1932

Abstract

With the rapid increase in electronic cigarette (e-cig) users worldwide, secondhand exposure to e-cig aerosols has become a serious public health concern. We summarize the evidence on the effects of e-cigs on indoor air quality, chemical compositions of mainstream and secondhand e-cig aerosols, and associated respiratory and cardiovascular effects. The use of e-cigs in indoor environments leads to high levels of fine and ultrafine particles similar to tobacco cigarettes (t-cigs). Concentrations of chemical compounds in e-cig aerosols are generally lower than those in t-cig smoke, but a substantial amount of vaporized propylene glycol, vegetable glycerin, nicotine, and toxic substances, such as aldehydes and heavy metals, has been reported. Exposures to mainstream e-cig aerosols have biologic effects but only limited evidence shows adverse respiratory and cardiovascular effects in humans. Long-term studies are needed to better understand the dosimetry and health effects of exposures to secondhand e-cig aerosols.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-publhealth-040119-094043
2020-04-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/publhealth/41/1/annurev-publhealth-040119-094043.html?itemId=/content/journals/10.1146/annurev-publhealth-040119-094043&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Acevedo-Bolton V, Ott WR, Cheng KC, Jiang RT, Klepeis NE, Hildemann LM 2014. Controlled experiments measuring personal exposure to PM2.5 in close proximity to cigarette smoking. Indoor Air 24:199–212
    [Google Scholar]
  2. 2. 
    Adroit Mark. Res 2018. Global e-cigarette market size 2017 by type (disposable, rechargeable, modular), by region and forecast 2018 to 2025 Rep., Adroit Mark. Res Dallas, TX: https://www.adroitmarketresearch.com/industry-reports/e-cigarette-market
  3. 3. 
    Allen JG, Flanigan SS, LeBlanc M, Vallarino J, MacNaughton P et al. 2016. Flavoring chemicals in e-cigarettes: diacetyl, 2,3-pentanedione, and acetoin in a sample of 51 products, including fruit-, candy-, and cocktail-flavored e-cigarettes. Environ. Health Perspect. 124:733–39
    [Google Scholar]
  4. 4. 
    Alzahrani T, Pena I, Temesgen N, Glantz SA 2018. Association between electronic cigarette use and myocardial infarction. Am. J. Prev. Med. 55:455–61
    [Google Scholar]
  5. 5. 
    ANRF (Am. Nonsmok. Rights Found.) 2019. Electronic smoking devices and secondhand aerosol Rep. 1810 [FS-39], ANRF Berkeley, CA: https://no-smoke.org/wp-content/uploads/pdf/electronic-smoking-devices-secondhand-aerosol.pdf
  6. 6. 
    Antoniewicz L, Bosson JA, Kuhl J, Abdel-Halim SM, Kiessling A et al. 2016. Electronic cigarettes increase endothelial progenitor cells in the blood of healthy volunteers. Atherosclerosis 255:179–85
    [Google Scholar]
  7. 7. 
    Baassiri M, Talih S, Salman R, Karaoghlanian N, Saleh R et al. 2017. Clouds and “throat hit”: effects of liquid composition on nicotine emissions and physical characteristics of electronic cigarette aerosols. Aerosol Sci. Technol. 51:1231–39
    [Google Scholar]
  8. 8. 
    Ballbè M, Martinez-Sánchez JM, Sureda X, Fu M, Pérez-Ortuño R et al. 2014. Cigarettes versus e-cigarettes: passive exposure at home measured by means of airborne marker and biomarkers. Environ. Res. 135:76–80
    [Google Scholar]
  9. 9. 
    Bauld L, MacKintosh AM, Eastwood B, Ford A, Moore G et al. 2017. Young people's use of e-cigarettes across the United Kingdom: findings from five surveys 2015–2017. Int. J. Environ. Res. Public Health 14:E973
    [Google Scholar]
  10. 10. 
    Bayly JE, Bernat D, Porter L, Choi K 2019. Secondhand exposure to aerosols from electronic nicotine delivery systems and asthma exacerbations among youth with asthma. Chest 155:88–93
    [Google Scholar]
  11. 11. 
    Benowitz NL, Burbank AD. 2016. Cardiovascular toxicity of nicotine: implications for electronic cigarette use. Trends Cardiovasc. Med. 26:515–23
    [Google Scholar]
  12. 12. 
    Breland A, Soule E, Lopez A, Ramôa C, El-Hellani A, Eissenberg T 2017. Electronic cigarettes: What are they and what do they do. Ann. N. Y. Acad. Sci. 1394:5–30
    [Google Scholar]
  13. 13. 
    Buettner-Schmidt K, Lobo ML, Travers MJ, Boursaw B 2015. Tobacco smoke exposure and impact of smoking legislation on rural and non-rural hospitality venues in North Dakota. Res. Nurs. Health 38:268–77
    [Google Scholar]
  14. 14. 
    Burnett RT, Pope CA 3rd, Ezzati M, Olives C, Lim SS et al. 2014. An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environ. Health Perspect. 122:397–403
    [Google Scholar]
  15. 15. 
    Carnevale R, Sciarretta S, Violi F, Nocella C, Loffredo L et al. 2016. Acute impact of tobacco versus electronic cigarette smoking on oxidative stress and vascular function. Chest 150:606–12
    [Google Scholar]
  16. 16. 
