1932

Abstract

Hendra virus (HeV) and Nipah virus (NiV) are bat-borne zoonotic para-myxoviruses identified in the mid- to late 1990s in outbreaks of severe disease in livestock and people in Australia and Malaysia, respectively. HeV repeatedly re-emerges in Australia while NiV continues to cause outbreaks in South Asia (Bangladesh and India), and these viruses have remained transboundary threats. In people and several mammalian species, HeV and NiV infections present as a severe systemic and often fatal neurologic and/or respiratory disease. NiV stands out as a potential pandemic threat because of its associated high case-fatality rates and capacity for human-to-human transmission. The development of effective vaccines, suitable for people and livestock, against HeV and NiV has been a research focus. Here, we review the progress made in NiV and HeV vaccine development, with an emphasis on those approaches that have been tested in established animal challenge models of NiV and HeV infection and disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-021920-113833
2020-09-29
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/virology/7/1/annurev-virology-021920-113833.html?itemId=/content/journals/10.1146/annurev-virology-021920-113833&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Eaton BT, Broder CC, Middleton D, Wang LF 2006. Hendra and Nipah viruses: different and dangerous. Nat. Rev. Microbiol. 4:23–35
    [Google Scholar]
  2. 2. 
    Wang L-F, Mackenzie JS, Broder CC 2013. Henipaviruses. Fields Virology DM Knipe, PM Howley 1070–85 Philadelphia: Lippincott Williams & Wilkins
    [Google Scholar]
  3. 3. 
    Harcourt BH, Lowe L, Tamin A, Liu X, Bankamp B et al. 2005. Genetic characterization of Nipah virus, Bangladesh, 2004. Emerg. Infect. Dis. 11:1594–97
    [Google Scholar]
  4. 4. 
    Marsh GA, de Jong C, Barr JA, Tachedjian M, Smith C et al. 2012. Cedar virus: a novel Henipavirus isolated from Australian bats. PLOS Pathog 8:e1002836
    [Google Scholar]
  5. 5. 
    Drexler JF, Corman VM, Gloza-Rausch F, Seebens A, Annan A et al. 2009. Henipavirus RNA in African bats. PLOS ONE 4:e6367
    [Google Scholar]
  6. 6. 
    Wu Z, Yang L, Yang F, Ren X, Jiang J et al. 2014. Novel Henipa-like virus, Mojiang Paramyxovirus, in rats, China, 2012. Emerg. Infect. Dis. 20:1064–66
    [Google Scholar]
  7. 7. 
    Maes P, Amarasinghe GK, Ayllon MA, Basler CF, Bavari S et al. 2019. Taxonomy of the order Mononegavirales: second update 2018. Arch. Virol. 164:1233–44
    [Google Scholar]
  8. 8. 
    Bossart KN, Zhu Z, Middleton D, Klippel J, Crameri G et al. 2009. A neutralizing human monoclonal antibody protects against lethal disease in a new ferret model of acute Nipah virus infection. PLOS Pathog 5:e1000642
    [Google Scholar]
  9. 9. 
    Geisbert TW, Daddario-DiCaprio KM, Hickey AC, Smith MA, Chan YP et al. 2010. Development of an acute and highly pathogenic nonhuman primate model of Nipah virus infection. PLOS ONE 5:e10690
    [Google Scholar]
  10. 10. 
    Guillaume V, Wong KT, Looi RY, Georges-Courbot MC, Barrot L et al. 2009. Acute Hendra virus infection: analysis of the pathogenesis and passive antibody protection in the hamster model. Virology 387:459–65
    [Google Scholar]
  11. 11. 
    Hooper P, Zaki S, Daniels P, Middleton D 2001. Comparative pathology of the diseases caused by Hendra and Nipah viruses. Microbes Infect 3:315–22
    [Google Scholar]
  12. 12. 
    Hooper PT, Westbury HA, Russell GM 1997. The lesions of experimental equine morbillivirus disease in cats and guinea pigs. Vet. Pathol. 34:323–29
    [Google Scholar]
  13. 13. 
    Middleton DJ, Morrissy CJ, van der Heide BM, Russell GM, Braun MA et al. 2007. Experimental Nipah virus infection in pteropid bats (Pteropus poliocephalus). J. Comp. Pathol. 136:266–72
    [Google Scholar]
  14. 14. 
    Mungall BA, Middleton D, Crameri G, Bingham J, Halpin K et al. 2006. Feline model of acute Nipah virus infection and protection with a soluble glycoprotein-based subunit vaccine. J. Virol. 80:12293–302
    [Google Scholar]
  15. 15. 
    Rockx B, Bossart KN, Feldmann F, Geisbert JB, Hickey AC et al. 2010. A novel model of lethal Hendra virus infection in African green monkeys and the effectiveness of ribavirin treatment. J. Virol. 84:9831–39
    [Google Scholar]
  16. 16. 
    Weingartl H, Czub S, Copps J, Berhane Y, Middleton D et al. 2005. Invasion of the central nervous system in a porcine host by Nipah virus. J. Virol. 79:7528–34
    [Google Scholar]
  17. 17. 
    Westbury HA, Hooper PT, Brouwer SL, Selleck PW 1996. Susceptibility of cats to equine morbillivirus. Aust. Vet. J. 74:132–34
    [Google Scholar]
  18. 18. 
    Westbury HA, Hooper PT, Selleck PW, Murray PK 1995. Equine morbillivirus pneumonia: susceptibility of laboratory animals to the virus. Aust. Vet. J. 72:278–79
    [Google Scholar]
  19. 19. 
