1932

Abstract

Human immunodeficiency virus (HIV) is one of the most studied of all human pathogens. One strain—HIV-1 group M—is responsible for a global pandemic that has infected >60 million people and killed >20 million. Understanding the stages of HIV infection has led to highly effective therapeutics in the form of antiviral drugs that target the viral enzymes reverse transcriptase, integrase, and protease as well as biotechnological developments in the form of retroviral and lentiviral vectors for the transduction of cells in tissue culture and, potentially, gene therapy. However, despite considerable research focus in this area, there is much we still do not understand about the HIV replicative cycle, particularly the first steps that are crucial to establishing a productive infection. One especially enigmatic player has been the HIV capsid. In this review, we discuss three aspects of the HIV capsid: its function as a structural shell, its role in mediating host interactions, and its vulnerability to antiviral activity.

Keyword(s): capsidHIVrestrictionTRIM5
Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-092917-043430
2018-09-29
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/virology/5/1/annurev-virology-092917-043430.html?itemId=/content/journals/10.1146/annurev-virology-092917-043430&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  von Schwedler UK, Stray KM, Garrus JE, Sundquist WI 2003. Functional surfaces of the human immunodeficiency virus type 1 capsid protein. J. Virol. 77:5439–50
    [Google Scholar]
  2. 2.  Jacks T, Power MD, Masiarz FR, Luciw PA, Barr PJ, Varmus HE 1988. Characterization of ribosomal frameshifting in HIV-1 Gag-Pol expression. Nature 331:280–83
    [Google Scholar]
  3. 3.  Gottlinger HG, Sodroski JG, Haseltine WA 1989. Role of capsid precursor processing and myristoylation in morphogenesis and infectivity of human immunodeficiency virus type 1. PNAS 86:5781–85
    [Google Scholar]
  4. 4.  Freed EO 2015. HIV-1 assembly, release and maturation. Nat. Rev. Microbiol. 13:484–96
    [Google Scholar]
  5. 5.  Briggs JA, Simon MN, Gross I, Krausslich HG, Fuller SD et al. 2004. The stoichiometry of Gag protein in HIV-1. Nat. Struct. Mol. Biol. 11:672–75
    [Google Scholar]
  6. 6.  Schur FK, Hagen WJ, Rumlova M, Ruml T, Muller B et al. 2015. Structure of the immature HIV-1 capsid in intact virus particles at 8.8 Å resolution. Nature 517:505–8
    [Google Scholar]
  7. 7.  Wagner JM, Zadrozny KK, Chrustowicz J, Purdy MD, Yeager M et al. 2016. Crystal structure of an HIV assembly and maturation switch. eLife 5:e17063
    [Google Scholar]
  8. 8.  Sundquist WI, Krausslich HG 2012. HIV-1 assembly, budding, and maturation. Cold Spring Harb. Perspect. Med. 2:a006924
    [Google Scholar]
  9. 9.  Mattei S, Schur FK, Briggs JA 2016. Retrovirus maturation—an extraordinary structural transformation. Curr. Opin. Virol. 18:27–35
    [Google Scholar]
  10. 10.  Zhao G, Perilla JR, Yufenyuy EL, Meng X, Chen B et al. 2013. Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics. Nature 497:643–46
    [Google Scholar]
  11. 11.  Mattei S, Glass B, Hagen WJ, Krausslich HG, Briggs JA 2016. The structure and flexibility of conical HIV-1 capsids determined within intact virions. Science 354:1434–37
    [Google Scholar]