    Cervellati F, Muresan XM, Sticozzi C, Gambari R, Montagner G et al. 2014. Comparative effects between electronic and cigarette smoke in human keratinocytes and epithelial lung cells. Toxicol. In Vitro 28:999–1005
    [Google Scholar]
  17. 17. 
    Chatterjee S, Tao J-Q, Johncola A, Guo W, Caporale A et al. 2019. Acute exposure to e-cigarettes causes inflammation and pulmonary endothelial oxidative stress in nonsmoking, healthy young subjects. Am. J. Physiol. Lung Cell. Mol. Physiol. 317:L155–66
    [Google Scholar]
  18. 18. 
    Chen R, Aherrera A, Isichei C, Olmedo P, Jarmul S et al. 2017. Assessment of indoor air quality at an electronic cigarette (vaping) convention. J. Expo. Sci. Environ. Epidemiol. 28:522–29
    [Google Scholar]
  19. 19. 
    Chen WH, Wang P, Ito K, Fowles J, Shusterman D et al. 2018. Measurement of heating coil temperature for e-cigarettes with a “top-coil” clearomizer. PLOS ONE 13:e0195925
    [Google Scholar]
  20. 20. 
    Chen-Sankey JC, Kong G, Choi K 2019. Perceived ease of flavored e-cigarette use and e-cigarette use progression among youth never tobacco users. PLOS ONE 14:e0212353
    [Google Scholar]
  21. 21. 
    Counts ME, Morton MJ, Laffoon SW, Cox RH, Lipowicz PJ 2005. Smoke composition and predicting relationships for international commercial cigarettes smoked with three machine-smoking conditions. Regul. Toxicol. Pharmacol. 41:185–227
    [Google Scholar]
  22. 22. 
    Crotty Alexander LE, Drummond CA, Hepokoski M, Mathew D, Moshensky A et al. 2018. Chronic inhalation of e-cigarette vapor containing nicotine disrupts airway barrier function and induces systemic inflammation and multiorgan fibrosis in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 314:R834–47
    [Google Scholar]
  23. 23. 
    Cullen KA, Ambrose BK, Gentzke AS, Apelberg BJ, Jamal A, King BA 2018. Use of electronic cigarettes and any tobacco product among middle and high school students—United States, 2011–2018. MMWR 67:1276–77
    [Google Scholar]
  24. 24. 
    Czogala J, Goniewicz ML, Fidelus B, Zielinska-Danch W, Travers MJ, Sobczak A 2014. Secondhand exposure to vapors from electronic cigarettes. Nicotine Tob. Res. 16:655–62
    [Google Scholar]
  25. 25. 
    Dai J, Kim K-H, Szulejko JE, Jo S-H 2017. A simple method for the parallel quantification of nicotine and major solvent components in electronic cigarette liquids and vaped aerosols. Microchem. J. 133:237–45
    [Google Scholar]
  26. 26. 
    Dicpinigaitis PV, Chang AL, Dicpinigaitis AJ, Negassa A 2016. Effect of e-cigarette use on cough reflex sensitivity. Chest 149:161–65
    [Google Scholar]
  27. 27. 
    Drehmer JE, Nabi-Burza E, Walters BH, Ossip DJ, Levy DE et al. 2019. Parental smoking and e-cigarette use in homes and cars. Pediatrics 143:e20183249
    [Google Scholar]
  28. 28. 
    El-Hellani A, Salman R, El-Hage R, Talih S, Malek N et al. 2018. Nicotine and carbonyl emissions from popular electronic cigarette products: correlation to liquid composition and design characteristics. Nicotine Tob. Res. 20:215–23
    [Google Scholar]
  29. 29. 
    Farsalinos KE, Gillman G, Poulas K, Voudris V 2015. Tobacco-specific nitrosamines in electronic cigarettes: comparison between liquid and aerosol levels. Int. J. Environ. Res. Public Health 12:9046–53
    [Google Scholar]
  30. 30. 
    Farsalinos KE, Kistler KA, Pennington A, Spyrou A, Kouretas D, Gillman G 2018. Aldehyde levels in e-cigarette aerosol: findings from a replication study and from use of a new-generation device. Food Chem. Toxicol. 111:64–70
    [Google Scholar]
  31. 31. 
    Farsalinos KE, Voudris V, Spyrou A, Poulas K 2017. E-cigarettes emit very high formaldehyde levels only in conditions that are aversive to users: a replication study under verified realistic use conditions. Food Chem. Toxicol. 109:90–94
    [Google Scholar]
  32. 32. 
    Farsalinos KE, Yannovits N, Sarri T, Voudris V, Poulas K 2018. Nicotine delivery to the aerosol of a heat-not-burn tobacco product: comparison with a tobacco cigarette and e-cigarettes. Nicotine Tob. Res. 20:1004–9
    [Google Scholar]
  33. 33. 
    Farsalinos KE, Yannovits N, Sarri T, Voudris V, Poulas K, Leischow SJ 2018. Carbonyl emissions from a novel heated tobacco product (IQOS): comparison with an e-cigarette and a tobacco cigarette. Addiction 113:2099–106
    [Google Scholar]
  34. 34. 