    Wong KT, Grosjean I, Brisson C, Blanquier B, Fevre-Montange M et al. 2003. A golden hamster model for human acute Nipah virus infection. Am. J. Pathol. 163:2127–37
    [Google Scholar]
  20. 20. 
    Li M, Embury-Hyatt C, Weingartl HM 2010. Experimental inoculation study indicates swine as a potential host for Hendra virus. Vet. Res. 41:33
    [Google Scholar]
  21. 21. 
    Marianneau P, Guillaume V, Wong T, Badmanathan M, Looi RY et al. 2010. Experimental infection of squirrel monkeys with Nipah virus. Emerg. Infect. Dis. 16:507–10
    [Google Scholar]
  22. 22. 
    Schountz T, Campbell C, Wagner K, Rovnak J, Martellaro C et al. 2019. Differential innate immune responses elicited by Nipah virus and Cedar virus correlate with disparate in vivo pathogenesis in hamsters. Viruses 11:291
    [Google Scholar]
  23. 23. 
    Chua KB, Koh CL, Hooi PS, Wee KF, Khong JH et al. 2002. Isolation of Nipah virus from Malaysian Island flying-foxes. Microbes Infect 4:145–51
    [Google Scholar]
  24. 24. 
    Halpin K, Young PL, Field HE, Mackenzie JS 2000. Isolation of Hendra virus from pteropid bats: a natural reservoir of Hendra virus. J. Gen. Virol. 81:1927–32
    [Google Scholar]
  25. 25. 
    Rahman SA, Hassan SS, Olival KJ, Mohamed M, Chang LY et al. 2010. Characterization of Nipah virus from naturally infected Pteropus vampyrus bats, Malaysia. Emerg. Infect. Dis. 16:1990–93
    [Google Scholar]
  26. 26. 
    Reynes JM, Counor D, Ong S, Faure C, Seng V et al. 2005. Nipah virus in Lyle's flying foxes, Cambodia. Emerg. Infect. Dis. 11:1042–47
    [Google Scholar]
  27. 27. 
    Anderson DE, Islam A, Crameri G, Todd S, Islam A et al. 2019. Isolation and full-genome characterization of Nipah viruses from bats, Bangladesh. Emerg. Infect. Dis. 25:166–70
    [Google Scholar]
  28. 28. 
    Halpin K, Hyatt AD, Fogarty R, Middleton D, Bingham J et al. 2011. Pteropid bats are confirmed as the reservoir hosts of henipaviruses: a comprehensive experimental study of virus transmission. Am. J. Trop. Med. Hyg. 85:946–51
    [Google Scholar]
  29. 29. 
    Williamson MM, Hooper PT, Selleck PW, Gleeson LJ, Daniels PW et al. 1998. Transmission studies of Hendra virus (equine morbillivirus) in fruit bats, horses and cats. Aust. Vet. J. 76:813–18
    [Google Scholar]
  30. 30. 
    Williamson MM, Hooper PT, Selleck PW, Westbury HA, Slocombe RF 2000. Experimental Hendra virus infection in pregnant guinea-pigs and fruit bats (Pteropus poliocephalus). J. Comp. Pathol. 122:201–7
    [Google Scholar]
  31. 31. 
    Playford EG, McCall B, Smith G, Slinko V, Allen G et al. 2010. Human Hendra virus encephalitis associated with equine outbreak, Australia, 2008. Emerg. Infect. Dis. 16:219–23
    [Google Scholar]
  32. 32. 
    Wong KT, Ong KC. 2011. Pathology of acute henipavirus infection in humans and animals. Pathol. Res. Int. 2011:567248
    [Google Scholar]
  33. 33. 
    Geisbert TW, Feldmann H, Broder CC 2012. Animal challenge models of henipavirus infection and pathogenesis. Curr. Top. Microbiol. Immunol. 359:153–77
    [Google Scholar]
  34. 34. 
    CDC (Cent. Dis. Control Prev.) 2009. Biosafety in Microbiological and Biomedical Laboratories LC Chosewood, DE Wilson Washington, DC: Natl. Inst. Health, 5th ed..
  35. 35. 
    ARS (Agricult. Res. Serv.) 2018. Henipavirus Gap Analysis Washington, DC: US Dep. Agricult.
  36. 36. 
    Sweileh WM. 2017. Global research trends of World Health Organization's top eight emerging pathogens. Global Health 13:9
    [Google Scholar]
  37. 37. 
    Murray K, Rogers R, Selvey L, Selleck P, Hyatt A et al. 1995. A novel morbillivirus pneumonia of horses and its transmission to humans. Emerg. Infect. Dis. 1:31–33
    [Google Scholar]
  38. 38. 
    Selvey LA, Wells RM, McCormack JG, Ansford AJ, Murray K et al. 1995. Infection of humans and horses by a newly described morbillivirus. Med. J. Aust. 162:642–45
    [Google Scholar]
  39. 39. 
    Murray K, Selleck P, Hooper P, Hyatt A, Gould A et al. 1995. A morbillivirus that caused fatal disease in horses and humans. Science 268:94–97
    [Google Scholar]
  40. 40. 
    Hooper PT, Gould AR, Russell GM, Kattenbelt JA, Mitchell G 1996. The retrospective diagnosis of a second outbreak of equine morbillivirus infection. Aust. Vet. J. 74:244–45
    [Google Scholar]
  41. 41. 
    Rogers RJ, Douglas IC, Baldock FC, Glanville RJ, Seppanen KT et al. 1996. Investigation of a second focus of equine morbillivirus infection in coastal Queensland. Aust. Vet. J. 74:243–44
    [Google Scholar]
  42. 42. 
    O'Sullivan JD, Allworth AM, Paterson DL, Snow TM, Boots R et al. 1997. Fatal encephalitis due to novel paramyxovirus transmitted from horses. Lancet 349:93–95
    [Google Scholar]
  43. [Google Scholar]
  44. 44. 