  12. 12.  Du S, Betts L, Yang R, Shi H, Concel J et al. 2011. Structure of the HIV-1 full-length capsid protein in a conformationally trapped unassembled state induced by small-molecule binding. J. Mol. Biol. 406:371–86
    [Google Scholar]
  13. 13.  von Schwedler UK, Stemmler TL, Klishko VY, Li S, Albertine KH et al. 1998. Proteolytic refolding of the HIV-1 capsid protein amino-terminus facilitates viral core assembly. EMBO J 17:1555–68
    [Google Scholar]
  14. 14.  Ganser-Pornillos BK, Cheng A, Yeager M 2007. Structure of full-length HIV-1 CA: a model for the mature capsid lattice. Cell 131:70–79
    [Google Scholar]
  15. 15.  Liu C, Perilla JR, Ning J, Lu M, Hou G et al. 2016. Cyclophilin A stabilizes the HIV-1 capsid through a novel non-canonical binding site. Nat. Commun. 7:10714
    [Google Scholar]
  16. 16.  Byeon IJ, Meng X, Jung J, Zhao G, Yang R et al. 2009. Structural convergence between cryo-EM and NMR reveals intersubunit interactions critical for HIV-1 capsid function. Cell 139:780–90
    [Google Scholar]
  17. 17.  Pornillos O, Ganser-Pornillos BK, Banumathi S, Hua Y, Yeager M 2010. Disulfide bond stabilization of the hexameric capsomer of human immunodeficiency virus. J. Mol. Biol. 401:985–95
    [Google Scholar]
  18. 18.  Pornillos O, Ganser-Pornillos BK, Kelly BN, Hua Y, Whitby FG et al. 2009. X-ray structures of the hexameric building block of the HIV capsid. Cell 137:1282–92
    [Google Scholar]
  19. 19.  Gres AT, Kirby KA, KewalRamani VN, Tanner JJ, Pornillos O, Sarafianos SG 2015. X-ray crystal structures of native HIV-1 capsid protein reveal conformational variability. Science 349:99–103
    [Google Scholar]
  20. 20.  Chen B, Tycko R 2011. Simulated self-assembly of the HIV-1 capsid: Protein shape and native contacts are sufficient for two-dimensional lattice formation. Biophys. J. 100:3035–44
    [Google Scholar]
  21. 21.  Pornillos O, Ganser-Pornillos BK, Yeager M 2011. Atomic-level modelling of the HIV capsid. Nature 469:424–27
    [Google Scholar]
  22. 22.  Perilla JR, Schulten K 2017. Physical properties of the HIV-1 capsid from all-atom molecular dynamics simulations. Nat. Commun. 8:15959
    [Google Scholar]
  23. 23.  Rankovic S, Varadarajan J, Ramalho R, Aiken C, Rousso I 2017. Reverse transcription mechanically initiates HIV-1 capsid disassembly. J. Virol. 91:e00289–17
    [Google Scholar]
  24. 24.  Luban J, Bossolt KL, Franke EK, Kalpana GV, Goff SP 1993. Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B. Cell 73:1067–78
    [Google Scholar]
  25. 25.  Nigro P, Pompilio G, Capogrossi MC 2013. Cyclophilin A: a key player for human disease. Cell Death Dis 4:e888
    [Google Scholar]
  26. 26.  Gamble TR, Vajdos FF, Yoo S, Worthylake DK, Houseweart M et al. 1996. Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid. Cell 87:1285–94
    [Google Scholar]
  27. 27.  Bosco DA, Eisenmesser EZ, Pochapsky S, Sundquist WI, Kern D 2002. Catalysis of cis/trans isomerization in native HIV-1 capsid by human cyclophilin A. PNAS 99:5247–52
    [Google Scholar]
  28. 28.  Goldstone DC, Yap MW, Robertson LE, Haire LF, Taylor WR et al. 2010. Structural and functional analysis of prehistoric lentiviruses uncovers an ancient molecular interface. Cell Host Microbe 8:248–59
    [Google Scholar]
  29. 29.  Braaten D, Franke EK, Luban J 1996. Cyclophilin A is required for an early step in the life cycle of human immunodeficiency virus type 1 before the initiation of reverse transcription. J. Virol. 70:3551–60
