1932

Abstract

Dengue virus (DENV) is the most prevalent medically important mosquito-borne virus in the world. Upon DENV infection of a host cell, DENV nonstructural protein 1 (NS1) can be found intracellularly as a monomer, associated with the cell surface as a dimer, and secreted as a hexamer into the bloodstream. NS1 plays a variety of roles in the viral life cycle, particularly in RNA replication and immune evasion of the complement pathway. Over the past several years, key roles for NS1 in the pathogenesis of severe dengue disease have emerged, including direct action of the protein on the vascular endothelium and triggering release of vasoactive cytokines from immune cells, both of which result in endothelial hyperpermeability and vascular leak. Importantly, the adaptive immune response generates a robust response against NS1, and its potential contribution to dengue vaccines is also discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-101416-041848
2018-09-29
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/virology/5/1/annurev-virology-101416-041848.html?itemId=/content/journals/10.1146/annurev-virology-101416-041848&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW et al. 2013. The global distribution and burden of dengue. Nature 496:504–7
    [Google Scholar]
  2. 2.  Gould EA, Solomon T 2008. Pathogenic flaviviruses. Lancet 371:500–9
    [Google Scholar]
  3. 3.  Shepard DS, Undurraga EA, Halasa YA, Stanaway JD 2016. The global economic burden of dengue: a systematic analysis. Lancet Infect. Dis. 16:935–41
    [Google Scholar]
  4. 4. World Health Organ. 2012. Global strategy for dengue prevention and control, 2012–2020 Rep. World Heath Organ. Geneva:
  5. 5.  Selck FW, Adalja AA, Boddie CR 2014. An estimate of the global health care and lost productivity costs of dengue. Vector Borne Zoonotic Dis 14:824–26
    [Google Scholar]
  6. 6.  Pierson TS, Diamond MS 2013. Flaviviruses. Fields Virology DM Knipe, PM Howley 747–94 Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins. , 6th ed..
    [Google Scholar]
  7. 7.  Durbin AP, Vargas MJ, Wanionek K, Hammond SN, Gordon A et al. 2008. Phenotyping of peripheral blood mononuclear cells during acute dengue illness demonstrates infection and increased activation of monocytes in severe cases compared to classic dengue fever. Virology 376:429–35
    [Google Scholar]
  8. 8.  Kyle JL, Beatty PR, Harris E 2007. Dengue virus infects macrophages and dendritic cells in a mouse model of infection. J. Infect. Dis. 195:1808–17
    [Google Scholar]
  9. 9.  Aye KS, Charngkaew K, Win N, Wai KZ, Moe K et al. 2014. Pathologic highlights of dengue hemorrhagic fever in 13 autopsy cases from Myanmar. Hum. Pathol. 45:1221–33
    [Google Scholar]
  10. 10.  Chambers TJ, Hahn CS, Galler R, Rice CM 1990. Flavivirus genome organization, expression, and replication. Annu. Rev. Microbiol. 44:649–88
    [Google Scholar]
  11. 11. World Health Organ. 1997. Dengue haemorrhagic fever: diagnosis, treatment, prevention, and control Rep. World Health Organ. Geneva:
  12. 12. World Health Organ., Spec. Progr. Res. Train. Trop. Dis. 2009. Dengue Guidelines for Diagnosis, Treatment, Prevention, and Control Geneva: World Health Organ.