    Ferrari M, Zanasi A, Nardi E, Morselli Labate AM, Ceriana P et al. 2015. Short-term effects of a nicotine-free e-cigarette compared to a traditional cigarette in smokers and non-smokers. BMC Pulm. Med. 15:120
    [Google Scholar]
  35. 35. 
    Flora JW, Meruva N, Huang CB, Wilkinson CT, Ballentine R et al. 2016. Characterization of potential impurities and degradation products in electronic cigarette formulations and aerosols. Regul. Toxicol. Pharmacol. 74:1–11
    [Google Scholar]
  36. 36. 
    Flora JW, Wilkinson CT, Wilkinson JW, Lipowicz PJ, Skapars JA et al. 2017. Method for the determination of carbonyl compounds in e-cigarette aerosols. J. Chromatogr. Sci. 55:142–48
    [Google Scholar]
  37. 37. 
    Flouris AD, Chorti MS, Poulianiti KP, Jamurtas AZ, Kostikas K et al. 2013. Acute impact of active and passive electronic cigarette smoking on serum cotinine and lung function. Inhal. Toxicol. 25:91–101
    [Google Scholar]
  38. 38. 
    Flouris AD, Poulianiti KP, Chorti MS, Jamurtas AZ, Kouretas D et al. 2012. Acute effects of electronic and tobacco cigarette smoking on complete blood count. Food Chem. Toxicol. 50:3600–3
    [Google Scholar]
  39. 39. 
    Floyd EL, Queimado L, Wang J, Regens JL, Johnson DL 2018. Electronic cigarette power affects count concentration and particle size distribution of vaping aerosol. PLOS ONE 13:e0210147
    [Google Scholar]
  40. 40. 
    Forster M, McAughey J, Prasad K, Mavropoulou E, Proctor C 2018. Assessment of tobacco heating product THP1.0. Part 4: characterisation of indoor air quality and odour. Regul. Toxicol. Pharmacol. 93:34–51
    [Google Scholar]
  41. 41. 
    Fromme H, Dietrich S, Heitmann D, Dressel H, Diemer J et al. 2009. Indoor air contamination during a waterpipe (narghile) smoking session. Food Chem. Toxicol. 47:1636–41
    [Google Scholar]
  42. 42. 
    Fuoco FC, Buonanno G, Stabile L, Vigo P 2014. Influential parameters on particle concentration and size distribution in the mainstream of e-cigarettes. Environ. Pollut. 184:523–29
    [Google Scholar]
  43. 43. 
    Geiss O, Bianchi I, Barahona F, Barrero-Moreno J 2015. Characterisation of mainstream and passive vapours emitted by selected electronic cigarettes. Int. J. Hyg. Environ. Health 218:169–80
    [Google Scholar]
  44. 44. 
    Ghosh A, Coakley RC, Mascenik T, Rowell TR, Davis ES et al. 2018. Chronic e-cigarette exposure alters the human bronchial epithelial proteome. Am. J. Respir. Crit. Care Med. 198:67–76
    [Google Scholar]
  45. 45. 
    Gillman IG, Kistler KA, Stewart EW, Paolantonio AR 2016. Effect of variable power levels on the yield of total aerosol mass and formation of aldehydes in e-cigarette aerosols. Regul. Toxicol. Pharmacol. 75:58–65
    [Google Scholar]
  46. 46. 
    Giovenco DP, Lewis MJ, Delnevo CD 2014. Factors associated with e-cigarette use: a national population survey of current and former smokers. Am. J. Prev. Med. 47:476–80
    [Google Scholar]
  47. 47. 
    Glantz SA, Bareham DW. 2018. E-cigarettes: use, effects on smoking, risks, and policy implications. Annu. Rev. Public Health 39:215–35
    [Google Scholar]
  48. 48. 
    Goniewicz ML, Boykan R, Messina CR, Eliscu A, Tolentino J 2018. High exposure to nicotine among adolescents who use Juul and other vape pod systems (‘pods’). Tob. Control http://dx.doi.org/10.1136/tobaccocontrol-2018-054565
    [Crossref] [Google Scholar]
  49. 49. 
    Goniewicz ML, Knysak J, Gawron M, Kosmider L, Sobczak A et al. 2014. Levels of selected carcinogens and toxicants in vapour from electronic cigarettes. Tob. Control 23:133–39
    [Google Scholar]
  50. 50. 
    Goniewicz ML, Kuma T, Gawron M, Knysak J, Kosmider L 2013. Nicotine levels in electronic cigarettes. Nicotine Tob. Res. 15:158–66
    [Google Scholar]
  51. 51. 
    Goniewicz ML, Lee L. 2015. Electronic cigarettes are a source of thirdhand exposure to nicotine. Nicotine Tob. Res. 17:256–58
    [Google Scholar]
  52. 52. 
    Guo H, Morawska L, He CR, Zhang YLL, Ayoko G, Cao M 2010. Characterization of particle number concentrations and PM2.5 in a school: influence of outdoor air pollution on indoor air. Environ. Sci. Pollut. Res. Int. 17:1268–78
    [Google Scholar]
  53. 53. 