    [Google Scholar]
  30. 30.  Sokolskaja E, Sayah DM, Luban J 2004. Target cell cyclophilin A modulates human immunodeficiency virus type 1 infectivity. J. Virol. 78:12800–8
    [Google Scholar]
  31. 31.  Rasaiyaah J, Tan CP, Fletcher AJ, Price AJ, Blondeau C et al. 2013. HIV-1 evades innate immune recognition through specific cofactor recruitment. Nature 503:402–5
    [Google Scholar]
  32. 32.  Braaten D, Luban J 2001. Cyclophilin A regulates HIV-1 infectivity, as demonstrated by gene targeting in human T cells. EMBO J 20:1300–9
    [Google Scholar]
  33. 33.  Manel N, Hogstad B, Wang Y, Levy DE, Unutmaz D, Littman DR 2010. A cryptic sensor for HIV-1 activates antiviral innate immunity in dendritic cells. Nature 467:214–17
    [Google Scholar]
  34. 34.  Franke EK, Yuan HE, Luban J 1994. Specific incorporation of cyclophilin A into HIV-1 virions. Nature 372:359–62
    [Google Scholar]
  35. 35.  Price AJ, Marzetta F, Lammers M, Ylinen LM, Schaller T et al. 2009. Active site remodeling switches HIV specificity of antiretroviral TRIMCyp. Nat. Struct. Mol. Biol. 16:1036–42
    [Google Scholar]
  36. 36.  Mamede JI, Damond F, Bernardo A, Matheron S, Descamps D et al. 2017. Cyclophilins and nucleoporins are required for infection mediated by capsids from circulating HIV-2 primary isolates. Sci. Rep. 7:45214
    [Google Scholar]
  37. 37.  Wu J, Matunis MJ, Kraemer D, Blobel G, Coutavas E 1995. Nup358, a cytoplasmically exposed nucleoporin with peptide repeats, Ran-GTP binding sites, zinc fingers, a cyclophilin A homologous domain, and a leucine-rich region. J. Biol. Chem. 270:14209–13
    [Google Scholar]
  38. 38.  Brass AL, Dykxhoorn DM, Benita Y, Yan N, Engelman A et al. 2008. Identification of host proteins required for HIV infection through a functional genomic screen. Science 319:921–26
    [Google Scholar]
  39. 39.  Konig R, Zhou Y, Elleder D, Diamond TL, Bonamy GM et al. 2008. Global analysis of host-pathogen interactions that regulate early stage HIV-1 replication. Cell 135:49–60
    [Google Scholar]
  40. 40.  Bichel K, Price AJ, Schaller T, Towers GJ, Freund SM, James LC 2013. HIV-1 capsid undergoes coupled binding and isomerization by the nuclear pore protein NUP358. Retrovirology 10:81
    [Google Scholar]
  41. 41.  Matreyek KA, Engelman A 2011. The requirement for nucleoporin NUP153 during human immunodeficiency virus type 1 infection is determined by the viral capsid. J. Virol. 85:7818–27
    [Google Scholar]
  42. 42.  Strambio-De-Castillia C, Niepel M, Rout MP 2010. The nuclear pore complex: bridging nuclear transport and gene regulation. Nat. Rev. Mol. Cell Biol. 11:490–501
    [Google Scholar]
  43. 43.  Zwerger M, Eibauer M, Medalia O 2016. Insights into the gate of the nuclear pore complex. Nucleus 7:1–7
    [Google Scholar]
  44. 44.  Matreyek KA, Yucel SS, Li X, Engelman A 2013. Nucleoporin NUP153 phenylalanine-glycine motifs engage a common binding pocket within the HIV-1 capsid protein to mediate lentiviral infectivity. PLOS Pathog 9:e1003693
    [Google Scholar]
  45. 45.  Price AJ, Jacques DA, McEwan WA, Fletcher AJ, Essig S et al. 2014. Host cofactors and pharmacologic ligands share an essential interface in HIV-1 capsid that is lost upon disassembly. PLOS Pathog 10:e1004459
    [Google Scholar]