    Barclay AJ, Paton DJ. 2000. Hendra (equine morbillivirus). Vet. J. 160:169–76
    [Google Scholar]
  45. 45. 
    Chua KB, Goh KJ, Wong KT, Kamarulzaman A, Tan PS et al. 1999. Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia. Lancet 354:1257–59
    [Google Scholar]
  46. 46. 
    Chua KB, Bellini WJ, Rota PA, Harcourt BH, Tamin A et al. 2000. Nipah virus: a recently emergent deadly paramyxovirus. Science 288:1432–35
    [Google Scholar]
  47. 47. 
    Paton NI, Leo YS, Zaki SR, Auchus AP, Lee KE et al. 1999. Outbreak of Nipah-virus infection among abattoir workers in Singapore. Lancet 354:1253–56
    [Google Scholar]
  48. 48. 
    Ahmad K. 2000. Malaysia culls pigs as Nipah virus strikes again. Lancet 356:230
    [Google Scholar]
  49. 49. 
    Lam SK, Chua KB. 2002. Nipah virus encephalitis outbreak in Malaysia. Clin. Infect. Dis. 34:S48–48
    [Google Scholar]
  50. 50. 
    Hsu VP, Hossain MJ, Parashar UD, Ali MM, Ksiazek TG et al. 2004. Nipah virus encephalitis reemergence, Bangladesh. Emerg. Infect. Dis. 10:2082–87
    [Google Scholar]
  51. 51. 
    Arunkumar G, Chandni R, Mourya DT, Singh SK, Sadanandan R et al. 2019. Outbreak investigation of Nipah virus disease in Kerala, India, 2018. J. Infect. Dis. 219:1867–78
    [Google Scholar]
  52. 52. 
    Chadha MS, Comer JA, Lowe L, Rota PA, Rollin PE et al. 2006. Nipah virus-associated encephalitis outbreak, Siliguri, India. Emerg. Infect. Dis. 12:235–40
    [Google Scholar]
  53. 53. 
    Harit AK, Ichhpujani RL, Gupta S, Gill KS, Lal S et al. 2006. Nipah/Hendra virus outbreak in Siliguri, West Bengal, India in 2001. Indian J. Med. Res. 123:553–60
    [Google Scholar]
  54. 54. 
    Luby SP, Hossain MJ, Gurley ES, Ahmed BN, Banu S et al. 2009. Recurrent zoonotic transmission of Nipah virus into humans, Bangladesh, 2001–2007. Emerg. Infect. Dis. 15:1229–35
    [Google Scholar]
  55. 55. 
    Ching PK, de los Reyes VC, Sucaldito MN, Tayag E, Columna-Vingno AB et al. 2015. Outbreak of henipavirus infection, Philippines, 2014. Emerg. Infect. Dis. 21:328–31
    [Google Scholar]
  56. 56. 
    Nikolay B, Salje H, Hossain MJ, Khan A, Sazzad HMS et al. 2019. Transmission of Nipah virus—14 years of investigations in Bangladesh. N. Engl. J. Med. 380:1804–14
    [Google Scholar]
  57. 57. 
    Luby SP, Rahman M, Hossain MJ, Blum LS, Husain MM et al. 2006. Foodborne transmission of Nipah virus, Bangladesh. Emerg. Infect. Dis. 12:1888–94
    [Google Scholar]
  58. 58. 
    Gurley ES, Montgomery JM, Hossain MJ, Bell M, Azad AK et al. 2007. Person-to-person transmission of Nipah virus in a Bangladeshi community. Emerg. Infect. Dis. 13:1031–37
    [Google Scholar]
  59. 59. 
    Luby SP, Gurley ES, Hossain MJ 2009. Transmission of human infection with Nipah virus. Clin. Infect. Dis. 49:1743–48
    [Google Scholar]
  60. 60. 
    Homaira N, Rahman M, Hossain MJ, Epstein JH, Sultana R et al. 2010. Nipah virus outbreak with person-to-person transmission in a district of Bangladesh, 2007. Epidemiol. Infect. 138:1630–36
    [Google Scholar]
  61. 61. 
    Field H, Young P, Yob JM, Mills J, Hall L, Mackenzie J 2001. The natural history of Hendra and Nipah viruses. Microbes Infect 3:307–14
    [Google Scholar]
  62. 62. 
    Field HE. 2016. Hendra virus ecology and transmission. Curr. Opin. Virol. 16:120–25
    [Google Scholar]
  63. 63. 
    Edson D, Field H, McMichael L, Vidgen M, Goldspink L et al. 2015. Routes of Hendra virus excretion in naturally-infected flying-foxes: implications for viral transmission and spillover risk. PLOS ONE 10:e0140670
    [Google Scholar]
  64. 64. 
    Peel AJ, Wells K, Giles J, Boyd V, Burroughs A et al. 2019. Synchronous shedding of multiple bat paramyxoviruses coincides with peak periods of Hendra virus spillover. Emerg. Microbes Infect. 8:1314–23
    [Google Scholar]
  65. 65. 
    Barr J, Smith C, Smith I, de Jong C, Todd S et al. 2015. Isolation of multiple novel paramyxoviruses from pteropid bat urine. J. Gen. Virol. 96:24–29
    [Google Scholar]
  66. 66. 
    Middleton D. 2014. Hendra virus. Vet. Clin. North Am. Equine Pract. 30:579–89
    [Google Scholar]
  67. 67. 
    Mahalingam S, Herrero LJ, Playford EG, Spann K, Herring B et al. 2012. Hendra virus: an emerging paramyxovirus in Australia. Lancet Infect. Dis. 12:799–807
    [Google Scholar]
  68. 68. 
