1932

Abstract

Many of the statistical models that could provide an accurate, interesting, and testable explanation for the structure of a data set turn out to have intractable likelihood functions. The method of approximate Bayesian computation (ABC) has become a popular approach for tackling such models. This review gives an overview of the method and the main issues and challenges that are the subject of current research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-statistics-030718-105212
2019-03-07
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/statistics/6/1/annurev-statistics-030718-105212.html?itemId=/content/journals/10.1146/annurev-statistics-030718-105212&mimeType=html&fmt=ahah

Literature Cited

  1. Andrieu C, Roberts GO. 2009. The pseudo-marginal approach for efficient Monte Carlo computations. Ann. Stat. 37:697–725
    [Google Scholar]
  2. Baragatti M, Grimaud A, Pommeret D. 2013. Likelihood-free parallel tempering. Stat. Comput. 23:535–49
    [Google Scholar]
  3. Barthelmé S, Chopin N. 2014. Expectation propagation for likelihood-free inference. J. Am. Stat. Assoc. 109:315–33
    [Google Scholar]
  4. Barthelmé S, Chopin N, Cottet V. 2018. Divide and conquer in ABC: expectation-propagation algorithms for likelihood-free inference. Handbook of Approximate Bayesian Computation SA Sisson, Y Fan, MA Beaumont415–34 Boca Raton, FL: CRC
    [Google Scholar]
  5. Beaumont MA. 2003. Estimation of population growth or decline in genetically monitored populations. Genetics 164:1139–60
    [Google Scholar]
  6. Beaumont MA. 2008. Joint determination of topology, divergence time and immigration in population trees. Simulations, Genetics and Human Prehistory S Matsumura, P Forster, C Renfrew135–54 Cambridge, UK: McDonald Inst.
    [Google Scholar]
  7. Beaumont MA, Cornuet JM, Marin JM, Robert CP. 2009. Adaptive approximate Bayesian computation. Biometrika 96:983–90
    [Google Scholar]
  8. Beaumont MA, Zhang W, Balding DJ. 2002. Approximate Bayesian computation in population genetics. Genetics 162:2025–35
    [Google Scholar]
  9. Blum MG. 2010. Approximate Bayesian computation: a nonparametric perspective. J. Am. Stat. Assoc. 105:1178–87
    [Google Scholar]
  10. Blum MG, François O. 2010. Non-linear regression models for approximate Bayesian computation. Stat. Comput. 20:63–73
    [Google Scholar]
  11. Blum MG, Nunes MA, Prangle D, Sisson SA, et al. 2013. A comparative review of dimension reduction methods in approximate Bayesian computation. Stat. Sci. 28:189–208
    [Google Scholar]
  12. Bornn L, Pillai NS, Smith A, Woodard D. 2017. The use of a single pseudo-sample in approximate Bayesian computation. Stat. Comput. 27:583–90
    [Google Scholar]
  13. Bortot P, Coles SG, Sisson SA. 2007. Inference for stereological extremes. J. Am. Stat. Assoc. 102:84–92
    [Google Scholar]
  14. Breiman L. 2001. Statistical modeling: the two cultures (with comments and a rejoinder by the author). Stat. Sci. 16:199–231
    [Google Scholar]
  15. Cappé O, Guillin A, Marin JM, Robert CP. 2004. Population Monte Carlo. J. Comput. Graph. Stat. 13:907–29
    [Google Scholar]
  16. Chan J, Perrone V, Spence JP, Jenkins PA, Mathieson S, Song YS. 2018. A likelihood-free inference framework for population genetic data using exchangeable neural networks. arXiv:1802.06153 [cs.LG]
    [Google Scholar]
  17. Cook SR, Gelman A, Rubin DB. 2006. Validation of software for Bayesian models using posterior quantiles. J. Comput. Graph. Stat. 15:675–92
    [Google Scholar]