    Hecht SS, Stepanov I, Carmella SG 2016. Exposure and metabolic activation biomarkers of carcinogenic tobacco-specific nitrosamines. Acc. Chem. Res. 49:106–14
    [Google Scholar]
  54. 54. 
    Hinds WC. 1999. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles Hoboken, NJ: Wiley
  55. 55. 
    Holcomb LC. 1993. Indoor air quality and environmental tobacco smoke: concentration and exposure. Environ. Int. 19:9–40
    [Google Scholar]
  56. 56. 
    Höllbacher E, Ters T, Rieder-Gradinger C, Srebotnik E 2017. Emissions of indoor air pollutants from six user scenarios in a model room. Atmos. Environ. 150:389–94
    [Google Scholar]
  57. 57. 
    Huang J, Duan Z, Kwok J, Binns S, Vera L et al. 2019. Vaping versus JUULing: how the extraordinary growth and marketing of JUUL transformed the US retail e-cigarette market. Tob. Control 28:146–51
    [Google Scholar]
  58. 58. 
    Huang SJ, Xu YM, Lau ATY 2018. Electronic cigarette: a recent update of its toxic effects on humans. J. Cell. Physiol. 233:4466–78
    [Google Scholar]
  59. 59. 
    IARC (Int. Agency Res. Cancer) 1986. Tobacco Smoking IARC Monogr. Eval. Carcinog. Risks Hum Lyon, Fr: IARC
  60. 60. 
    IARC (Int. Agency Res. Cancer) 2004. Tobacco Smoke and Involuntary Smoking IARC Monogr. Eval. Carcinog. Risks Hum Lyon, Fr: IARC
  61. 61. 
    IARC (Int. Agency Res. Cancer) 2019. Agents classified by the IARC monographs, volumes 1–123 IARC Monographs on the Identification of Carcinogenic Hazards to Humans, World Health Organization Geneva: updated July 8. https://monographs.iarc.fr/agents-classified-by-the-iarc/
  62. 62. 
    Ingebrethsen BJ, Cole SK, Alderman SL 2012. Electronic cigarette aerosol particle size distribution measurements. Inhal. Toxicol. 24:976–84
    [Google Scholar]
  63. 63. 
    IOM (Inst. Med.) 2010. Secondhand Smoke Exposure and Cardiovascular Effects: Making Sense of the Evidence Washington, DC: Natl. Acad. Press
  64. 64. 
    Jenkins PL, Phillips TJ, Mulberg EJ, Hui SP 1992. Activity patterns of Californians—use of and proximity to indoor pollutant sources. Atmos. Environ. Part A 26:2141–48
    [Google Scholar]
  65. 65. 
    Jensen RP, Luo WT, Pankow JF, Strongin RM, Peyton DH 2015. Hidden formaldehyde in e-cigarette aerosols. N. Engl. J. Med. 372:392–94
    [Google Scholar]
  66. 66. 
    Johnson JM, Naeher LP, Yu XZ, Rathbun SL, Muilenburg JL, Wang JS 2018. Air monitoring at large public electronic cigarette events. Int. J. Hyg. Environ. Health 221:541–47
    [Google Scholar]
  67. 67. 
    Kennedy RD, Awopegba A, De León E, Cohen JE 2017. Global approaches to regulating electronic cigarettes. Tob. Control 26:440–45
    [Google Scholar]
  68. 68. 
    Khlystov A, Samburova V. 2016. Flavoring compounds dominate toxic aldehyde production during e-cigarette vaping. Environ. Sci. Technol. 50:13080–85
    [Google Scholar]
  69. 69. 
    Kienhuis AS, Soeteman-Hernandez LG, Bos PMJ, Cremers H, Klerx WN, Talhout R 2015. Potential harmful health effects of inhaling nicotine-free shisha-pen vapor: a chemical risk assessment of the main components propylene glycol and glycerol. Tob. Induc. Dis. 13:15
    [Google Scholar]
  70. 70. 
    Kim J, Ban H, Hwang Y, Ha K, Lee K 2016b. Impact of partial and comprehensive smoke-free regulations on indoor air quality in bars. Int. J. Environ. Res. Public Health 13:E754
    [Google Scholar]
  71. 71. 
    Kim J, Lee K, Kwon HJ, Lee DH, Kim K 2016a. Association between secondhand smoke in hospitality venues and urinary 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol concentrations in non-smoking staff. Int. J. Environ. Res. Public Health 13:E1101
    [Google Scholar]
  72. 72. 
    Kim SY, Sim S, Choi HG 2017. Active, passive, and electronic cigarette smoking is associated with asthma in adolescents. Sci. Rep. 7:17789
    [Google Scholar]
  73. 73. 
    Klager S, Vallarino J, MacNaughton P, Christian DC, Lu Q, Allen JG 2017. Flavoring chemicals and aldehydes in e-cigarette emissions. Environ. Sci. Technol. 51:10806–13
    [Google Scholar]
  74. 74. 
    Konstantopoulou SS, Behrakis PK, Lazaris AC, Nicolopoulou-Stamati P 2014. Indoor air quality in a bar/restaurant before and after the smoking ban in Athens, Greece. Sci. Total Environ. 476:136–43
    [Google Scholar]
  75. 75. 