  13. 13.  Sangkawibha N, Rojanasuphot S, Ahandrik S, Viriyapongse S, Jatanasen S et al. 1984. Risk factors in dengue shock syndrome: a prospective epidemiologic study in Rayong, Thailand. I. The 1980 outbreak. Am. J. Epidemiol. 120:653–69
    [Google Scholar]
  14. 14.  Guzman MG, Kouri G, Valdes L, Bravo J, Vazquez S, Halstead SB 2002. Enhanced severity of secondary dengue-2 infections: death rates in 1981 and 1997 Cuban outbreaks. Rev. Panam Salud Publica 11:223–27
    [Google Scholar]
  15. 15.  Halstead SB, O'Rourke EJ 1977. Dengue viruses and mononuclear phagocytes. I. Infection enhancement by non-neutralizing antibody. J. Exp. Med. 146:201–17
    [Google Scholar]
  16. 16.  Kliks SC, Nisalak A, Brandt WE, Wahl L, Burke DS 1989. Antibody-dependent enhancement of dengue virus growth in human monocytes as a risk factor for dengue hemorrhagic fever. Am. J. Trop. Med. Hyg. 40:444–51
    [Google Scholar]
  17. 17.  Halstead SB 1979. In vivo enhancement of dengue virus infection in rhesus monkeys by passively transferred antibody. J. Infect. Dis. 140:527–33
    [Google Scholar]
  18. 18.  Balsitis SJ, Williams KL, Lachica R, Flores D, Kyle JL et al. 2010. Lethal antibody enhancement of dengue disease in mice is prevented by Fc modification. PLOS Pathog 6:e1000790
    [Google Scholar]
  19. 19.  Zellweger RM, Prestwood TR, Shresta S 2010. Enhanced infection of liver sinusoidal endothelial cells in a mouse model of antibody-induced severe dengue disease. Cell Host Microbe 7:128–39
    [Google Scholar]
  20. 20.  Katzelnick LC, Gresh L, Halloran ME, Mercado JC, Kuan G et al. 2017. Antibody-dependent enhancement of severe dengue disease in humans. Science 358:929–32
    [Google Scholar]
  21. 21.  Weiskopf D, Sette A 2014. T-cell immunity to infection with dengue virus in humans. Front. Immunol. 5:93
    [Google Scholar]
  22. 22.  Malavige GN, Ogg GS 2013. T cell responses in dengue viral infections. J. Clin. Virol. 58:605–11
    [Google Scholar]
  23. 23.  Hatch S, Endy TP, Thomas S, Mathew A, Potts J et al. 2011. Intracellular cytokine production by dengue virus-specific T cells correlates with subclinical secondary infection. J. Infect. Dis. 203:1282–91
    [Google Scholar]
  24. 24.  Chandele A, Sewatanon J, Gunisetty S, Singla M, Onlamoon N et al. 2016. Characterization of human CD8 T cell responses in dengue virus-infected patients from India. J. Virol. 90:11259–78
    [Google Scholar]
  25. 25.  Kurane I, Rothman AL, Livingston PG, Green S, Gagnon SJ et al. 1994. Immunopathologic mechanisms of dengue hemorrhagic fever and dengue shock syndrome. Arch. Virol. Suppl. 9:59–64
    [Google Scholar]
  26. 26.  Kurane I, Ennis FA 1994. Cytotoxic T lymphocytes in dengue virus infection. Curr. Top. Microbiol. Immunol. 189:93–108
    [Google Scholar]
  27. 27.  Iyngkaran N, Yadav M, Sinniah M 1995. Augmented inflammatory cytokines in primary dengue infection progressing to shock. Singapore Med. J. 36:218–21
    [Google Scholar]
  28. 28.  Pang T, Cardosa MJ, Guzman MG 2007. Of cascades and perfect storms: the immunopathogenesis of dengue haemorrhagic fever-dengue shock syndrome (DHF/DSS). Immunol. Cell Biol. 85:43–45
    [Google Scholar]
  29. 29.  Tuchinda M, Dhorranintra B, Tuchinda P 1977. Histamine content in 24-hour urine in patients with dengue haemorrhagic fever. Southeast Asian J. Trop. Med. Public Health 8:80–83
    [Google Scholar]
  30. 30.  Jeewandara C, Gomes L, Wickramasinghe N, Gutowska-Owsiak D, Waithe D et al. 2015. Platelet activating factor contributes to vascular leak in acute dengue infection. PLOS Negl. Trop. Dis. 9:e0003459
    [Google Scholar]
  31. 31.  St John AL, Rathore AP, Raghavan B, Ng ML, Abraham SN 2013. Contributions of mast cells and vasoactive products, leukotrienes and chymase, to dengue virus-induced vascular leakage. eLife 2:e00481
    [Google Scholar]
  32. 32.  Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, oude Egbrink MG 2007. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch 454:345–59
    [Google Scholar]
  33. 33.  Dejana E 2004. Endothelial cell-cell junctions: happy together. Nat. Rev. Mol. Cell Biol. 5:261–70
    [Google Scholar]
  34. 34.  Yuan SY, Rigor RR 2010. Regulation of Endothelial Barrier Function San Rafael, CA: Morgan & Claypool Life Sci.