  18. Creel M. 2017. Neural nets for indirect inference. Econom. Stat. 2:36–49
    [Google Scholar]
  19. Csilléry K, François O, Blum MG. 2012. abc: an R package for approximate Bayesian computation (ABC). Methods Ecol. Evol. 3:475–79
    [Google Scholar]
  20. Cui T, Peeters L, Pagendam D, Pickett T, Jin H, et al. 2018. Emulator-enabled approximate Bayesian computation (ABC) and uncertainty analysis for computationally expensive groundwater models. J. Hydrol. 564:191–207
    [Google Scholar]
  21. Daly AC, Cooper J, Gavaghan DJ, Holmes C. 2017. Comparing two sequential Monte Carlo samplers for exact and approximate Bayesian inference on biological models. J. R. Soc. Interface 14:20170340
    [Google Scholar]
  22. Dean TA, Singh SS, Jasra A, Peters GW. 2014. Parameter estimation for hidden Markov models with intractable likelihoods. Scand. J. Stat. 41:970–87
    [Google Scholar]
  23. Del Moral P, Doucet A, Jasra A. 2012. An adaptive sequential Monte Carlo method for approximate Bayesian computation. Stat. Comput. 22:1009–20
    [Google Scholar]
  24. Didelot X, Everitt RG, Johansen AM, Lawson DJ. 2011. Likelihood-free estimation of model evidence. Bayesian Anal. 6:49–76
    [Google Scholar]
  25. Diggle PJ, Gratton RJ. 1984. Monte Carlo methods of inference for implicit statistical models. J. R. Stat. Soc. B 46:193–227
    [Google Scholar]
  26. Drovandi CC, Pettitt AN. 2011. Estimation of parameters for macroparasite population evolution using approximate Bayesian computation. Biometrics 67:225–33
    [Google Scholar]
  27. Drovandi CC, Pettitt AN, Lee A. 2015. Bayesian indirect inference using a parametric auxiliary model. Stat. Sci. 30:72–95
    [Google Scholar]
  28. Estoup A, Lombaert E, Marin JM, Guillemaud T, Pudlo P, et al. 2012. Estimation of demo-genetic model probabilities with approximate Bayesian computation using linear discriminant analysis on summary statistics. Mol. Ecol. Resourc. 12:846–55
    [Google Scholar]
  29. Fan Y, Nott DJ, Sisson SA. 2013. Approximate Bayesian computation via regression density estimation. Stat 2:34–48
    [Google Scholar]
  30. Fasiolo M, Wood SN. 2018. ABC in ecological modelling. Handbook of Approximate Bayesian Computation SA Sisson, Y Fan, MA Beaumont597–622 Boca Raton, FL: CRC
    [Google Scholar]
  31. Fearnhead P, Prangle D. 2012. Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation. J. R. Stat. Soc. B 74:419–74
    [Google Scholar]
  32. Frazier DT, Martin GM, Robert CP, Rousseau J. 2018. Asymptotic properties of approximate Bayesian computation. Biometrika 105:593–607
    [Google Scholar]
  33. Frazier DT, Robert CP, Rousseau J. 2017. Model misspecification in ABC: consequences and diagnostics. arXiv:1708.01974 [math.ST]
    [Google Scholar]
  34. Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB 2013. Bayesian Data Analysis Boca Raton, FL: CRC
  35. Gelman A, Meng XL, Stern H. 1996. Posterior predictive assessment of model fitness via realized discrepancies. Stat. Sinica 6:733–60
    [Google Scholar]
  36. Gelman A, Vehtari A, Jylänki P, Robert C, Chopin N, Cunningham JP. 2014. Expectation propagation as a way of life. arXiv:1412.4869 [stat.CO]
    [Google Scholar]
  37. Ghurye S, Olkin I. 1969. Unbiased estimation of some multivariate probability densities and related functions. Ann. Math. Stat. 40:1261–71
    [Google Scholar]
  38. Gourieroux C, Monfort A, Renault E. 1993. Indirect inference. J. Appl. Econom. 8:S85–118
    [Google Scholar]
  39. Grelaud A, Robert CP, Marin JM, Rodolphe F, Taly JF. 2009. ABC likelihood-free methods for model choice in Gibbs random fields. Bayesian Anal. 4:317–36