  46. 46.  Lee K, Ambrose Z, Martin TD, Oztop I, Mulky A et al. 2010. Flexible use of nuclear import pathways by HIV-1. Cell Host Microbe 7:221–33
    [Google Scholar]
  47. 47.  Hori T, Takeuchi H, Saito H, Sakuma R, Inagaki Y, Yamaoka S 2013. A carboxy-terminally truncated human CPSF6 lacking residues encoded by exon 6 inhibits HIV-1 cDNA synthesis and promotes capsid disassembly. J. Virol. 87:7726–36
    [Google Scholar]
  48. 48.  Price AJ, Fletcher AJ, Schaller T, Elliott T, Lee K et al. 2012. CPSF6 defines a conserved capsid interface that modulates HIV-1 replication. PLOS Pathog 8:e1002896
    [Google Scholar]
  49. 49.  Schaller T, Ocwieja KE, Rasaiyaah J, Price AJ, Brady TL et al. 2011. HIV-1 capsid-cyclophilin interactions determine nuclear import pathway, integration targeting and replication efficiency. PLOS Pathog 7:e1002439
    [Google Scholar]
  50. 50.  Jacques DA, McEwan WA, Hilditch L, Price AJ, Towers GJ, James LC 2016. HIV-1 uses dynamic capsid pores to import nucleotides and fuel encapsidated DNA synthesis. Nature 536:349–53
    [Google Scholar]
  51. 51.  Kane M, Yadav SS, Bitzegeio J, Kutluay SB, Zang T et al. 2013. MX2 is an interferon-induced inhibitor of HIV-1 infection. Nature 502:563–66
    [Google Scholar]
  52. 52.  Liu Z, Pan Q, Ding S, Qian J, Xu F et al. 2013. The interferon-inducible MxB protein inhibits HIV-1 infection. Cell Host Microbe 14:398–410
    [Google Scholar]
  53. 53.  Goujon C, Moncorge O, Bauby H, Doyle T, Ward CC et al. 2013. Human MX2 is an interferon-induced post-entry inhibitor of HIV-1 infection. Nature 502:559–62
    [Google Scholar]
  54. 54.  Fricke T, White TE, Schulte B, de Souza Aranha Vieira DA, Dharan A et al. 2014. MxB binds to the HIV-1 core and prevents the uncoating process of HIV-1. Retrovirology 11:68
    [Google Scholar]
  55. 55.  Dicks MD, Goujon C, Pollpeter D, Betancor G, Apolonia L et al. 2015. Oligomerization requirements for MX2-mediated suppression of HIV-1 infection. J. Virol. 90:22–32
    [Google Scholar]
  56. 56.  Himathongkham S, Luciw PA 1996. Restriction of HIV-1 (subtype B) replication at the entry step in rhesus macaque cells. Virology 219:485–88
    [Google Scholar]
  57. 57.  Towers G, Bock M, Martin S, Takeuchi Y, Stoye JP, Danos O 2000. A conserved mechanism of retrovirus restriction in mammals. PNAS 97:12295–99
    [Google Scholar]
  58. 58.  Hatziioannou T, Cowan S, Goff SP, Bieniasz PD, Towers GJ 2003. Restriction of multiple divergent retroviruses by Lv1 and Ref1. EMBO J 22:385–94
    [Google Scholar]
  59. 59.  Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J 2004. The cytoplasmic body component TRIM5α restricts HIV-1 infection in Old World monkeys. Nature 427:848–53
    [Google Scholar]
  60. 60.  Wu X, Anderson JL, Campbell EM, Joseph AM, Hope TJ 2006. Proteasome inhibitors uncouple rhesus TRIM5α restriction of HIV-1 reverse transcription and infection. PNAS 103:7465–70
    [Google Scholar]
  61. 61.  Stremlau M, Perron M, Lee M, Li Y, Song B et al. 2006. Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5α restriction factor. PNAS 103:5514–19
    [Google Scholar]
  62. 62.  Kutluay SB, Perez-Caballero D, Bieniasz PD 2013. Fates of retroviral core components during unrestricted and TRIM5-restricted infection. PLOS Pathog 9:e1003214
    [Google Scholar]