  35. 35.  Dudek SM, Garcia JG 2001. Cytoskeletal regulation of pulmonary vascular permeability. J. Appl. Physiol. 1985 91:1487–500
    [Google Scholar]
  36. 36.  Weinbaum S, Tarbell JM, Damiano ER 2007. The structure and function of the endothelial glycocalyx layer. Annu. Rev. Biomed. Eng. 9:121–67
    [Google Scholar]
  37. 37.  Mehta D, Malik AB 2006. Signaling mechanisms regulating endothelial permeability. Physiol. Rev. 86:279–367
    [Google Scholar]
  38. 38.  Tsukita S, Furuse M, Itoh M 2001. Multifunctional strands in tight junctions. Nat. Rev. Mol. Cell Biol. 2:285–93
    [Google Scholar]
  39. 39.  Trung DT, Wills B 2010. Systemic vascular leakage associated with dengue infections – the clinical perspective. Curr. Top. Microbiol. Immunol. 338:57–66
    [Google Scholar]
  40. 40.  Muylaert IR, Chambers TJ, Galler R, Rice CM 1996. Mutagenesis of the N-linked glycosylation sites of the yellow fever virus NS1 protein: effects on virus replication and mouse neurovirulence. Virology 222:159–68
    [Google Scholar]
  41. 41.  Flamand M, Megret F, Mathieu M, Lepault J, Rey FA, Deubel V 1999. Dengue virus type 1 nonstructural glycoprotein NS1 is secreted from mammalian cells as a soluble hexamer in a glycosylation-dependent fashion. J. Virol. 73:6104–10
    [Google Scholar]
  42. 42.  Song H, Qi J, Haywood J, Shi Y, Gao GF 2016. Zika virus NS1 structure reveals diversity of electrostatic surfaces among flaviviruses. Nat. Struct. Mol. Biol. 23:456–58
    [Google Scholar]
  43. 43.  Xu X, Song H, Qi J, Liu Y, Wang H et al. 2016. Contribution of intertwined loop to membrane association revealed by Zika virus full-length NS1 structure. EMBO J 35:2170–78
    [Google Scholar]
  44. 44.  Pryor MJ, Wright PJ 1994. Glycosylation mutants of dengue virus NS1 protein. J. Gen. Virol. 75:Pt. 51183–87
    [Google Scholar]
  45. 45.  Mandl CW, Heinz FX, Stockl E, Kunz C 1989. Genome sequence of tick-borne encephalitis virus (Western subtype) and comparative analysis of nonstructural proteins with other flaviviruses. Virology 173:291–301
    [Google Scholar]
  46. 46.  Mason PW 1989. Maturation of Japanese encephalitis virus glycoproteins produced by infected mammalian and mosquito cells. Virology 169:354–64
    [Google Scholar]
  47. 47.  Somnuke P, Hauhart RE, Atkinson JP, Diamond MS, Avirutnan P 2011. N-linked glycosylation of dengue virus NS1 protein modulates secretion, cell-surface expression, hexamer stability, and interactions with human complement. Virology 413:253–64
    [Google Scholar]
  48. 48.  Gutsche I, Coulibaly F, Voss JE, Salmon J, d'Alayer J et al. 2011. Secreted dengue virus nonstructural protein NS1 is an atypical barrel-shaped high-density lipoprotein. PNAS 108:8003–8
    [Google Scholar]
  49. 49.  Muller DA, Landsberg MJ, Bletchly C, Rothnagel R, Waddington L et al. 2012. Structure of the dengue virus glycoprotein non-structural protein 1 by electron microscopy and single-particle analysis. J. Gen. Virol. 93:771–79
    [Google Scholar]
  50. 50.  Akey DL, Brown WC, Dutta S, Konwerski J, Jose J et al. 2014. Flavivirus NS1 structures reveal surfaces for associations with membranes and the immune system. Science 343:881–85
    [Google Scholar]
  51. 51.  Edeling MA, Diamond MS, Fremont DH 2014. Structural basis of Flavivirus NS1 assembly and antibody recognition. PNAS 111:4285–90
    [Google Scholar]
  52. 52.  Youn S, Li T, McCune BT, Edeling MA, Fremont DH et al. 2012. Evidence for a genetic and physical interaction between nonstructural proteins NS1 and NS4B that modulates replication of West Nile virus. J. Virol. 86:7360–71
    [Google Scholar]
  53. 53.  Welsch S, Miller S, Romero-Brey I, Merz A, Bleck CK et al. 2009. Composition and three-dimensional architecture of the dengue virus replication and assembly sites. Cell Host Microbe 5:365–75
    [Google Scholar]
  54. 54.  Mackenzie JM, Jones MK, Young PR 1996. Immunolocalization of the dengue virus nonstructural glycoprotein NS1 suggests a role in viral RNA replication. Virology 220:232–40