    Hanna JN, McBride WJ, Brookes DL, Shield J, Taylor CT et al. 2006. Hendra virus infection in a veterinarian. Med. J. Aust. 185:562–64
    [Google Scholar]
  69. 69. 
    Parashar UD, Sunn LM, Ong F, Mounts AW, Arif MT et al. 2000. Case-control study of risk factors for human infection with a new zoonotic paramyxovirus, Nipah virus, during a 1998–1999 outbreak of severe encephalitis in Malaysia. J. Infect. Dis. 181:1755–59
    [Google Scholar]
  70. 70. 
    Amal NM, Lye MS, Ksiazek TG, Kitsutani PD, Hanjeet KS et al. 2000. Risk factors for Nipah virus transmission, Port Dickson, Negeri Sembilan, Malaysia: results from a hospital-based case-control study. Southeast Asian J. Trop. Med. Public Health 31:301–6
    [Google Scholar]
  71. 71. 
    Mohd Nor MN, Gan CH, Ong BL 2000. Nipah virus infection of pigs in peninsular Malaysia. Rev. Sci. Tech. 19:160–65
    [Google Scholar]
  72. 72. 
    Middleton DJ, Westbury HA, Morrissy CJ, van der Heide BM, Russell GM et al. 2002. Experimental Nipah virus infection in pigs and cats. J. Comp. Pathol. 126:124–36
    [Google Scholar]
  73. 73. 
    Khan MS, Hossain J, Gurley ES, Nahar N, Sultana R, Luby SP 2010. Use of infrared camera to understand bats’ access to date palm sap: implications for preventing Nipah virus transmission. Ecohealth 7:517–25
    [Google Scholar]
  74. 74. 
    Rahman MA, Hossain MJ, Sultana S, Homaira N, Khan SU et al. 2012. Date palm sap linked to Nipah virus outbreak in Bangladesh, 2008. Vector-Borne Zoonotic Dis 12:65–72
    [Google Scholar]
  75. 75. 
    Sazzad HM, Hossain MJ, Gurley ES, Ameen KM, Parveen S et al. 2013. Nipah virus infection outbreak with nosocomial and corpse-to-human transmission, Bangladesh. Emerg. Infect. Dis. 19:210–17
    [Google Scholar]
  76. 76. 
    Tan CT, Tan KS. 2001. Nosocomial transmissibility of Nipah virus. J. Infect. Dis. 184:1367
    [Google Scholar]
  77. 77. 
    Mounts AW, Kaur H, Parashar UD, Ksiazek TG, Cannon D et al. 2001. A cohort study of health care workers to assess nosocomial transmissibility of Nipah virus, Malaysia, 1999. J. Infect. Dis. 183:810–13
    [Google Scholar]
  78. 78. 
    Mills JN, Alim AN, Bunning ML, Lee OB, Wagoner KD et al. 2009. Nipah virus infection in dogs, Malaysia, 1999. Emerg. Infect. Dis. 15:950–52
    [Google Scholar]
  79. 79. 
    Kirkland PD, Gabor M, Poe I, Neale K, Chaffey K et al. 2015. Hendra virus infection in dog, Australia, 2013. Emerg. Infect. Dis. 21:2182–85
    [Google Scholar]
  80. 80. 
    Middleton DJ, Riddell S, Klein R, Arkinstall R, Haining J et al. 2017. Experimental Hendra virus infection of dogs: virus replication, shedding and potential for transmission. Aust. Vet. J. 95:10–18
    [Google Scholar]
  81. 81. 
    Ciancanelli MJ, Volchkova VA, Shaw ML, Volchkov VE, Basler CF 2009. Nipah virus sequesters inactive STAT1 in the nucleus via a P gene-encoded mechanism. J. Virol. 83:7828–41
    [Google Scholar]
  82. 82. 
    Rodriguez JJ, Horvath CM. 2004. Host evasion by emerging paramyxoviruses: Hendra virus and Nipah virus V proteins inhibit interferon signaling. Viral. Immunol. 17:210–19
    [Google Scholar]
  83. 83. 
    Shaw ML, Cardenas WB, Zamarin D, Palese P, Basler CF 2005. Nuclear localization of the Nipah virus W protein allows for inhibition of both virus- and toll-like receptor 3-triggered signaling pathways. J. Virol. 79:6078–88
    [Google Scholar]
  84. 84. 
    Shaw ML, Garcia-Sastre A, Palese P, Basler CF 2004. Nipah virus V and W proteins have a common STAT1-binding domain yet inhibit STAT1 activation from the cytoplasmic and nuclear compartments, respectively. J. Virol. 78:5633–41
    [Google Scholar]
  85. 85. 
    Basler CF. 2012. Nipah and Hendra virus interactions with the innate immune system. Curr. Top. Microbiol. Immunol. 359:123–52
    [Google Scholar]
  86. 86. 
    Pelissier R, Iampietro M, Horvat B 2019. Recent advances in the understanding of Nipah virus immunopathogenesis and anti-viral approaches. F1000Research 8:1763
    [Google Scholar]
  87. 87. 
    Satterfield BA, Borisevich V, Foster SL, Rodriguez SE, Cross RW et al. 2019. Antagonism of STAT1 by Nipah virus P gene products modulates disease course but not lethal outcome in the ferret model. Sci. Rep. 9:16710
    [Google Scholar]
  88. 88. 
    Satterfield BA, Cross RW, Fenton KA, Agans KN, Basler CF et al. 2015. The immunomodulating V and W proteins of Nipah virus determine disease course. Nat. Commun. 6:7483
    [Google Scholar]
  89. 89. 
