 2013. Where one hand meets the other: limb-specific and action-dependent movement plans decoded from preparatory signals in single human frontoparietal brain areas. J. Neurosci. 33:1991–2008
    [Google Scholar]
  55. Gallivan JP, McLean DA, Smith FW, Culham JC. 2011. Decoding effector-dependent and effector-independent movement intentions from human parieto-frontal brain activity. J. Neurosci. 31:17149–68
    [Google Scholar]
  56. Gerbella M, Rozzi S, Rizzolatti G. 2017. The extended object-grasping network. Exp. Brain Res. 235:2903–16
    [Google Scholar]
  57. Ghez C, Gordon J, Ghilardi MF 1995. Impairments of reaching movements in patients without proprioception. II. Effects of visual information on accuracy. J. Neurophysiol. 73:361–72
    [Google Scholar]
  58. Gilja V, Pandarinath C, Blabe CH, Nuyujukian P, Simeral JD et al. 2015. Clinical translation of a high-performance neural prosthesis. Nat. Med. 21:1142–45
    [Google Scholar]
  59. Gnadt JW, Andersen RA. 1988. Memory related motor planning activity in posterior parietal cortex of macaque. Exp. Brain Res. 70:216–20
    [Google Scholar]
  60. Golub MD, Sadtler PT, Oby ER, Quick KM, Ryu SI et al. 2018. Learning by neural reassociation. Nat. Neurosci. 21:607–16
    [Google Scholar]
  61. Gordon J, Ghilardi MF, Ghez C. 1995. Impairments of reaching movements in patients without proprioception. I. Spatial errors. J. Neurophysiol. 73:347–60
    [Google Scholar]
  62. Graziano M. 2006. The organization of behavioral repertoire in motor cortex. Annu. Rev. Neurosci. 29:105–34
    [Google Scholar]
  63. Graziano MSA. 1999. Where is my arm? The relative role of vision and proprioception in the neuronal representation of limb position. PNAS 96:10418–21
    [Google Scholar]
  64. Graziano MSA, Aflalo TN. 2007. Mapping behavioral repertoire onto the cortex. Neuron 56:239–51
    [Google Scholar]
  65. Graziano MSA, Gross CG. 1993. A bimodal map of space: somatosensory receptive fields in the macaque putamen with corresponding visual receptive fields. Exp. Brain Res. 97:96–109
    [Google Scholar]
  66. Guariglia C, Piccardi L, Iaria G, Nico D, Pizzamiglio L 2005. Representational neglect and navigation in real space. Neuropsychologia 43:1138–43
    [Google Scholar]
  67. Hayati S, Venkataraman ST. 1989. Design and implementation of a robot control system with traded and shared control capability. Proceedings, 1989 International Conference on Robotics and Automation 31310–15 New York: IEEE
    [Google Scholar]
  68. Heed T, Beurze SM, Toni I, Röder B, Medendorp WP 2011. Functional rather than effector-specific organization of human posterior parietal cortex. J. Neurosci. 31:3066–76
    [Google Scholar]
  69. Herff C, Diener L, Angrick M, Mugler E, Tate MC et al. 2019. Generating natural, intelligible speech from brain activity in motor, premotor, and inferior frontal cortices. Front. Neurosci. 13:1267
    [Google Scholar]
  70. Herron J, Denison T, Chizeck HJ. 2015. Closed-loop DBS with movement intention. 7th International IEEE/EMBS Conference on Neural Engineering (NER), April 22–24, 2015, Montpelier, France844–47 New York: IEEE
    [Google Scholar]
  71. Hinkley LB, Krubitzer LA, Nagarajan SS, Disbrow EA. 2007. Sensorimotor integration in S2, PV, and parietal rostroventral areas of the human sylvian fissure. J. Neurophysiol. 97:1288–97
    [Google Scholar]
  72. Hiremath SV, Tyler-Kabara EC, Wheeler JJ, Moran DW, Gaunt RA et al. 2017. Human perception of electrical stimulation on the surface of somatosensory cortex. PLOS ONE 12:e0176020
    [Google Scholar]
  73. Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD et al. 2012. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485:372–75
    [Google Scholar]