    [Google Scholar]
  55. 55.  Lindenbach BD, Rice CM 1997. trans-Complementation of yellow fever virus NS1 reveals a role in early RNA replication. J. Virol. 71:9608–17
    [Google Scholar]
  56. 56.  Lindenbach BD, Rice CM 1999. Genetic interaction of flavivirus nonstructural proteins NS1 and NS4A as a determinant of replicase function. J. Virol. 73:4611–21
    [Google Scholar]
  57. 57.  Scaturro P, Cortese M, Chatel-Chaix L, Fischl W, Bartenschlager R 2015. Dengue virus non-structural protein 1 modulates infectious particle production via interaction with the structural proteins. PLOS Pathog 11:e1005277
    [Google Scholar]
  58. 58.  Crabtree MB, Kinney RM, Miller BR 2005. Deglycosylation of the NS1 protein of dengue 2 virus, strain 16681: construction and characterization of mutant viruses. Arch. Virol. 150:771–86
    [Google Scholar]
  59. 59.  Hafirassou ML, Meertens L, Umana-Diaz C, Labeau A, Dejarnac O et al. 2017. A global interactome map of the dengue virus NS1 identifies virus restriction and dependency host factors. Cell Rep 21:3900–13
    [Google Scholar]
  60. 60.  Heaton NS, Randall G 2010. Dengue virus-induced autophagy regulates lipid metabolism. Cell Host Microbe 8:422–32
    [Google Scholar]
  61. 61.  Perera R, Riley C, Isaac G, Hopf-Jannasch AS, Moore RJ et al. 2012. Dengue virus infection perturbs lipid homeostasis in infected mosquito cells. PLOS Pathog 8:e1002584
    [Google Scholar]
  62. 62.  Noisakran S, Dechtawewat T, Avirutnan P, Kinoshita T, Siripanyaphinyo U et al. 2008. Association of dengue virus NS1 protein with lipid rafts. J. Gen. Virol. 89:2492–500
    [Google Scholar]
  63. 63.  Fry SR, Meyer M, Semple MG, Simmons CP, Sekaran SD et al. 2011. The diagnostic sensitivity of dengue rapid test assays is significantly enhanced by using a combined antigen and antibody testing approach. PLOS Negl. Trop. Dis. 5:e1199
    [Google Scholar]
  64. 64.  Hunsperger EA, Yoksan S, Buchy P, Nguyen VC, Sekaran SD et al. 2014. Evaluation of commercially available diagnostic tests for the detection of dengue virus NS1 antigen and anti-dengue virus IgM antibody. PLOS Negl. Trop. Dis. 8:e3171
    [Google Scholar]
  65. 65.  Duyen HT, Ngoc TV, Ha do T, Hang VT, Kieu NT et al. 2011. Kinetics of plasma viremia and soluble nonstructural protein 1 concentrations in dengue: differential effects according to serotype and immune status. J. Infect. Dis. 203:1292–300
    [Google Scholar]
  66. 66.  Libraty DH, Young PR, Pickering D, Endy TP, Kalayanarooj S et al. 2002. High circulating levels of the dengue virus nonstructural protein NS1 early in dengue illness correlate with the development of dengue hemorrhagic fever. J. Infect. Dis. 186:1165–68
    [Google Scholar]
  67. 67.  Paranavitane SA, Gomes L, Kamaladasa A, Adikari TN, Wickramasinghe N et al. 2014. Dengue NS1 antigen as a marker of severe clinical disease. BMC Infect. Dis. 14:570
    [Google Scholar]
  68. 68.  Young PR, Hilditch PA, Bletchly C, Halloran W 2000. An antigen capture enzyme-linked immunosorbent assay reveals high levels of the dengue virus protein NS1 in the sera of infected patients. J. Clin. Microbiol. 38:1053–57
    [Google Scholar]
  69. 69.  Alcon S, Talarmin A, Debruyne M, Falconar A, Deubel V, Flamand M 2002. Enzyme-linked immunosorbent assay specific to dengue virus type 1 nonstructural protein NS1 reveals circulation of the antigen in the blood during the acute phase of disease in patients experiencing primary or secondary infections. J. Clin. Microbiol. 40:376–81
    [Google Scholar]
  70. 70.  Xu H, Di B, Pan YX, Qiu LW, Wang YD et al. 2006. Serotype 1-specific monoclonal antibody-based antigen capture immunoassay for detection of circulating nonstructural protein NS1: implications for early diagnosis and serotyping of dengue virus infections. J. Clin. Microbiol. 44:2872–78
    [Google Scholar]
  71. 71.  Dussart P, Labeau B, Lagathu G, Louis P, Nunes MR et al. 2006. Evaluation of an enzyme immunoassay for detection of dengue virus NS1 antigen in human serum. Clin. Vaccine Immunol. 13:1185–89