    Satterfield BA, Cross RW, Fenton KA, Borisevich V, Agans KN et al. 2016. Nipah virus C and W proteins contribute to respiratory disease in ferrets. J. Virol. 90:6326–43
    [Google Scholar]
  90. 90. 
    Chang A, Dutch RE. 2012. Paramyxovirus fusion and entry: multiple paths to a common end. Viruses 4:613–36
    [Google Scholar]
  91. 91. 
    Aguilar HC, Iorio RM. 2012. Henipavirus membrane fusion and viral entry. Curr. Top. Microbiol. Immunol. 359:79–94
    [Google Scholar]
  92. 92. 
    Navaratnarajah CK, Generous AR, Yousaf I, Cattaneo R 2020. Receptor-mediated cell entry of para-myxoviruses: mechanisms, and consequences for tropism and pathogenesis. J. Biol. Chem. 295:2771–86
    [Google Scholar]
  93. 93. 
    Bishop KA, Stantchev TS, Hickey AC, Khetawat D, Bossart KN et al. 2007. Identification of Hendra virus G glycoprotein residues that are critical for receptor binding. J. Virol. 81:5893–901
    [Google Scholar]
  94. 94. 
    Bonaparte MI, Dimitrov AS, Bossart KN, Crameri G, Mungall BA et al. 2005. Ephrin-B2 ligand is a functional receptor for Hendra virus and Nipah virus. PNAS 102:10652–57
    [Google Scholar]
  95. 95. 
    Negrete OA, Levroney EL, Aguilar HC, Bertolotti-Ciarlet A, Nazarian R et al. 2005. EphrinB2 is the entry receptor for Nipah virus, an emergent deadly paramyxovirus. Nature 436:401–5
    [Google Scholar]
  96. 96. 
    Negrete OA, Wolf MC, Aguilar HC, Enterlein S, Wang W et al. 2006. Two key residues in ephrinB3 are critical for its use as an alternative receptor for Nipah virus. PLOS Pathog 2:e7
    [Google Scholar]
  97. 97. 
    Drescher U. 2002. Eph family functions from an evolutionary perspective. Curr. Opin. Genet. Dev. 12:397–402
    [Google Scholar]
  98. 98. 
    Bossart KN, Tachedjian M, McEachern JA, Crameri G, Zhu Z et al. 2008. Functional studies of host-specific ephrin-B ligands as Henipavirus receptors. Virology 372:357–71
    [Google Scholar]
  99. 99. 
    Gale NW, Baluk P, Pan L, Kwan M, Holash J et al. 2001. Ephrin-B2 selectively marks arterial vessels and neovascularization sites in the adult, with expression in both endothelial and smooth-muscle cells. Dev. Biol. 230:151–60
    [Google Scholar]
  100. 100. 
    Poliakov A, Cotrina M, Wilkinson DG 2004. Diverse roles of eph receptors and ephrins in the regulation of cell migration and tissue assembly. Dev. Cell 7:465–80
    [Google Scholar]
  101. 101. 
    Pasquale EB. 2008. Eph-ephrin bidirectional signaling in physiology and disease. Cell 133:38–52
    [Google Scholar]
  102. 102. 
    Wong KT, Tan CT. 2012. Clinical and pathological manifestations of human henipavirus infection. Curr. Top. Microbiol. Immunol. 359:95–104
    [Google Scholar]
  103. 103. 
    Xu K, Chan YP, Rajashankar KR, Khetawat D, Yan L et al. 2012. New insights into the Hendra virus attachment and entry process from structures of the virus G glycoprotein and its complex with ephrin-B2. PLOS ONE 7:e48742
    [Google Scholar]
  104. 104. 
    Xu K, Rajashankar KR, Chan YP, Himanen JP, Broder CC, Nikolov DB 2008. Host cell recognition by the henipaviruses: crystal structures of the Nipah G attachment glycoprotein and its complex with ephrin-B3. PNAS 105:9953–58
    [Google Scholar]
  105. 105. 
    Bowden TA, Aricescu AR, Gilbert RJ, Grimes JM, Jones EY, Stuart DI 2008. Structural basis of Nipah and Hendra virus attachment to their cell-surface receptor ephrin-B2. Nat. Struct. Mol. Biol. 15:567–72
    [Google Scholar]
  106. 106. 
    Bowden TA, Crispin M, Harvey DJ, Jones EY, Stuart DI 2010. Dimeric architecture of the Hendra virus attachment glycoprotein: evidence for a conserved mode of assembly. J. Virol. 84:6208–17
    [Google Scholar]
  107. 107. 
    Wong JJ, Paterson RG, Lamb RA, Jardetzky TS 2016. Structure and stabilization of the Hendra virus F glycoprotein in its prefusion form. PNAS 113:1056–61
    [Google Scholar]
  108. 108. 
    Xu K, Chan YP, Bradel-Tretheway B, Akyol-Ataman Z, Zhu Y et al. 2015. Crystal structure of the pre-fusion Nipah virus fusion glycoprotein reveals a novel hexamer-of-trimers assembly. PLOS Pathog 11:e1005322
    [Google Scholar]
  109. 109. 
    Xu K, Rockx B, Xie Y, Debuysscher BL, Fusco DL et al. 2013. Crystal structure of the Hendra virus attachment G glycoprotein bound to a potent cross-reactive neutralizing human monoclonal antibody. PLOS Pathog 9:e1003684
    [Google Scholar]
  110. 110. 
    Dang HV, Chan YP, Park YJ, Snijder J, Da Silva SC et al. 2019. An antibody against the F glycoprotein inhibits Nipah and Hendra virus infections. Nat. Struct. Mol. Biol. 26:980–87
    [Google Scholar]
  111. 111. 