    Kosmider L, Kimber CF, Kurek J, Corcoran O, Dawkins LE 2018. Compensatory puffing with lower nicotine concentration e-liquids increases carbonyl exposure in e-cigarette aerosols. Nicotine Tob. Res. 20:998–1003
    [Google Scholar]
  76. 76. 
    Kosmider L, Sobczak A, Fik M, Knysak J, Zaciera M et al. 2014. Carbonyl compounds in electronic cigarette vapors: effects of nicotine solvent and battery output voltage. Nicotine Tob. Res. 16:1319–26
    [Google Scholar]
  77. 77. 
    Kungskulniti N, Charoenca N, Peesing J, Trangwatana S, Hamann S et al. 2015. Assessment of secondhand smoke in international airports in Thailand, 2013. Tob. Control 24:532–35
    [Google Scholar]
  78. 78. 
    Lee H-W, Park S-H, Weng M-W, Wang H-T, Huang WC et al. 2018. E-cigarette smoke damages DNA and reduces repair activity in mouse lung, heart, and bladder as well as in human lung and bladder cells. PNAS 115:E1560–69
    [Google Scholar]
  79. 79. 
    Lee MS, LeBouf RF, Son YS, Koutrakis P, Christiani DC 2017. Nicotine, aerosol particles, carbonyls and volatile organic compounds in tobacco- and menthol-flavored e-cigarettes. Environ. Health 16:42
    [Google Scholar]
  80. 80. 
    Lerner CA, Sundar IK, Watson RM, Elder A, Jones R et al. 2015. Environmental health hazards of e-cigarettes and their components: oxidants and copper in e-cigarette aerosols. Environ. Pollut. 198:100–7
    [Google Scholar]
  81. 81. 
    Liu JM, Liang QW, Oldham MJ, Rostami AA, Wagner KA et al. 2017. Determination of selected chemical levels in room air and on surfaces after the use of cartridge- and tank-based e-vapor products or conventional cigarettes. Int. J. Environ. Res. Public Health 14:E969
    [Google Scholar]
  82. 82. 
    Liu R, Jiang Y, Li Q, Hammond SK 2014. Assessing exposure to secondhand smoke in restaurants and bars 2 years after the smoking regulations in Beijing, China. Indoor Air 24:339–49
    [Google Scholar]
  83. 83. 
    Loffredo CA, Tang Y, Momen M, Makambi K, Radwan GN, About-Foutoh A 2016. PM2.5 as a marker of exposure to tobacco smoke and other sources of particulate matter in Cairo, Egypt. Int. J. Tuberc. Lung Dis. 20:417–22
    [Google Scholar]
  84. 84. 
    Margham J, McAdam K, Forster M, Liu C, Wright C et al. 2016. Chemical composition of aerosol from an e-cigarette: a quantitative comparison with cigarette smoke. Chem. Res. Toxicol. 29:1662–78
    [Google Scholar]
  85. 85. 
    Marini S, Buonanno G, Stabile L, Ficco G 2014. Short-term effects of electronic and tobacco cigarettes on exhaled nitric oxide. Toxicol. Appl. Pharmacol. 278:9–15
    [Google Scholar]
  86. 86. 
    McConnell R, Barrington-Trimis JL, Wang K, Urman R, Hong H et al. 2017. Electronic cigarette use and respiratory symptoms in adolescents. Am. J. Respir. Crit. Care Med. 195:1043–49
    [Google Scholar]
  87. 87. 
    McKelvey K, Baiocchi M, Halpern-Felsher B 2018. Adolescents' and young adults' use and perceptions of pod-based electronic cigarettes. JAMA Netw. Open 1:e183535
    [Google Scholar]
  88. 88. 
    McMillen RC, Gottlieb MA, Shaefer RMW, Winickoff JP, Klein JD 2015. Trends in electronic cigarette use among U.S. adults: Use is increasing in both smokers and nonsmokers. Nicotine Tob. Res. 17:1195–202
    [Google Scholar]
  89. 89. 
    Melstrom P, Koszowski B, Thanner MH, Hoh E, King B et al. 2017. Measuring PM2.5, ultrafine particles, nicotine air and wipe samples following the use of electronic cigarettes. Nicotine Tob. Res. 19:1055–61
    [Google Scholar]
  90. 90. 
    Meng Q, Son Y, Kipen H, Laskin D, Schwander S, Delnevo C 2017. Particles released from primary e-cigarette vaping: particle size distribution and particle deposition in the human respiratory tract. Am. J. Respir. Crit. Care Med. 195:A1023
    [Google Scholar]
  91. 91. 
    Mikheev VB, Brinkman MC, Granville CA, Gordon SM, Clark PI 2016. Real-time measurement of electronic cigarette aerosol size distribution and metals content analysis. Nicotine Tob. Res. 18:1895–902
    [Google Scholar]
  92. 92. 
    Mishra A, Chaturvedi P, Datta S, Sinukumar S, Joshi P, Garg A 2015. Harmful effects of nicotine. Indian J. Med. Paediatr. Oncol. 36:24–31
    [Google Scholar]
  93. 93. 
    Moheimani RS, Bhetraratana M, Peters KM, Yang BK, Yin F et al. 2017. Sympathomimetic effects of acute e-cigarette use: role of nicotine and non-nicotine constituents. J. Am. Heart Assoc. 6:e006579
    [Google Scholar]
  94. 94. 