    [Google Scholar]
  72. 72.  Tricou V, Minh NN, Farrar J, Tran HT, Simmons CP 2011. Kinetics of viremia and NS1 antigenemia are shaped by immune status and virus serotype in adults with dengue. PLOS Negl. Trop. Dis. 5:e1309
    [Google Scholar]
  73. 73.  Metsky HC, Matranga CB, Wohl S, Schaffner SF, Freije CA et al. 2017. Zika virus evolution and spread in the Americas. Nature 546:411–15
    [Google Scholar]
  74. 74.  Paules CI, Fauci AS 2017. Yellow fever—once again on the radar screen in the Americas. N. Engl. J. Med. 376:1397–99
    [Google Scholar]
  75. 75.  Lanciotti RS, Kosoy OL, Laven JJ, Velez JO, Lambert AJ et al. 2008. Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg. Infect. Dis. 14:1232–39
    [Google Scholar]
  76. 76.  Priyamvada L, Quicke KM, Hudson WH, Onlamoon N, Sewatanon J et al. 2016. Human antibody responses after dengue virus infection are highly cross-reactive to Zika virus. PNAS 113:7852–57
    [Google Scholar]
  77. 77.  Balmaseda A, Stettler K, Medialdea-Carrera R, Collado D, Jin X et al. 2017. Antibody-based assay discriminates Zika virus infection from other flaviviruses. PNAS 114:8384–89
    [Google Scholar]
  78. 78.  Bosch I, de Puig H, Hiley M, Carre-Camps M, Perdomo-Celis F et al. 2017. Rapid antigen tests for dengue virus serotypes and Zika virus in patient serum. Sci. Transl. Med. 9:eaan1589
    [Google Scholar]
  79. 79.  Balmaseda A, Zambrana JV, Collado D, Garcia N, Saborio S et al. 2018. Comparison of four serological methods and two RT-PCR assays for diagnosis and surveillance of Zika. J. Clin. Microbiol. 56:e01785–17
    [Google Scholar]
  80. 80. World Health Organ. 2017. Updated questions and answers related to the dengue vaccine Dengvaxia® and its use Q&A, World Health Organ. Geneva: http://www.who.int/immunization/diseases/dengue/q_and_a_dengue_vaccine_dengvaxia_use/en/
  81. 81.  Beatty PR, Puerta-Guardo H, Killingbeck SS, Glasner DR, Hopkins K, Harris E 2015. Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination. Sci. Transl. Med. 7:304ra141
    [Google Scholar]
  82. 82.  Modhiran N, Watterson D, Muller DA, Panetta AK, Sester DP et al. 2015. Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity. Sci. Transl. Med. 7:304ra142
    [Google Scholar]
  83. 83.  Avirutnan P, Zhang L, Punyadee N, Manuyakorn A, Puttikhunt C et al. 2007. Secreted NS1 of dengue virus attaches to the surface of cells via interactions with heparan sulfate and chondroitin sulfate E. PLOS Pathog 3:e183
    [Google Scholar]
  84. 84.  Puerta-Guardo H, Glasner DR, Harris E 2016. Dengue virus NS1 disrupts the endothelial glycocalyx, leading to hyperpermeability. PLOS Pathog 12:e1005738
    [Google Scholar]
  85. 85.  Glasner DR, Ratnasiri K, Puerta-Guardo H, Espinosa DA, Beatty PR, Harris E 2017. Dengue virus NS1 cytokine-independent vascular leak is dependent on endothelial glycocalyx components. PLOS Pathog 13:e1006673
    [Google Scholar]
  86. 86.  Wills BA, Oragui EE, Dung NM, Loan HT, Chau NV et al. 2004. Size and charge characteristics of the protein leak in dengue shock syndrome. J. Infect. Dis. 190:810–18
    [Google Scholar]
  87. 87.  Nguyen-Pouplin J, Pouplin T, Van TP, The TD, Thi DN et al. 2011. Dextran fractional clearance studies in acute dengue infection. PLOS Negl. Trop. Dis. 5:e1282
    [Google Scholar]
  88. 88.  Suwarto S, Sasmono RT, Sinto R, Ibrahim E, Suryamin M 2017. Association of endothelial glycocalyx and tight and adherens junctions with severity of plasma leakage in dengue infection. J. Infect. Dis. 215:992–99
    [Google Scholar]
  89. 89.  Tang TH, Alonso S, Ng LF, Thein TL, Pang VJ et al. 2017. Increased serum hyaluronic acid and heparan sulfate in dengue fever: association with plasma leakage and disease severity. Sci. Rep. 7:46191
    [Google Scholar]
  90. 90.  Sahaphong S, Riengrojpitak S, Bhamarapravati N, Chirachariyavej T 1980. Electron microscopic study of the vascular endothelial cell in dengue hemorrhagic fever. Southeast Asian J. Trop. Med. Public Health 11:194–204