  74. Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M et al. 2006. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442:164–71
    [Google Scholar]
  75. Hodge C, Dubroff J, Huckins S, Szeverenyi N 1996. Somatosensory imagery activates primary sensory cortex in human: a functional MRI study. NeuroImage 3:S209
    [Google Scholar]
  76. Holmes G. 1918. Disturbances of visual orientation. Br. J. Ophthalmol. 2:44968
    [Google Scholar]
  77. Huth AG, de Heer WA, Griffiths TL, Theunissen FE, Gallant JL. 2016. Natural speech reveals the semantic maps that tile human cerebral cortex. Nature 532:453–58
    [Google Scholar]
  78. Hwang EJ, Bailey PM, Andersen RA. 2013. Volitional control of neural activity relies on the natural motor repertoire. Curr. Biol. 23:353–61
    [Google Scholar]
  79. Jafari M, Aflalo T, Chivukula S, Kellis SS, Salas MA et al. 2020. The human primary somatosensory cortex encodes imagined movement in the absence of sensory information. Commun. Biol. 3:757
    [Google Scholar]
  80. Kaas JH, Stepniewska I. 2016. Evolution of posterior parietal cortex and parietal-frontal networks for specific actions in primates. J. Comp. Neurol. 524:595–608
    [Google Scholar]
  81. Katyal KD, Johannes MS, Kellis S, Aflalo T, Klaes C et al. 2014. A collaborative BCI approach to autonomous control of a prosthetic limb system Paper presented at the IEEE International Conference on Systems, Man, and Cybernetics Oct. 5–8 San Diego, CA:
  82. Kawai R, Markman T, Poddar R, Ko R, Fantana AL et al. 2015. Motor cortex is required for learning but not for executing a motor skill. Neuron 86:800–12
    [Google Scholar]
  83. Kikkert S, Pfyffer D, Verling M, Freund P, Wenderoth N. 2021. Finger somatotopy is preserved after tetraplegia but deteriorates over time. bioRxiv 430185. https://doi.org/10.1101/2021.02.08.430185
    [Crossref]
  84. Klaes C, Kellis S, Aflalo T, Lee B, Pejsa K et al. 2015. Hand shape representations in the human posterior parietal cortex. J. Neurosci. 35:15466–76
    [Google Scholar]
  85. Lambon Ralph MA, Jefferies E, Patterson K, Rogers TT 2017. The neural and computational bases of semantic cognition. Nat. Rev. Neurosci. 18:42–55
    [Google Scholar]
  86. Lanzilotto M, Ferroni CG, Livi A, Gerbella M, Maranesi M et al. 2019. Anterior intraparietal area: a hub in the observed manipulative action network. Cereb. Cortex 29:1816–33
    [Google Scholar]
  87. Lashley KS. 1929. Brain Mechanisms and Intelligence: A Quantitative Study of Injuries to the Brain Chicago: Univ. Chicago Press
  88. Lee B, Kramer D, Armenta Salas M, Kellis S, Brown D et al. 2018. Engineering artificial somatosensation through cortical stimulation in humans. Front. Syst. Neurosci. 12:24
    [Google Scholar]
  89. Libet B, Wright EW, Gleason CA 1983. Preparation- or intention-to-act, in relation to pre-event potentials recorded at the vertex. Electroencephalogr. Clin. Neurophysiol. 56:367–72
    [Google Scholar]
  90. Lingnau A, Downing PE. 2015. The lateral occipitotemporal cortex in action. Trends Cogn. Sci. 19:268–77
    [Google Scholar]
  91. London BM, Miller LE. 2013. Responses of somatosensory area 2 neurons to actively and passively generated limb movements. J. Neurophysiol. 109:1505–13
    [Google Scholar]
  92. Makin TR, Bensmaia SJ. 2017. Stability of sensory topographies in adult cortex. Trends Cogn. Sci. 21:195–204
    [Google Scholar]
  93. Malone DA Jr., Dougherty DD, Rezai AR, Carpenter LL, Friehs GM et al. 2009. Deep brain stimulation of the ventral capsule/ventral striatum for treatment-resistant depression. Biol. Psychiatry 65:267–75
    [Google Scholar]
  94. Martin A. 2016. GRAPES—grounding representations in action, perception, and emotion systems: how object properties and categories are represented in the human brain. Psychon. Bull. Rev. 23:979–90
    [Google Scholar]