    Goh KJ, Tan CT, Chew NK, Tan PS, Kamarulzaman A et al. 2000. Clinical features of Nipah virus encephalitis among pig farmers in Malaysia. N. Engl. J. Med. 342:1229–35
    [Google Scholar]
  112. 112. 
    Wong KT, Shieh WJ, Kumar S, Norain K, Abdullah W et al. 2002. Nipah virus infection: pathology and pathogenesis of an emerging paramyxoviral zoonosis. Am. J. Pathol. 161:2153–67
    [Google Scholar]
  113. 113. 
    Hossain MJ, Gurley ES, Montgomery JM, Bell M, Carroll DS et al. 2008. Clinical presentation of Nipah virus infection in Bangladesh. Clin. Infect. Dis. 46:977–84
    [Google Scholar]
  114. 114. 
    Wong KT, Robertson T, Ong BB, Chong JW, Yaiw KC et al. 2009. Human Hendra virus infection causes acute and relapsing encephalitis. Neuropathol. Appl. Neurobiol. 35:296–305
    [Google Scholar]
  115. 115. 
    Tan CT, Goh KJ, Wong KT, Sarji SA, Chua KB et al. 2002. Relapsed and late-onset Nipah encephalitis. Ann. Neurol. 51:703–8
    [Google Scholar]
  116. 116. 
    Wong SC, Ooi MH, Wong MN, Tio PH, Solomon T, Cardosa MJ 2001. Late presentation of Nipah virus encephalitis and kinetics of the humoral immune response. J. Neurol. Neurosurg. Psychiatry 71:552–54
    [Google Scholar]
  117. 117. 
    Chong HT, Tan CT. 2003. Relapsed and late-onset Nipah encephalitis, a report of three cases. Neurol. J. Southeast Asia 8:109–12
    [Google Scholar]
  118. 118. 
    Abdullah S, Chang LY, Rahmat K, Goh KT, Tan CT 2012. Late-onset Nipah virus encephalitis 11 years after the initial outbreak: a case report. Neurol. Asia 17:71–74
    [Google Scholar]
  119. 119. 
    Aebersold P. 2012. FDA experience with medical countermeasures under the animal rule. Adv. Prev. Med. 2012:507571
    [Google Scholar]
  120. 120. 
    Crawford LM. 2002. New drug and biological drug products; evidence needed to demonstrate effectiveness of new drugs when human efficacy studies are not ethical or feasible.. Fed. Reg 67:37988–98
    [Google Scholar]
  121. 121. 
    de Wit E, Munster VJ 2015. Animal models of disease shed light on Nipah virus pathogenesis and transmission. J. Pathol. 235:196–205
    [Google Scholar]
  122. 122. 
    Dhondt KP, Horvat B. 2013. Henipavirus infections: lessons from animal models. Pathogens 2:264–87
    [Google Scholar]
  123. 123. 
    Rockx B. 2014. Recent developments in experimental animal models of Henipavirus infection. Pathog. Dis. 71:199–206
    [Google Scholar]
  124. 124. 
    Rubin SA, Sauder CJ, Carbone KM 2013. Mumps virus. Fields Virology DM Knipe, PM Howley 1024–41 Philadelphia: Lippincott Williams & Wilkins
    [Google Scholar]
  125. 125. 
    Griffin DE. 2013. Measles virus. Fields Virology DM Knipe, PM Howley 1042–69 Philadelphia: Lippincott Williams & Wilkins
    [Google Scholar]
  126. 126. 
    Karron RAC, Collins PL. 2013. Parainfluenza viruses. Fields Virology DM Knipe, PM Howley 996–1023 Philadelphia: Lippincott Williams & Wilkins
    [Google Scholar]
  127. 127. 
    Guillaume V, Contamin H, Loth P, Georges-Courbot MC, Lefeuvre A et al. 2004. Nipah virus: vaccination and passive protection studies in a hamster model. J. Virol. 78:834–40
    [Google Scholar]
  128. 128. 
    Guillaume V, Contamin H, Loth P, Grosjean I, Courbot MC et al. 2006. Antibody prophylaxis and therapy against Nipah virus infection in hamsters. J. Virol. 80:1972–78
    [Google Scholar]
  129. 129. 
    Zhu Z, Dimitrov AS, Bossart KN, Crameri G, Bishop KA et al. 2006. Potent neutralization of Hendra and Nipah viruses by human monoclonal antibodies. J. Virol. 80:891–99
    [Google Scholar]
  130. 130. 
    Zhu Z, Bossart KN, Bishop KA, Crameri G, Dimitrov AS et al. 2008. Exceptionally potent cross-reactive neutralization of Nipah and Hendra viruses by a human monoclonal antibody. J. Infect. Dis. 197:846–53
    [Google Scholar]
  131. 131. 
    Bossart KN, Geisbert TW, Feldmann H, Zhu Z, Feldmann F et al. 2011. A neutralizing human monoclonal antibody protects African green monkeys from Hendra virus challenge. Sci. Transl. Med. 3:105ra03
    [Google Scholar]
  132. 132. 
    Geisbert TW, Mire CE, Geisbert JB, Chan YP, Agans KN et al. 2014. Therapeutic treatment of Nipah virus infection in nonhuman primates with a neutralizing human monoclonal antibody. Sci. Transl. Med. 6:242ra82
    [Google Scholar]
  133. 133. 
    Mire CE, Satterfield BA, Geisbert JB, Agans KN, Borisevich V et al. 2016. Pathogenic differences between Nipah virus Bangladesh and Malaysia strains in primates: implications for antibody therapy. Sci. Rep. 6:30916
    [Google Scholar]
  134. 134. 