    [Google Scholar]
  91. 91.  Chen HR, Chuang YC, Lin YS, Liu HS, Liu CC et al. 2016. Dengue virus nonstructural protein 1 induces vascular leakage through macrophage migration inhibitory factor and autophagy. PLOS Negl. Trop. Dis. 10:e0004828
    [Google Scholar]
  92. 92.  Chakravarti A, Kumaria R 2006. Circulating levels of tumour necrosis factor-α and interferon-γ in patients with dengue and dengue haemorrhagic fever during an outbreak. Indian J. Med. Res. 123:25–30
    [Google Scholar]
  93. 93.  Braga EL, Moura P, Pinto LM, Ignacio SR, Oliveira MJ et al. 2001. Detection of circulant tumor necrosis factor-α, soluble tumor necrosis factor p75 and interferon-γ in Brazilian patients with dengue fever and dengue hemorrhagic fever. Mem. Inst. Oswaldo Cruz 96:229–32
    [Google Scholar]
  94. 94.  Bozza FA, Cruz OG, Zagne SM, Azeredo EL, Nogueira RM et al. 2008. Multiplex cytokine profile from dengue patients: MIP-1β and IFN-γ as predictive factors for severity. BMC Infect. Dis. 8:86
    [Google Scholar]
  95. 95.  Malavige GN, Gomes L, Alles L, Chang T, Salimi M et al. 2013. Serum IL-10 as a marker of severe dengue infection. BMC Infect. Dis. 13:341
    [Google Scholar]
  96. 96.  Azeredo EL, Zagne SM, Santiago MA, Gouvea AS, Santana AA et al. 2001. Characterisation of lymphocyte response and cytokine patterns in patients with dengue fever. Immunobiology 204:494–507
    [Google Scholar]
  97. 97.  Suharti C, van Gorp EC, Dolmans WM, Setiati TE, Hack CE et al. 2003. Cytokine patterns during dengue shock syndrome. Eur. Cytokine Netw. 14:172–77
    [Google Scholar]
  98. 98.  Chen LC, Lei HY, Liu CC, Shiesh SC, Chen SH et al. 2006. Correlation of serum levels of macrophage migration inhibitory factor with disease severity and clinical outcome in dengue patients. Am. J. Trop. Med. Hyg. 74:142–47
    [Google Scholar]
  99. 99.  Chen J, Ng MM, Chu JJ 2015. Activation of TLR2 and TLR6 by dengue NS1 protein and its implications in the immunopathogenesis of dengue virus infection. PLOS Pathog 11:e1005053
    [Google Scholar]
  100. 100.  Modhiran N, Watterson D, Blumenthal A, Baxter AG, Young PR, Stacey KJ 2017. Dengue virus NS1 protein activates immune cells via TLR4 but not TLR2 or TLR6. Immunol. Cell Biol. 95:491–95
    [Google Scholar]
  101. 101.  Alayli F, Scholle F 2016. Dengue virus NS1 enhances viral replication and pro-inflammatory cytokine production in human dendritic cells. Virology 496:227–36
    [Google Scholar]
  102. 102.  Ferreira RA, de Oliveira SA, Gandini M, Ferreira Lda C, Correa G et al. 2015. Circulating cytokines and chemokines associated with plasma leakage and hepatic dysfunction in Brazilian children with dengue fever. Acta Trop 149:138–47
    [Google Scholar]
  103. 103.  Flores-Mendoza LK, Estrada-Jimenez T, Sedeno-Monge V, Moreno M, Manjarrez MDC et al. 2017. IL-10 and socs3 are predictive biomarkers of dengue hemorrhagic fever. Mediat. Inflamm. 2017:5197592
    [Google Scholar]
  104. 104.  Adikari TN, Gomes L, Wickramasinghe N, Salimi M, Wijesiriwardana N et al. 2016. Dengue NS1 antigen contributes to disease severity by inducing interleukin (IL)-10 by monocytes. Clin. Exp. Immunol. 184:90–100
    [Google Scholar]
  105. 105.  King CA, Anderson R, Marshall JS 2002. Dengue virus selectively induces human mast cell chemokine production. J. Virol. 76:8408–19
    [Google Scholar]
  106. 106.  Syenina A, Jagaraj CJ, Aman SA, Sridharan A, St John AL 2015. Dengue vascular leakage is augmented by mast cell degranulation mediated by immunoglobulin Fcγ receptors. eLife 4:e05291
    [Google Scholar]
  107. 107.  Simon AY, Sutherland MR, Pryzdial EL 2015. Dengue virus binding and replication by platelets. Blood 126:378–85
    [Google Scholar]
  108. 108.  Ojha A, Nandi D, Batra H, Singhal R, Annarapu GK et al. 2017. Platelet activation determines the severity of thrombocytopenia in dengue infection. Sci. Rep. 7:41697