  63. 63.  Diaz-Griffero F, Li X, Javanbakht H, Song B, Welikala S et al. 2006. Rapid turnover and polyubiquitylation of the retroviral restriction factor TRIM5. Virology 349:300–15
    [Google Scholar]
  64. 64.  Rold CJ, Aiken C 2008. Proteasomal degradation of TRIM5α during retrovirus restriction. PLOS Pathog 4:e1000074
    [Google Scholar]
  65. 65.  Roa A, Hayashi F, Yang Y, Lienlaf M, Zhou J et al. 2012. RING domain mutations uncouple TRIM5α restriction of HIV-1 from inhibition of reverse transcription and acceleration of uncoating. J. Virol. 86:1717–27
    [Google Scholar]
  66. 66.  Javanbakht H, Diaz-Griffero F, Stremlau M, Si Z, Sodroski J 2005. The contribution of RING and B-box 2 domains to retroviral restriction mediated by monkey TRIM5α. J. Biol. Chem. 280:26933–40
    [Google Scholar]
  67. 67.  Yudina Z, Roa A, Johnson R, Biris N, de Souza Aranha Vieira DA et al. 2015. RING dimerization links higher-order assembly of TRIM5α to synthesis of K63-linked polyubiquitin. Cell Rep 12:788–97
    [Google Scholar]
  68. 68.  Goldstone DC, Walker PA, Calder LJ, Coombs PJ, Kirkpatrick J et al. 2014. Structural studies of postentry restriction factors reveal antiparallel dimers that enable avid binding to the HIV-1 capsid lattice. PNAS 111:9609–14
    [Google Scholar]
  69. 69.  Reymond A, Meroni G, Fantozzi A, Merla G, Cairo S et al. 2001. The tripartite motif family identifies cell compartments. EMBO J 20:2140–51
    [Google Scholar]
  70. 70.  Campbell EM, Dodding MP, Yap MW, Wu X, Gallois-Montbrun S et al. 2007. TRIM5α cytoplasmic bodies are highly dynamic structures. Mol. Biol. Cell 18:2102–11
    [Google Scholar]
  71. 71.  Campbell EM, Perez O, Anderson JL, Hope TJ 2008. Visualization of a proteasome-independent intermediate during restriction of HIV-1 by rhesus TRIM5α. J. Cell Biol. 180:549–61
    [Google Scholar]
  72. 72.  Li X, Sodroski J 2008. The TRIM5α B-box 2 domain promotes cooperative binding to the retroviral capsid by mediating higher-order self-association. J. Virol. 82:11495–502
    [Google Scholar]
  73. 73.  Diaz-Griffero F, Kar A, Perron M, Xiang SH, Javanbakht H et al. 2007. Modulation of retroviral restriction and proteasome inhibitor-resistant turnover by changes in the TRIM5α B-box 2 domain. J. Virol. 81:10362–78
    [Google Scholar]
  74. 74.  Stremlau M, Perron M, Welikala S, Sodroski J 2005. Species-specific variation in the B30.2(SPRY) domain of TRIM5α determines the potency of human immunodeficiency virus restriction. J. Virol. 79:3139–45
    [Google Scholar]
  75. 75.  Ganser-Pornillos BK, Chandrasekaran V, Pornillos O, Sodroski JG, Sundquist WI, Yeager M 2011. Hexagonal assembly of a restricting TRIM5α protein. PNAS 108:534–39
    [Google Scholar]
  76. 76.  Li YL, Chandrasekaran V, Carter SD, Woodward CL, Christensen DE et al. 2016. Primate TRIM5 proteins form hexagonal nets on HIV-1 capsids. eLife 5:e16269
    [Google Scholar]
  77. 77.  Wagner JM, Roganowicz MD, Skorupka K, Alam SL, Christensen D et al. 2016. Mechanism of B-box 2 domain-mediated higher-order assembly of the retroviral restriction factor TRIM5α. eLife 5:e16309
    [Google Scholar]
  78. 78.  Pertel T, Hausmann S, Morger D, Zuger S, Guerra J et al. 2011. TRIM5 is an innate immune sensor for the retrovirus capsid lattice. Nature 472:361–65
    [Google Scholar]
  79. 79.  McEwan WA, Tam JC, Watkinson RE, Bidgood SR, Mallery DL, James LC 2013. Intracellular antibody-bound pathogens stimulate immune signaling via the Fc-receptor TRIM21. Nat. Immunol. 14:327–36