    Moheimani RS, Bhetraratana M, Yin F, Peters KM, Gornbein J et al. 2017. Increased cardiac sympathetic activity and oxidative stress in habitual electronic cigarette users: implications for cardiovascular risk. JAMA Cardiol 2:278–84
    [Google Scholar]
  95. 95. 
    Morawska L, Ayoko GA, Bae GN, Buonanno G, Chao CYH et al. 2017. Airborne particles in indoor environment of homes, schools, offices and aged care facilities: the main routes of exposure. Environ. Int. 108:75–83
    [Google Scholar]
  96. 96. 
    Movsisyan NK, Petrosyan V, Harutyunyan A, Petrosyan D, Stillman F 2014. Clearing the air: improving smoke-free policy compliance at the national oncology hospital in Armenia. BMC Cancer 14:943
    [Google Scholar]
  97. 97. 
    Nguyen C, Li L, Sen CA, Ronquillo E, Zhu Y 2019. Fine and ultrafine particles concentrations in vape shops. Atmos. Environ. 211:159–69
    [Google Scholar]
  98. 98. 
    Nguyen T, Li GE, Chen H, Cranfield CG, McGrath KC, Gorrie CA 2018. Maternal e-cigarette exposure results in cognitive and epigenetic alterations in offspring in a mouse model. Chem. Res. Toxicol. 31:601–11
    [Google Scholar]
  99. 99. 
    Ogunwale MA, Li MX, Raju MVR, Chen YZ, Nantz MH et al. 2017. Aldehyde detection in electronic cigarette aerosols. ACS Omega 2:1207–14
    [Google Scholar]
  100. 100. 
    Oh AY, Kacker A. 2014. Do electronic cigarettes impart a lower potential disease burden than conventional tobacco cigarettes?: Review on e-cigarette vapor versus tobacco smoke. Laryngoscope 124:2702–6
    [Google Scholar]
  101. 101. 
    Olfert IM, DeVallance E, Hoskinson H, Branyan KW, Clayton S et al. 2018. Chronic exposure to electronic cigarettes results in impaired cardiovascular function in mice. J. Appl. Physiol. 124:573–82
    [Google Scholar]
  102. 102. 
    Omaiye EE, McWhirter KJ, Luo W, Pankow JF, Talbot P 2019. High-nicotine electronic cigarette products: toxicity of JUUL fluids and aerosols correlates strongly with nicotine and some flavor chemical concentrations. Chem. Res. Toxicol. 32:1058–69
    [Google Scholar]
  103. 103. 
    Pagano T, DiFrancesco AG, Smith SB, George J, Wink G et al. 2016. Determination of nicotine content and delivery in disposable electronic cigarettes available in the United States by gas chromatography-mass spectrometry. Nicotine Tob. Res. 18:700–7
    [Google Scholar]
  104. 104. 
    Palazzolo DL, Crow AP, Nelson JM, Johnson RA 2017. Trace metals derived from electronic cigarette (ECIG) generated aerosol: potential problem of ECIG devices that contain nickel. Front. Physiol. 7:663
    [Google Scholar]
  105. 105. 
    Pankow JF, Kim K, McWhirter KJ, Luo W, Escobedo JO et al. 2017. Benzene formation in electronic cigarettes. PLOS ONE 12:e0173055
    [Google Scholar]
  106. 106. 
    Pichelstorfer L, Hofmann W, Winkler-Heil R, Yurteri CU, McAughey J 2016. Simulation of aerosol dynamics and deposition of combustible and electronic cigarette aerosols in the human respiratory tract. J. Aerosol Sci. 99:125–32
    [Google Scholar]
  107. 107. 
    Dinakar C, O'Connor GT. 2016. The health effects of electronic cigarettes. N. Engl. J. Med. 375:2608
    [Google Scholar]
  108. 108. 
    Poulianiti K, Karatzaferi C, Flouris AD, Fatouros IG, Koutedakis Y, Jamurtas AZ 2016. Antioxidant responses following active and passive smoking of tobacco and electronic cigarettes. Toxicol. Mech. Methods 26:455–61
    [Google Scholar]
  109. 109. 
    Prescient Strateg. Intell 2018. E-cigarette market by product—global size, share, development, growth, and demand forecast, 20132023 Rep. 4655423, Prescient Strateg. Intell., East Delhi, India:
    [Google Scholar]
  110. 110. 
    Qasim H, Karim ZA, Silva-Espinoza JC, Khasawneh FT, Rivera JO et al. 2018. Short-term e-cigarette exposure increases the risk of thrombogenesis and enhances platelet function in mice. J. Am. Heart Assoc. 7:e009264
    [Google Scholar]
  111. 111. 
    Qu Y, Kim KH, Szulejko JE 2018. The effect of flavor content in e-liquids on e-cigarette emissions of carbonyl compounds. Environ. Res. 166:324–33
    [Google Scholar]
  112. 112. 
    Qu Y, Szulejko JE, Kim K-H, Jo S-H 2019. The effect of varying battery voltage output on the emission rate of carbonyls released from e-cigarette smoke. Microchem. J. 145:47–54
    [Google Scholar]
  113. 113. 