    [Google Scholar]
  109. 109.  Liu J, Liu Y, Nie K, Du S, Qiu J et al. 2016. Flavivirus NS1 protein in infected host sera enhances viral acquisition by mosquitoes. Nat. Microbiol. 1:16087
    [Google Scholar]
  110. 110.  Thiemmeca S, Tamdet C, Punyadee N, Prommool T, Songjaeng A et al. 2016. Secreted NS1 protects dengue virus from mannose-binding lectin-mediated neutralization. J. Immunol. 197:4053–65
    [Google Scholar]
  111. 111.  Schneider BS, Higgs S 2008. The enhancement of arbovirus transmission and disease by mosquito saliva is associated with modulation of the host immune response. Trans. R. Soc. Trop. Med. Hyg. 102:400–8
    [Google Scholar]
  112. 112.  Conway MJ, Watson AM, Colpitts TM, Dragovic SM, Li Z et al. 2014. Mosquito saliva serine protease enhances dissemination of dengue virus into the mammalian host. J. Virol. 88:164–75
    [Google Scholar]
  113. 113.  Schmid MA, Glasner DR, Shah S, Michlmayr D, Kramer LD, Harris E 2016. Mosquito saliva increases endothelial permeability in the skin, immune cell migration, and dengue pathogenesis during antibody-dependent enhancement. PLOS Pathog 12:e1005676
    [Google Scholar]
  114. 114.  Kawai N, Ikematsu H, Iwaki N, Maeda T, Kawashima T et al. 2009. Comparison of the effectiveness of Zanamivir and Oseltamivir against influenza A/H1N1, A/H3N2, and B. Clin. Infect. Dis. 48:996–97
    [Google Scholar]
  115. 115.  Dredge K, Hammond E, Handley P, Gonda TJ, Smith MT et al. 2011. PG545, a dual heparanase and angiogenesis inhibitor, induces potent anti-tumour and anti-metastatic efficacy in preclinical models. Br. J. Cancer 104:635–42
    [Google Scholar]
  116. 116.  Ritchie JP, Ramani VC, Ren Y, Naggi A, Torri G et al. 2011. SST0001, a chemically modified heparin, inhibits myeloma growth and angiogenesis via disruption of the heparanase/syndecan-1 axis. Clin. Cancer Res. 17:1382–93
    [Google Scholar]
  117. 117.  Brandt WE, Chiewslip D, Harris DL, Russell PK 1970. Partial purification and characterization of a dengue virus soluble complement-fixing antigen. J. Immunol. 105:1565–68
    [Google Scholar]
  118. 118.  McCloud TG, Brandt WE, Russell PK 1970. Molecular size and charge relationships of the soluble complement-fixing antigens of dengue viruses. Virology 41:569–72
    [Google Scholar]
  119. 119.  Falkler WA Jr., Diwan AR, Halstead SB 1973. Human antibody to dengue soluble complement-fixing (SCF) antigens. J. Immunol. 111:1804–9
    [Google Scholar]
  120. 120.  Schlesinger JJ, Brandriss MW, Walsh EE 1987. Protection of mice against dengue 2 virus encephalitis by immunization with the dengue 2 virus non-structural glycoprotein NS1. J. Gen. Virol. 68:Pt. 3853–57
    [Google Scholar]
  121. 121.  Wan SW, Chen PW, Chen CY, Lai YC, Chu YT et al. 2017. Therapeutic effects of monoclonal antibody against dengue virus NS1 in a STAT1 knockout mouse model of dengue infection. J. Immunol. 199:2834–44
    [Google Scholar]
  122. 122.  Avirutnan P, Punyadee N, Noisakran S, Komoltri C, Thiemmeca S et al. 2006. Vascular leakage in severe dengue virus infections: a potential role for the nonstructural viral protein NS1 and complement. J. Infect. Dis. 193:1078–88
    [Google Scholar]
  123. 123.  Avirutnan P, Fuchs A, Hauhart RE, Somnuke P, Youn S et al. 2010. Antagonism of the complement component C4 by flavivirus nonstructural protein NS1. J. Exp. Med. 207:793–806
    [Google Scholar]
  124. 124.  Avirutnan P, Hauhart RE, Somnuke P, Blom AM, Diamond MS, Atkinson JP 2011. Binding of flavivirus nonstructural protein NS1 to C4b binding protein modulates complement activation. J. Immunol. 187:424–33
    [Google Scholar]
  125. 125.  Conde JN, da Silva EM, Allonso D, Coelho DR, Andrade ID et al. 2016. Inhibition of the membrane attack complex by dengue virus NS1 through interaction with vitronectin and terminal complement proteins. J. Virol. 90:9570–81
    [Google Scholar]