    Chan YP, Lu M, Dutta S, Yan L, Barr J et al. 2012. Biochemical, conformational, and immunogenic analysis of soluble trimeric forms of henipavirus fusion glycoproteins. J. Virol. 86:11457–71
    [Google Scholar]
  135. 135. 
    Mire CE, Chan YP, Borisevich V, Cross RW, Yan L et al. 2019. A cross-reactive humanized monoclonal antibody targeting fusion glycoprotein function protects ferrets against lethal Nipah virus and Hendra virus infection. J. Infect. Dis. 2019.jiz515
    [Google Scholar]
  136. 136. 
    Playford EG, Munro T, Mahler SM, Elliott S, Gerometta M et al. 2020. Safety, tolerability, pharmacokinetics, and immunogenicity of a human monoclonal antibody targeting the G glycoprotein of henipaviruses in healthy adults: a first-in-human, randomised, controlled, phase 1 study. Lancet Infect. Dis. 20:445–54
    [Google Scholar]
  137. 137. 
    Prow NA, Jimenez Martinez R, Hayball JD, Howley PM, Suhrbier A 2018. Poxvirus-based vector systems and the potential for multi-valent and multi-pathogen vaccines. Expert Rev. Vaccines 17:925–34
    [Google Scholar]
  138. 138. 
    Bossart KN, Wang LF, Eaton BT, Broder CC 2001. Functional expression and membrane fusion tropism of the envelope glycoproteins of Hendra virus. Virology 290:121–35
    [Google Scholar]
  139. 139. 
    Bossart KN, Wang LF, Flora MN, Chua KB, Lam SK et al. 2002. Membrane fusion tropism and heterotypic functional activities of the Nipah virus and Hendra virus envelope glycoproteins. J. Virol. 76:11186–98
    [Google Scholar]
  140. 140. 
    Weingartl HM, Berhane Y, Caswell JL, Loosmore S, Audonnet JC et al. 2006. Recombinant Nipah virus vaccines protect pigs against challenge. J. Virol. 80:7929–38
    [Google Scholar]
  141. 141. 
    Guillaume-Vasselin V, Lemaitre L, Dhondt KP, Tedeschi L, Poulard A et al. 2016. Protection from Hendra virus infection with Canarypox recombinant vaccine. NPJ Vaccines 1:16003
    [Google Scholar]
  142. 142. 
    Kalodimou G, Veit S, Jany S, Kalinke U, Broder CC et al. 2019. A soluble version of Nipah virus glycoprotein G delivered by vaccinia virus MVA activates specific CD8 and CD4 T cells in mice. Viruses 12:26
    [Google Scholar]
  143. 143. 
    Arunkumar G, Devadiga S, McElroy AK, Prabhu S, Sheik S et al. 2019. Adaptive immune responses in humans during Nipah virus acute and convalescent phases of infection. Clin. Infect. Dis. 69:1752–56
    [Google Scholar]
  144. 144. 
    Chattopadhyay A, Rose JK. 2011. Complementing defective viruses that express separate paramyxovirus glycoproteins provide a new vaccine vector approach. J. Virol. 85:2004–11
    [Google Scholar]
  145. 145. 
    Lo MK, Bird BH, Chattopadhyay A, Drew CP, Martin BE et al. 2014. Single-dose replication-defective VSV-based Nipah virus vaccines provide protection from lethal challenge in Syrian hamsters. Antivir. Res. 101:26–29
    [Google Scholar]
  146. 146. 
    Mire CE, Versteeg KM, Cross RW, Agans KN, Fenton KA et al. 2013. Single injection recombinant vesicular stomatitis virus vaccines protect ferrets against lethal Nipah virus disease. Virol. J. 10:353
    [Google Scholar]
  147. 147. 
    Mire CE, Geisbert JB, Agans KN, Versteeg KM, Deer DJ et al. 2019. Use of single-injection recombinant vesicular stomatitis virus vaccine to protect nonhuman primates against lethal Nipah virus disease. Emerg. Infect. Dis. 25:1144–52
    [Google Scholar]
  148. 148. 
    DeBuysscher BL, Scott D, Marzi A, Prescott J, Feldmann H 2014. Single-dose live-attenuated Nipah virus vaccines confer complete protection by eliciting antibodies directed against surface glycoproteins. Vaccine 32:2637–44
    [Google Scholar]
  149. 149. 
    Prescott J, DeBuysscher BL, Feldmann F, Gardner DJ, Haddock E et al. 2015. Single-dose live-attenuated vesicular stomatitis virus-based vaccine protects African green monkeys from Nipah virus disease. Vaccine 33:2823–29
    [Google Scholar]
  150. 150. 
    Kurup D, Wirblich C, Feldmann H, Marzi A, Schnell MJ 2015. Rhabdovirus-based vaccine platforms against henipaviruses. J. Virol. 89:144–54
    [Google Scholar]
  151. 151. 
    Ploquin A, Szecsi J, Mathieu C, Guillaume V, Barateau V et al. 2013. Protection against henipavirus infection by use of recombinant adeno-associated virus–vector vaccines. J. Infect. Dis. 207:469–78
    [Google Scholar]
  152. 152. 
    Ewer K, Sebastian S, Spencer AJ, Gilbert S, Hill AVS, Lambe T 2017. Chimpanzee adenoviral vectors as vaccines for outbreak pathogens. Hum. Vaccines Immunother. 13:3020–32
    [Google Scholar]
  153. 153. 
    van Doremalen N, Lambe T, Sebastian S, Bushmaker T, Fischer R et al. 2019. A single-dose ChAdOx1-vectored vaccine provides complete protection against Nipah Bangladesh and Malaysia in Syrian golden hamsters. PLOS Negl. Trop. Dis. 13:e0007462
    [Google Scholar]
  154. 154. 