    [Google Scholar]
  80. 80.  Galao RP, Le Tortorec A, Pickering S, Kueck T, Neil SJ 2012. Innate sensing of HIV-1 assembly by Tetherin induces NFκB-dependent proinflammatory responses. Cell Host Microbe 12:633–44
    [Google Scholar]
  81. 81.  Fletcher AJ, Christensen DE, Nelson C, Tan CP, Schaller T et al. 2015. TRIM5α requires Ube2W to anchor Lys63-linked ubiquitin chains and restrict reverse transcription. EMBO J 34:2078–95
    [Google Scholar]
  82. 82.  Schwartz O, Marechal V, Friguet B, Arenzana-Seisdedos F, Heard JM 1998. Antiviral activity of the proteasome on incoming human immunodeficiency virus type 1. J. Virol. 72:3845–50
    [Google Scholar]
  83. 83.  Hatziioannou T, Perez-Caballero D, Yang A, Cowan S, Bieniasz PD 2004. Retrovirus resistance factors Ref1 and Lv1 are species-specific variants of TRIM5α. PNAS 101:10774–79
    [Google Scholar]
  84. 84.  Sawyer SL, Wu LI, Emerman M, Malik HS 2005. Positive selection of primate TRIM5α identifies a critical species-specific retroviral restriction domain. PNAS 102:2832–37
    [Google Scholar]
  85. 85.  Perron MJ, Stremlau M, Song B, Ulm W, Mulligan RC, Sodroski J 2004. TRIM5α mediates the postentry block to N-tropic murine leukemia viruses in human cells. PNAS 101:11827–32
    [Google Scholar]
  86. 86.  Perron MJ, Stremlau M, Lee M, Javanbakht H, Song B, Sodroski J 2007. The human TRIM5α restriction factor mediates accelerated uncoating of the N-tropic murine leukemia virus capsid. J. Virol. 81:2138–48
    [Google Scholar]
  87. 87.  Yap MW, Nisole S, Stoye JP 2005. A single amino acid change in the SPRY domain of human TRIM5α leads to HIV-1 restriction. Curr. Biol. 15:73–78
    [Google Scholar]
  88. 88.  James LC, Keeble AH, Khan Z, Rhodes DA, Trowsdale J 2007. Structural basis for PRYSPRY-mediated tripartite motif (TRIM) protein function. PNAS 104:6200–5
    [Google Scholar]
  89. 89.  James LC, Roversi P, Tawfik DS 2003. Antibody multispecificity mediated by conformational diversity. Science 299:1362–67
    [Google Scholar]
  90. 90.  Wu F, Kirmaier A, Goeken R, Ourmanov I, Hall L et al. 2013. TRIM5 alpha drives SIVsmm evolution in rhesus macaques. PLOS Pathog 9:e1003577
    [Google Scholar]
  91. 91.  Sawyer SL, Emerman M, Malik HS 2007. Discordant evolution of the adjacent antiretroviral genes TRIM22 and TRIM5 in mammals. PLOS Pathog 3:e197
    [Google Scholar]
  92. 92.  Wilson SJ, Webb BL, Ylinen LM, Verschoor E, Heeney JL, Towers GJ 2008. Independent evolution of an antiviral TRIMCyp in rhesus macaques. PNAS 105:3557–62
    [Google Scholar]
  93. 93.  Sayah DM, Sokolskaja E, Berthoux L, Luban J 2004. Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1. Nature 430:569–73
    [Google Scholar]
  94. 94.  Caines ME, Bichel K, Price AJ, McEwan WA, Towers GJ et al. 2012. Diverse HIV viruses are targeted by a conformationally dynamic antiviral. Nat. Struct. Mol. Biol. 19:411–16
    [Google Scholar]
  95. 95.  Ylinen LM, Price AJ, Rasaiyaah J, Hue S, Rose NJ et al. 2010. Conformational adaptation of Asian macaque TRIMCyp directs lineage specific antiviral activity. PLOS Pathog 6:e1001062
    [Google Scholar]
/content/journals/10.1146/annurev-virology-092917-043430
Loading
/content/journals/10.1146/annurev-virology-092917-043430
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error