    [Google Scholar]
  40. Hahn C, Vakili M, Walsh K, Hearin AP, Hogg DW, Campbell D. 2017. Approximate Bayesian computation in large-scale structure: constraining the galaxy–halo connection. Mon. Notices R. Astron. Soc. 469:2791–805
    [Google Scholar]
  41. Hasenclever L, Webb S, Lienart T, Vollmer S, Lakshminarayanan B, et al. 2017. Distributed Bayesian learning with stochastic natural gradient expectation propagation and the posterior server. J. Mach. Learn. Res. 18:3744–80
    [Google Scholar]
  42. Heggland K, Frigessi A. 2004. Estimating functions in indirect inference. J. R. Stat. Soc. B 66:447–62
    [Google Scholar]
  43. Hjort NL, Dahl FA, Steinbakk GH. 2006. Post-processing posterior predictive p-values. J. Am. Stat. Assoc. 101:1157–74
    [Google Scholar]
  44. Holden PB, Edwards NR, Hensman J, Wilkinson RD. 2018. ABC for climate: dealing with expensive simulators. Handbook of Approximate Bayesian Computation SA Sisson, Y Fan, MA Beaumont569–95 Boca Raton, FL: CRC
    [Google Scholar]
  45. Jabot F, Faure T, Dumoulin N. 2013. EasyABC: performing efficient approximate Bayesian computation sampling schemes using R. Methods Ecol. Evol. 4:684–87
    [Google Scholar]
  46. Jabot F, Lagarrigues G, Courbaud B, Dumoulin N. 2014. A comparison of emulation methods for approximate Bayesian computation. arXiv:1412.7560 [q-bio.QM]
    [Google Scholar]
  47. Jabot F, Lohier T. 2016. Non-random correlation of species dynamics in tropical tree communities. Oikos 125:1733–42
    [Google Scholar]
  48. Jiang B, Wu T, Zheng C, Wong WH. 2017. Learning summary statistic for approximate Bayesian computation via deep neural network. Stat. Sinica 27:1595–1618
    [Google Scholar]
  49. Joyce P, Marjoram P 2008. Approximately sufficient statistics and Bayesian computation. Stat. Appl. Genet. Mol. Biol. 7(1). https://doi.org/10.2202/1544-6115.1389
    [Crossref] [Google Scholar]
  50. Kandler A, Powell A. 2018. Generative inference for cultural evolution. Phil. Trans. R. Soc. B 373:20170056
    [Google Scholar]
  51. Kennedy MC, O'Hagan A. 2001. Bayesian calibration of computer models. J. R. Stat. Soc. B 63:425–64
    [Google Scholar]
  52. Kousathanas A, Duchen P, Wegmann D. 2018. A guide to general-purpose ABC software. Handbook of Approximate Bayesian Computation SA Sisson, Y Fan, MA Beaumont369–413 Boca Raton, FL: CRC
    [Google Scholar]
  53. Kousathanas A, Leuenberger C, Helfer J, Quinodoz M, Foll M, Wegmann D. 2016. Likelihood-free inference in high-dimensional models. Genetics 203:893–904
    [Google Scholar]
  54. Leuenberger C, Wegmann D. 2010. Bayesian computation and model selection without likelihoods. Genetics 184:243–52
    [Google Scholar]
  55. Li W, Fearnhead P. 2018a. Convergence of regression adjusted approximate Bayesian computation. Biometrika 105:301–18
    [Google Scholar]
  56. Li W, Fearnhead P. 2018b. On the asymptotic efficiency of approximate Bayesian computation estimators. Biometrika 105:285–99
    [Google Scholar]
  57. Liepe J, Kirk P, Filippi S, Toni T, Barnes CP, Stumpf MP. 2014. A framework for parameter estimation and model selection from experimental data in systems biology using approximate Bayesian computation. Nat. Protoc. 9:439
    [Google Scholar]
  58. Marin JM, Pillai NS, Robert CP, Rousseau J. 2014. Relevant statistics for Bayesian model choice. J. R. Stat. Soc. B 76:833–59
    [Google Scholar]
  59. Marin JM, Raynal L, Pudlo P, Ribatet M, Robert CP. 2016. ABC random forests for Bayesian parameter inference. arXiv:1605.05537 [stat.ME]