  95. McMullen DP, Hotson G, Katyal KD, Wester BA, Fifer MS et al. 2014. Demonstration of a semi-autonomous hybrid brain–machine interface using human intracranial EEG, eye tracking, and computer vision to control a robotic upper limb prosthetic. IEEE Trans. Neural Syst. Rehabil. Eng. 22:784–96
    [Google Scholar]
  96. Meyer K, Damasio A 2009. Convergence and divergence in a neural architecture for recognition and memory. Trends Neurosci 32:376–82
    [Google Scholar]
  97. Mishkin M, Ungerleider LG. 1982. Contribution of striate inputs to the visuospatial functions of parieto-preoccipital cortex in monkeys. Behav. Brain Res. 6:57–77
    [Google Scholar]
  98. Mulliken GH, Musallam S, Andersen RA 2008. Forward estimation of movement state in posterior parietal cortex. PNAS 105:8170–77
    [Google Scholar]
  99. Murata A, Gallese V, Luppino G, Kaseda M, Sakata H. 2000. Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. J. Neurophysiol. 83:2580–601
    [Google Scholar]
  100. Murphey DK, Yoshor D, Beauchamp MS 2008. Perception matches selectivity in the human anterior color center. Curr. Biol. 18:216–20
    [Google Scholar]
  101. Musallam S, Corneil BD, Greger B, Scherberger H, Andersen RA. 2004. Cognitive control signals for neural prosthetics. Science 305:258–62
    [Google Scholar]
  102. Nelson RJ. 1987. Activity of monkey primary somatosensory cortical neurons changes prior to active movement. Brain Res 406:402–7
    [Google Scholar]
  103. Norman SL, Maresca D, Christopoulos VN, Griggs WS, Demene C et al. 2021. Single-trial decoding of movement intentions using functional ultrasound neuroimaging. Neuron 109:1554–66.e4
    [Google Scholar]
  104. Oby ER, Golub MD, Hennig JA, Degenhart AD, Tyler-Kabara EC et al. 2019. New neural activity patterns emerge with long-term learning. PNAS 116:15210–15
    [Google Scholar]
  105. O'Doherty JE, Lebedev MA, Ifft PJ, Zhuang KZ, Shokur S et al. 2011. Active tactile exploration using a brain–machine–brain interface. Nature 479:228–31
    [Google Scholar]
  106. Omrani M, Kaufman MT, Hatsopoulos NG, Cheney PD. 2017. Perspectives on classical controversies about the motor cortex. J. Neurophysiol. 118:1828–48
    [Google Scholar]
  107. Pandarinath C, Nuyujukian P, Blabe CH, Sorice BL, Saab J et al. 2017. High performance communication by people with paralysis using an intracortical brain-computer interface. eLife 6:e18554
    [Google Scholar]
  108. Penfield W, Boldrey E. 1937. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389–443
    [Google Scholar]
  109. Pesaran B, Nelson MJ, Andersen RA 2006. Dorsal premotor neurons encode the relative position of the hand, eye, and goal during reach planning. Neuron 51:125–34
    [Google Scholar]
  110. Platt ML, Glimcher PW. 1999. Neural correlates of decision variables in parietal cortex. Nature 400:233–38
    [Google Scholar]
  111. Pons T, Garraghty P, Ommaya A, Kaas J, Taub E, Mishkin M 1991. Massive cortical reorganization after sensory deafferentation in adult macaques. Science 252:1857–60
    [Google Scholar]
  112. Porro CA, Francescato MP, Cettolo V, Diamond ME, Baraldi P et al. 1996. Primary motor and sensory cortex activation during motor performance and motor imagery: a functional magnetic resonance imaging study. J. Neurosci. 16:7688–98
    [Google Scholar]
  113. Prado J, Clavagnier S, Otzenberger H, Scheiber C, Kennedy H, Perenin M-T. 2005. Two cortical systems for reaching in central and peripheral vision. Neuron 48:849–58
    [Google Scholar]
  114. Pulvermuller F. 2013. How neurons make meaning: brain mechanisms for embodied and abstract-symbolic semantics. Trends Cogn. Sci. 17:458–70
    [Google Scholar]
  115. Raposo A, Moss HE, Stamatakis EA, Tyler LK. 2009. Modulation of motor and premotor cortices by actions, action words and action sentences. Neuropsychologia 47:388–96