    Yoneda M, Georges-Courbot MC, Ikeda F, Ishii M, Nagata N et al. 2013. Recombinant measles virus vaccine expressing the Nipah virus glycoprotein protects against lethal Nipah virus challenge. PLOS ONE 8:e58414
    [Google Scholar]
  155. 155. 
    Keshwara R, Shiels T, Postnikova E, Kurup D, Wirblich C et al. 2019. Rabies-based vaccine induces potent immune responses against Nipah virus. NPJ Vaccines 4:15
    [Google Scholar]
  156. 156. 
    Shuai L, Ge J, Wen Z, Wang J, Wang X, Bu Z 2020. Immune responses in mice and pigs after oral vaccination with rabies virus vectored Nipah disease vaccines. Vet. Microbiol. 241:108549
    [Google Scholar]
  157. 157. 
    Ciancanelli MJ, Basler CF. 2006. Mutation of YMYL in the Nipah virus matrix protein abrogates budding and alters subcellular localization. J. Virol. 80:12070–78
    [Google Scholar]
  158. 158. 
    Patch JR, Crameri G, Wang LF, Eaton BT, Broder CC 2007. Quantitative analysis of Nipah virus proteins released as virus-like particles reveals central role for the matrix protein. Virol. J. 4:1
    [Google Scholar]
  159. 159. 
    Walpita P, Barr J, Sherman M, Basler CF, Wang L 2011. Vaccine potential of Nipah virus-like particles. PLOS ONE 6:e18437
    [Google Scholar]
  160. 160. 
    Walpita P, Cong Y, Jahrling PB, Rojas O, Postnikova E et al. 2017. A VLP-based vaccine provides complete protection against Nipah virus challenge following multiple-dose or single-dose vaccination schedules in a hamster model. NPJ Vaccines 2:21
    [Google Scholar]
  161. 161. 
    Bossart KN, Crameri G, Dimitrov AS, Mungall BA, Feng YR et al. 2005. Receptor binding, fusion inhibition, and induction of cross-reactive neutralizing antibodies by a soluble G glycoprotein of Hendra virus. J. Virol. 79:6690–702
    [Google Scholar]
  162. 162. 
    McEachern JA, Bingham J, Crameri G, Green DJ, Hancock TJ et al. 2008. A recombinant subunit vaccine formulation protects against lethal Nipah virus challenge in cats. Vaccine 26:3842–52
    [Google Scholar]
  163. 163. 
    Pallister J, Middleton D, Wang LF, Klein R, Haining J et al. 2011. A recombinant Hendra virus G glycoprotein-based subunit vaccine protects ferrets from lethal Hendra virus challenge. Vaccine 29:5623–30
    [Google Scholar]
  164. 164. 
    Pallister JA, Klein R, Arkinstall R, Haining J, Long F et al. 2013. Vaccination of ferrets with a recombinant G glycoprotein subunit vaccine provides protection against Nipah virus disease for over 12 months. Virol. J. 10:237
    [Google Scholar]
  165. 165. 
    Bossart KN, Rockx B, Feldmann F, Brining D, Scott D et al. 2012. A Hendra virus G glycoprotein subunit vaccine protects African green monkeys from Nipah virus challenge. Sci. Transl. Med. 4:146ra07
    [Google Scholar]
  166. 166. 
    Mire CE, Geisbert JB, Agans KN, Feng YR, Fenton KA et al. 2014. A recombinant Hendra virus G glycoprotein subunit vaccine protects nonhuman primates against Hendra virus challenge. J. Virol. 88:4624–31
    [Google Scholar]
  167. 167. 
    Middleton D, Pallister J, Klein R, Feng YR, Haining J et al. 2014. Hendra virus vaccine, a One Health approach to protecting horse, human, and environmental health. Emerg. Infect. Dis. 20:372–79
    [Google Scholar]
  168. 168. 
    Pickering BS, Hardham JM, Smith G, Weingartl ET, Dominowski PJ et al. 2016. Protection against henipaviruses in swine requires both, cell-mediated and humoral immune response. Vaccine 34:4777–86
    [Google Scholar]
  169. 169. 
    Lo MK, Spengler JR, Welch SR, Harmon JR, Coleman-McCray JD et al. 2019. Evaluation of a single-dose nucleoside-modified messenger RNA vaccine encoding Hendra virus-soluble glycoprotein against lethal Nipah virus challenge in Syrian hamsters. J. Infect. Dis. 2019.jiz553
    [Google Scholar]
  170. 170. 
    Gouglas D, Christodoulou M, Plotkin SA, Hatchett R 2019. CEPI: driving progress towards epidemic preparedness and response. Epidemiol. Rev. 41:28–33
    [Google Scholar]
  171. 171. 
    Clayton BA. 2017. Nipah virus: transmission of a zoonotic paramyxovirus. Curr. Opin. Virol. 22:97–104
    [Google Scholar]
  172. 172. 
    Colgrave ML, Snelling HJ, Shiell BJ, Feng YR, Chan YP et al. 2011. Site occupancy and glycan compositional analysis of two soluble recombinant forms of the attachment glycoprotein of Hendra virus. Glycobiology 22:572–84
    [Google Scholar]
  173. 173. 
    Kelley LA, Sternberg MJ. 2009. Protein structure prediction on the Web: a case study using the Phyre server. Nat. Protoc. 4:363–71
    [Google Scholar]
/content/journals/10.1146/annurev-virology-021920-113833
Loading
/content/journals/10.1146/annurev-virology-021920-113833
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error