    Ruprecht AA, De Marco C, Saffari A, Pozzi P, Mazza R et al. 2017. Environmental pollution and emission factors of electronic cigarettes, heat-not-burn tobacco products, and conventional cigarettes. Aerosol Sci. Technol. 51:674–84
    [Google Scholar]
  114. 114. 
    Saffari A, Daher N, Ruprecht A, De Marco C, Pozzi P et al. 2014. Particulate metals and organic compounds from electronic and tobacco-containing cigarettes: comparison of emission rates and secondhand exposure. Environ. Sci. Process. Impacts 16:2259–67
    [Google Scholar]
  115. 115. 
    Salamanca JC, Meehan-Atrash J, Vreeke S, Escobedo JO, Peyton DH, Strongin RM 2018. E-cigarettes can emit formaldehyde at high levels under conditions that have been reported to be non-averse to users. Sci. Rep. 8:7559
    [Google Scholar]
  116. 116. 
    Samburova V, Bhattarai C, Strickland M, Darrow L, Angermann J et al. 2018. Aldehydes in exhaled breath during e-cigarette vaping: pilot study results. Toxics 6:E46
    [Google Scholar]
  117. 117. 
    Scheitel M, Stanic M, Neuberger M 2016. PM10, PM2.5, PM1, number and surface of particles at the child's seat when smoking a cigarette in a car. AIMS Environ. Sci. 3:582–91
    [Google Scholar]
  118. 118. 
    Schober W, Szendrei K, Matzen W, Osiander-Fuchs H, Heitmann D et al. 2014. Use of electronic cigarettes (e-cigarettes) impairs indoor air quality and increases FeNO levels of e-cigarette consumers. Int. J. Hyg. Environ. Health 217:628–37
    [Google Scholar]
  119. 119. 
    Schripp T, Markewitz D, Uhde E, Salthammer T 2013. Does e-cigarette consumption cause passive vaping. Indoor Air 23:25–31
    [Google Scholar]
  120. 120. 
    Scungio M, Stabile L, Buonanno G 2018. Measurements of electronic cigarette-generated particles for the evaluation of lung cancer risk of active and passive users. J. Aerosol Sci. 115:1–11
    [Google Scholar]
  121. 121. 
    Shamo F, Wilson T, Kiley J, Repace J 2015. Assessing the effect of Michigan's smoke-free law on air quality inside restaurants and casinos: a before-and-after observational study. BMJ Open 5:e007530
    [Google Scholar]
  122. 122. 
    Sleiman M, Logue JM, Montesinos VN, Russell ML, Litter MI et al. 2016. Emissions from electronic cigarettes: key parameters affecting the release of harmful chemicals. Environ. Sci. Technol. 50:9644–51
    [Google Scholar]
  123. 123. 
    Son Y, Wackowski O, Weisel C, Schwander S, Mainelis G et al. 2018. Evaluation of e-vapor nicotine and nicotyrine concentrations under various e-liquid compositions, device settings, and vaping topographies. Chem. Res. Toxicol. 31:861–68
    [Google Scholar]
  124. 124. 
    Sosnowski TR, Kramek-Romanowska K. 2016. Predicted deposition of e-cigarette aerosol in the human lungs. J. Aerosol Med. Pulm. Drug Deliv. 29:299–309
    [Google Scholar]
  125. 125. 
    Soule EK, Maloney SF, Spindle TR, Rudy AK, Hiler MM, Cobb CO 2017. Electronic cigarette use and indoor air quality in a natural setting. Tob. Control 26:109–12
    [Google Scholar]
  126. 126. 
    Stohs SJ, Bagchi D, Bagchi M 1997. Toxicity of trace elements in tobacco smoke. Inhal. Toxicol. 9:867–90
    [Google Scholar]
  127. 127. 
    Talih S, Balhas Z, Salman R, El-Hage R, Karaoghlanian N et al. 2017. Transport phenomena governing nicotine emissions from electronic cigarettes: model formulation and experimental investigation. Aerosol Sci. Technol. 51:1–11
    [Google Scholar]
  128. 128. 
    Talih S, Balhas Z, Salman R, Karaoghlanian N, Shihadeh A 2016. “Direct dripping”: a high-temperature, high-formaldehyde emission electronic cigarette use method. Nicotine Tob. Res. 18:453–59
    [Google Scholar]
  129. 129. 
    Taylor DR, Pijnenburg MW, Smith AD, De Jongste JC 2006. Exhaled nitric oxide measurements: clinical application and interpretation. Thorax 61:817–27
    [Google Scholar]
  130. 130. 
    Taylor M, Jaunky T, Hewitt K, Breheny D, Lowe F et al. 2017. A comparative assessment of e-cigarette aerosols and cigarette smoke on in vitro endothelial cell migration. Toxicol. Lett. 277:123–28
    [Google Scholar]
  131. 131. 
    Tayyarah R, Long GA. 2014. Comparison of select analytes in aerosol from e-cigarettes with smoke from conventional cigarettes and with ambient air. Regul. Toxicol. Pharmacol. 70:704–10
    [Google Scholar]
  132. 132. 