    [Google Scholar]
  116. Raposo D, Kaufman MT, Churchland AK. 2014. A category-free neural population supports evolving demands during decision-making. Nat. Neurosci. 17:1784–92
    [Google Scholar]
  117. Rastogi A, Willett FR, Abreu J, Crowder DC, Murphy BA et al. 2021. The neural representation of force across grasp types in motor cortex of humans with tetraplegia. eNeuro 8:1ENEURO.0231-2020
    [Google Scholar]
  118. Rathelot JA, Strick PL. 2006. Muscle representation in the macaque motor cortex: an anatomical perspective. PNAS 103:8257–62
    [Google Scholar]
  119. Rigotti M, Barak O, Warden MR, Wang X-J, Daw ND et al. 2013. The importance of mixed selectivity in complex cognitive tasks. Nature 497:585–90
    [Google Scholar]
  120. Rizzolatti G, Luppino G. 2001. The cortical motor system. Neuron 31:889–901
    [Google Scholar]
  121. Romo R, Hernández A, Zainos A, Salinas E 1998. Somatosensory discrimination based on cortical microstimulation. Nature 392:387–90
    [Google Scholar]
  122. Rothwell JC, Traub MM, Day BL, Obeso JA, Thomas PK, Marsden CD 1982. Manual motor performance in a deafferented man. Brain 105:515–42
    [Google Scholar]
  123. Royer AS, He B. 2009. Goal selection versus process control in a brain–computer interface based on sensorimotor rhythms. J. Neural Eng. 6:016005
    [Google Scholar]
  124. Rudolph Bálint D 1909. Seelenlähmung des “Schauens”, optische Ataxie, räumliche Störung der Aufmerksamkeit. Eur. Neurol. 25:67–81
    [Google Scholar]
  125. Rumelhart DE, Hinton GE, Williams RJ. 1986. Learning representations by back-propagating errors. Nature 323:533–36
    [Google Scholar]
  126. Rutishauser U, Aflalo T, Rosario ER, Pouratian N, Andersen RA 2018. Single-neuron representation of memory strength and recognition confidence in left human posterior parietal cortex. Neuron 97:209–20.e3
    [Google Scholar]
  127. Sacheli LM, Tieri G, Aglioti SM, Candidi M. 2018. Transitory inhibition of the left anterior intraparietal sulcus impairs joint actions: a continuous theta-burst stimulation study. J. Cogn. Neurosci. 30:737–51
    [Google Scholar]
  128. Sakellaridi S, Christopoulos VN, Aflalo T, Pejsa KW, Rosario ER et al. 2019. Intrinsic variable learning for brain-machine interface control by human anterior intraparietal cortex. Neuron 102:694–705.e3
    [Google Scholar]
  129. Salinas E, Thier P. 2000. Gain modulation: a major computational principle of the central nervous system. Neuron 27:15–21
    [Google Scholar]
  130. Santhanam G, Ryu SI, Yu BM, Afshar A, Shenoy KV. 2006. A high-performance brain–computer interface. Nature 442:195–98
    [Google Scholar]
  131. Schaffelhofer S, Scherberger H 2016. Object vision to hand action in macaque parietal, premotor, and motor cortices. eLife 5:e15278
    [Google Scholar]
  132. Scherberger H. 2017. Stirred, not shaken: motor control with partially mixed selectivity. Neuron 95:479–81
    [Google Scholar]
  133. Seelke AMH, Padberg JJ, Disbrow E, Purnell SM, Recanzone G, Krubitzer L 2011. Topographic maps within Brodmann's area 5 of macaque monkeys. Cereb. Cortex 22:1834–50
    [Google Scholar]
  134. Sereno MI, Huang R-S. 2014. Multisensory maps in parietal cortex. Curr. Opin. Neurobiol. 24:39–46
    [Google Scholar]
  135. Serruya MD, Hatsopoulos NG, Paninski L, Fellows MR, Donoghue JP. 2002. Instant neural control of a movement signal. Nature 416:141–42
    [Google Scholar]
  136. Shadlen MN, Newsome WT. 1996. Motion perception: seeing and deciding. PNAS 93:628–33
    [Google Scholar]
  137. Shanechi MM. 2019. Brain–machine interfaces from motor to mood. Nat. Neurosci. 22:1554–64
    [Google Scholar]
  138. Sheridan TB. 1992. Telerobotics, Automation, and Human Supervisory Control Cambridge, MA: MIT Press