    [Google Scholar]
  60. Marjoram P, Molitor J, Plagnol V, Tavaré S. 2003. Markov chain Monte Carlo without likelihoods. 100:1532428
    [Google Scholar]
  61. McKinley TJ, Vernon I, Andrianakis I, McCreesh N, Oakley JE, et al. 2018. Approximate Bayesian computation and simulation-based inference for complex stochastic epidemic models. Stat. Sci. 33:4–18
    [Google Scholar]
  62. Meeds E, Welling M. 2014. GPS-ABC: Gaussian process surrogate approximate Bayesian computation. Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence N Zhang, J Tian593–602 Arlington, VA: AUAI
    [Google Scholar]
  63. Minka TP. 2001. Expectation propagation for approximate Bayesian inference. Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence J Breese, D Koller362–69 San Francisco: Morgan Kaufmann
    [Google Scholar]
  64. Mitrovic J, Sejdinovic D, Teh YW. 2016. DR-ABC: approximate Bayesian computation with kernel-based distribution regression. Proceedings of the 33rd International Conference on Machine Learning1482–91 Brookline, MA: Microtome
    [Google Scholar]
  65. Nakagome S, Fukumizu K, Mano S. 2013. Kernel approximate Bayesian computation in population genetic inferences. Stat. Appl. Genet. Mol. Biol. 12:667–78
    [Google Scholar]
  66. Nott DJ, Drovandi CC, Mengersen K, Evans M. 2018. Approximation of Bayesian predictive p-values with regression ABC. Bayesian Anal. 13:59–83
    [Google Scholar]
  67. Nunes MA, Balding DJ 2010. On optimal selection of summary statistics for approximate Bayesian computation. Stat. Appl. Genet. Mol. Biol 9(1). https://doi.org/10.2202/1544-6115.1576
    [Crossref] [Google Scholar]
  68. Peskun PH. 1973. Optimum Monte-Carlo sampling using Markov chains. Biometrika 60:607–12
    [Google Scholar]
  69. Prangle D. 2017. Adapting the ABC distance function. Bayesian Anal. 12:289–309
    [Google Scholar]
  70. Prangle D. 2018. Summary statistics in approximate Bayesian computation. Handbook of Approximate Bayesian Computation SA Sisson, Y Fan, MA Beaumont125–52 Boca Raton, FL: CRC
    [Google Scholar]
  71. Prangle D, Blum M, Popovic G, Sisson S. 2014a. Diagnostic tools for approximate Bayesian computation using the coverage property. Aust. N. Z. J. Stat. 56:309–29
    [Google Scholar]
  72. Prangle D, Fearnhead P, Cox MP, Biggs PJ, French NP. 2014b. Semi-automatic selection of summary statistics for ABC model choice. Stat. Appl. Genet. Mol. Biol. 13:67–82
    [Google Scholar]
  73. Price LF, Drovandi CC, Lee A, Nott DJ 2018. Bayesian synthetic likelihood. J. Comput. Graph. Stat27–111
    [Google Scholar]
  74. Pritchard JK, Seielstad MT, Perez-Lezaun A, Feldman MW. 1999. Population growth of human Y chromosomes: a study of Y chromosome microsatellites. Mol. Biol. Evol. 16:1791–98
    [Google Scholar]
  75. Pudlo P, Marin JM, Estoup A, Cornuet JM, Gautier M, Robert CP. 2015. Reliable ABC model choice via random forests. Bioinformatics 32:859–66
    [Google Scholar]
  76. Ratmann O, Andrieu C, Wiuf C, Richardson S. 2009. Model criticism based on likelihood-free inference, with an application to protein network evolution. PNAS 106:10576–81
    [Google Scholar]
  77. Ratmann O, Jørgensen O, Hinkley T, Stumpf M, Richardson S, Wiuf C. 2007. Using likelihood-free inference to compare evolutionary dynamics of the protein networks of H. pylori and P. falciparum. PLOS Comput. Biol. 3:e230
    [Google Scholar]
  78. Robert CP, Cornuet JM, Marin JM, Pillai NS. 2011. Lack of confidence in approximate Bayesian computation model choice. PNAS 108:15112–17