    Terzano C, Di Stefano F, Conti V, Graziani E, Petroianni A 2010. Air pollution ultrafine particles: toxicity beyond the lung. Eur. Rev. Med. Pharmacol. Sci. 14:809–21
    [Google Scholar]
  133. 133. 
    Tzortzi A, Teloniatis S, Matiampa G, Bakellas G, Vyzikidou VK et al. 2018. Passive exposure to e-cigarette emissions: minor respiratory effects. Tob. Prev. Cessation 4:A78
    [Google Scholar]
  134. 134. 
    US DHHS (Dep. Health Hum. Serv.) 2006. The Health Consequences of Involuntary Exposure to Tobacco Smoke: A Report to the Surgeon General Atlanta, GA: U.S. Dep. Health Hum. Serv., Cent. Dis. Control Prev., Coord. Cent. Health Promot., Natl. Cent. Chronic Dis. Prev. Health Promot., Off. Smok. Health
  135. 135. 
    US DHHS (Dep. Health Hum. Serv.) 2014. The Health Consequences of Smoking50 Years of Progress: A Report of the Surgeon General Atlanta, GA: U.S. Dep. Health Hum. Serv., Cent. Dis. Control Prev., Coord. Cent. Health Promot., Natl. Cent. Chronic Dis. Prev. Health Promot., Off. Smok. Health
    [Google Scholar]
  136. 136. 
    US DHHS (Dep. Health Hum. Serv.), FDA (Food Drug Adm.) 2016. Deeming tobacco products to be subject to the Federal Food, Drug, and Cosmetic Act, as amended by the Family Smoking Prevention and Tobacco Control Act; restrictions on the sale and distribution of tobacco products and required warning statements for tobacco products. Fed. Regist 81:9028973–9106
    [Google Scholar]
  137. 137. 
    Vardavas CI, Anagnostopoulos N, Kougias M, Evangelopoulou V, Connolly GN, Behrakis PK 2012. Short-term pulmonary effects of using an electronic cigarette: impact on respiratory flow resistance, impedance, and exhaled nitric oxide. Chest 141:1400–6
    [Google Scholar]
  138. 138. 
    Volesky KD, Maki A, Scherf C, Watson L, Van Ryswyk K et al. 2018. The influence of three e-cigarette models on indoor fine and ultrafine particulate matter concentrations under real-world conditions. Environ. Pollut. 243:882–89
    [Google Scholar]
  139. 139. 
    Wang TW, Marynak KL, Agaku IT, King BA 2017. Secondhand exposure to electronic cigarette aerosol among US youths. JAMA Pediatr 171:490–92
    [Google Scholar]
  140. 140. 
    WHO (World Health Organ.) 2006. Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide: Global Update for 2005 Geneva: WHO
  141. 141. 
    Williams M, Villarreal A, Bozhilov K, Lin S, Talbot P 2013. Metal and silicate particles including nanoparticles are present in electronic cigarette cartomizer fluid and aerosol. PLOS ONE 8:e57987
    [Google Scholar]
  142. 142. 
    Wright TP, Song C, Sears S, Petters MD 2016. Thermodynamic and kinetic behavior of glycerol aerosol. Aerosol Sci. Technol. 50:1385–96
    [Google Scholar]
  143. 143. 
    Zhang YP, Sumner W, Chen DR 2013. In vitro particle size distributions in electronic and conventional cigarette aerosols suggest comparable deposition patterns. Nicotine Tob. Res. 15:501–8
    [Google Scholar]
  144. 144. 
    Zhao J, Pyrgiotakis G, Demokritou P 2016. Development and characterization of electronic-cigarette exposure generation system (Ecig-EGS) for the physico-chemical and toxicological assessment of electronic cigarette emissions. Inhal. Toxicol. 28:658–69
    [Google Scholar]
  145. 145. 
    Zhao JY, Nelson J, Dada O, Pyrgiotakis G, Kavouras IG, Demokritou P 2018. Assessing electronic cigarette emissions: linking physico-chemical properties to product brand, e-liquid flavoring additives, operational voltage and user puffing patterns. Inhal. Toxicol. 30:78–88
    [Google Scholar]
  146. 146. 
    Zhao TK, Nguyen C, Lin C-H, Middlekauff HR, Peters K et al. 2017. Characteristics of secondhand electronic cigarette aerosols from active human use. Aerosol Sci. Technol. 51:1368–76
    [Google Scholar]
  147. 147. 
    Zhao TK, Shu S, Guo QJ, Zhu YF 2016. Effects of design parameters and puff topography on heating coil temperature and mainstream aerosols in electronic cigarettes. Atmos. Environ. 134:61–69
    [Google Scholar]
  148. 148. 
    Zhou S, Behrooz L, Weitzman M, Pan G, Vilcassim R et al. 2017. Secondhand hookah smoke: an occupational hazard for hookah bar employees. Tob. Control 26:40–45
    [Google Scholar]
  149. 149. 
    Zhou Z, Bohac D, Boyle RG 2016. Continuous weeklong measurements of indoor particle levels in a Minnesota Tribal Casino Resort. BMC Public Health 16:870
    [Google Scholar]
/content/journals/10.1146/annurev-publhealth-040119-094043
Loading
/content/journals/10.1146/annurev-publhealth-040119-094043
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error