  139. Snyder LH, Batista AP, Andersen RA. 1997. Coding of intention in the posterior parietal cortex. Nature 386:167–70
    [Google Scholar]
  140. Soso MJ, Fetz EE. 1980. Responses of identified cells in postcentral cortex of awake monkeys during comparable active and passive joint movements. J. Neurophysiol. 43:1090–110
    [Google Scholar]
  141. Taylor DM, Tillery SIH, Schwartz AB. 2002. Direct cortical control of 3D neuroprosthetic devices. Science 296:1829–32
    [Google Scholar]
  142. Tettamanti M, Buccino G, Saccuman MC, Gallese V, Danna M et al. 2005. Listening to action-related sentences activates fronto-parietal motor circuits. J. Cogn. Neurosci. 17:273–81
    [Google Scholar]
  143. Vargas-Irwin CE, Shakhnarovich G, Yadollahpour P, Mislow JMK, Black MJ, Donoghue JP. 2010. Decoding complete reach and grasp actions from local primary motor cortex populations. J. Neurosci. 30:9659–69
    [Google Scholar]
  144. Weber DJ, Friesen R, Miller LE. 2012. Interfacing the somatosensory system to restore touch and proprioception: essential considerations. J. Motor Behav. 44:403–18
    [Google Scholar]
  145. Wessberg J, Stambaugh CR, Kralik JD, Beck PD, Laubach M et al. 2000. Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature 408:361–65
    [Google Scholar]
  146. Willett FR, Avansino DT, Hochberg LR, Henderson JM, Shenoy KV. 2021. High-performance brain-to-text communication via handwriting. Nature 593:249–54
    [Google Scholar]
  147. Willett FR, Deo DR, Avansino DT, Rezaii P, Hochberg LR et al. 2020. Hand knob area of premotor cortex represents the whole body in a compositional way. Cell 181:396–409.e26
    [Google Scholar]
  148. Wilson GH, Stavisky SD, Willett FR, Avansino DT, Kelemen JN et al. 2020. Decoding spoken English from intracortical electrode arrays in dorsal precentral gyrus. J. Neural Eng. 17:066007
    [Google Scholar]
  149. Wodlinger B, Downey JE, Tyler-Kabara EC, Schwartz AB, Boninger ML, Collinger JL. 2014. Ten-dimensional anthropomorphic arm control in a human brain–machine interface: difficulties, solutions, and limitations. J. Neural Eng. 12:016011
    [Google Scholar]
  150. Wolpaw JR. 2007. Brain–computer interfaces as new brain output pathways. J. Physiol. 579:613–19
    [Google Scholar]
  151. Wurm MF, Caramazza A. 2019. Distinct roles of temporal and frontoparietal cortex in representing actions across vision and language. Nat. Commun. 10:289
    [Google Scholar]
  152. Young DR, Parikh PJ, Layne CS. 2020. The posterior parietal cortex is involved in gait adaptation: a bilateral transcranial direct current stimulation study. Front. Hum. Neurosci. 14:581026
    [Google Scholar]
  153. Yttri EA, Wang C, Liu Y, Snyder LH. 2014. The parietal reach region is limb specific and not involved in eye-hand coordination. J. Neurophysiol. 111:520–32
    [Google Scholar]
  154. Zhang CY, Aflalo T, Revechkis B, Rosario ER, Ouellette D et al. 2017. Partially mixed selectivity in human posterior parietal association cortex. Neuron 95:697–708.e4
    [Google Scholar]
  155. Zhang CY, Aflalo T, Revechkis B, Rosario E, Ouellette D et al. 2020. Preservation of partially mixed selectivity in human posterior parietal cortex across changes in task context. eNeuro 7:ENEURO.0222-19.2019
    [Google Scholar]
  156. Zhou X, Tien RN, Ravikumar S, Chase SM 2019. Distinct types of neural reorganization during long-term learning. J. Neurophysiol. 121:1329–41
    [Google Scholar]
  157. Zipser D, Andersen RA. 1988. A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature 331:679–84
    [Google Scholar]
/content/journals/10.1146/annurev-psych-030221-030214
Loading
/content/journals/10.1146/annurev-psych-030221-030214
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error