    [Google Scholar]
  79. Rodrigues G, Prangle D, Sisson S. 2018. Recalibration: a post-processing method for approximate Bayesian computation. Comput. Stat. Data Anal. 126:53–66
    [Google Scholar]
  80. Rubin-Delanchy P, Lawson DJ. 2014. Posterior predictive p-values and the convex order. arXiv:1412.3442 [math.ST]
    [Google Scholar]
  81. Scott SL. 2017. Comparing consensus Monte Carlo strategies for distributed Bayesian computation. Braz. J. Probability Stat. 31:668–85
    [Google Scholar]
  82. Scott SL, Blocker AW, Bonassi FV, Chipman HA, George EI, McCulloch RE. 2016. Bayes and big data: the consensus Monte Carlo algorithm. Int. J. Manag. Sci. Eng. Manag. 11:78–88
    [Google Scholar]
  83. Singh H, Misra N, Hnizdo V, Fedorowicz A, Demchuk E. 2003. Nearest neighbor estimates of entropy. Am. J. Math. Manag. Sci. 23:301–21
    [Google Scholar]
  84. Sisson SA, Fan Y. 2018. ABC samplers. Handbook of Approximate Bayesian Computation SA Sisson, Y Fan, MA Beaumont87–123 Boca Raton, FL: CRC
    [Google Scholar]
  85. Sisson SA, Fan Y, Tanaka MM. 2007. Sequential Monte Carlo without likelihoods. PNAS 104:1760–65
    [Google Scholar]
  86. Sisson SA, Fan Y, Tanaka MM. 2009. Correction: sequential Monte Carlo without likelihoods. PNAS 106:16889
    [Google Scholar]
  87. Sjödin P, E Sjöstrand A, Jakobsson M, Blum MG. 2012. Resequencing data provide no evidence for a human bottleneck in Africa during the penultimate glacial period. Mol. Biol. Evol. 29:1851–60
    [Google Scholar]
  88. Sousa VC, Fritz M, Beaumont MA, Chikhi L. 2009. Approximate Bayesian computation without summary statistics: the case of admixture. Genetics 181:1507–19
    [Google Scholar]
  89. Toni T, Welch D, Strelkowa N, Ipsen A, Stumpf MP. 2009. Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. J. R. Soc. Interface 6:187–202
    [Google Scholar]
  90. Turner BM, Dennis S, Van Zandt T. 2013. Likelihood-free Bayesian analysis of memory models. Psychol. Rev. 120:667–78
    [Google Scholar]
  91. van der Vaart E, Beaumont MA, Johnston AS, Sibly RM. 2015. Calibration and evaluation of individual-based models using approximate Bayesian computation. Ecol. Model. 312:182–90
    [Google Scholar]
  92. Wegmann D, Leuenberger C, Excoffier L. 2009. Efficient approximate Bayesian computation coupled with Markov chain Monte Carlo without likelihood. Genetics 182:1207–18
    [Google Scholar]
  93. Wegmann D, Leuenberger C, Neuenschwander S, Excoffier L. 2010. ABCtoolbox: a versatile toolkit for approximate Bayesian computations. BMC Bioinformat. 11:116
    [Google Scholar]
  94. Wilkinson RD. 2013. Approximate Bayesian computation (ABC) gives exact results under the assumption of model error. Stat. Appl. Genet. Mol. Biol. 12:129–41
    [Google Scholar]
  95. Wilkinson RD. 2014. Accelerating ABC methods using Gaussian processes. Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics S Kaski, J Corander1015–23 Brookline, MA: Microtome
    [Google Scholar]
  96. Wood SN. 2010. Statistical inference for noisy nonlinear ecological dynamic systems. Nature 466:1102–4
    [Google Scholar]
  97. Yıldırım S, Singh SS, Dean T, Jasra A. 2015. Parameter estimation in hidden Markov models with intractable likelihoods using sequential Monte Carlo. J. Comput. Graph. Stat. 24:846–65
    [Google Scholar]
/content/journals/10.1146/annurev-statistics-030718-105212
Loading
/content/journals/10.1146/annurev-statistics-030718-105212
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error