  126. 126.  Nascimento EJ, Silva AM, Cordeiro MT, Brito CA, Gil LH et al. 2009. Alternative complement pathway deregulation is correlated with dengue severity. PLOS ONE 4:e6782
    [Google Scholar]
  127. 127.  Shu PY, Chen LK, Chang SF, Yueh YY, Chow L et al. 2000. Dengue NS1-specific antibody responses: isotype distribution and serotyping in patients with dengue fever and dengue hemorrhagic fever. J. Med. Virol. 62:224–32
    [Google Scholar]
  128. 128.  Hertz T, Beatty PR, MacMillen Z, Killingbeck SS, Wang C, Harris E 2017. Antibody epitopes identified in critical regions of dengue virus nonstructural 1 protein in mouse vaccination and natural human infections. J. Immunol. 198:4025–35
    [Google Scholar]
  129. 129.  Kuno G, Vorndam AV, Gubler DJ, Gomez I 1990. Study of anti-dengue NS1 antibody by Western blot. J. Med. Virol. 32:102–8
    [Google Scholar]
  130. 130.  Churdboonchart V, Bhamarapravati N, Peampramprecha S, Sirinavin S 1991. Antibodies against dengue viral proteins in primary and secondary dengue hemorrhagic fever. Am. J. Trop. Med. Hyg. 44:481–93
    [Google Scholar]
  131. 131.  Valdes K, Alvarez M, Pupo M, Vazquez S, Rodriguez R, Guzman MG 2000. Human dengue antibodies against structural and nonstructural proteins. Clin. Diagn. Lab Immunol. 7:856–57
    [Google Scholar]
  132. 132.  Lai YC, Chuang YC, Liu CC, Ho TS, Lin YS et al. 2017. Antibodies against modified NS1 wing domain peptide protect against dengue virus infection. Sci. Rep. 7:6975
    [Google Scholar]
  133. 133.  Falgout B, Bray M, Schlesinger JJ, Lai CJ 1990. Immunization of mice with recombinant vaccinia virus expressing authentic dengue virus nonstructural protein NS1 protects against lethal dengue virus encephalitis. J. Virol. 64:4356–63
    [Google Scholar]
  134. 134.  Amorim JH, Diniz MO, Cariri FA, Rodrigues JF, Bizerra RS et al. 2012. Protective immunity to DENV2 after immunization with a recombinant NS1 protein using a genetically detoxified heat-labile toxin as an adjuvant. Vaccine 30:837–45
    [Google Scholar]
  135. 135.  Lu H, Xu XF, Gao N, Fan DY, Wang J, An J 2013. Preliminary evaluation of DNA vaccine candidates encoding dengue-2 prM/E and NS1: their immunity and protective efficacy in mice. Mol. Immunol. 54:109–14
    [Google Scholar]
  136. 136.  Wan SW, Lu YT, Huang CH, Lin CF, Anderson R et al. 2014. Protection against dengue virus infection in mice by administration of antibodies against modified nonstructural protein 1. PLOS ONE 9:e92495
    [Google Scholar]
  137. 137.  Henchal EA, Henchal LS, Schlesinger JJ 1988. Synergistic interactions of anti-NS1 monoclonal antibodies protect passively immunized mice from lethal challenge with dengue 2 virus. J. Gen. Virol. 69:Pt. 82101–7
    [Google Scholar]
  138. 138.  Guy B, Barrere B, Malinowski C, Saville M, Teyssou R, Lang J 2011. From research to phase III: preclinical, industrial and clinical development of the Sanofi Pasteur tetravalent dengue vaccine. Vaccine 29:7229–41
    [Google Scholar]
  139. 139.  Saez-Llorens X, Tricou V, Yu D, Rivera L, Tuboi S et al. 2017. Safety and immunogenicity of one versus two doses of Takeda's tetravalent dengue vaccine in children in Asia and Latin America: interim results from a phase 2, randomised, placebo-controlled study. Lancet Infect. Dis. 17:615–25
    [Google Scholar]
  140. 140.  Weiskopf D, Angelo MA, Bangs DJ, Sidney J, Paul S et al. 2015. The human CD8+ T cell responses induced by a live attenuated tetravalent dengue vaccine are directed against highly conserved epitopes. J. Virol. 89:120–28
    [Google Scholar]
  141. 141.  Angelo MA, Grifoni A, O'Rourke PH, Sidney J, Paul S et al. 2017. Human CD4+ T cell responses to an attenuated tetravalent dengue vaccine parallel those induced by natural infection in magnitude, HLA restriction, and antigen specificity. J. Virol. 91:e02147–16
    [Google Scholar]
  142. 142.  Goncalves AJ, Oliveira ER, Costa SM, Paes MV, Silva JF et al. 2015. Cooperation between CD4+ T cells and humoral immunity is critical for protection against dengue using a DNA vaccine based on the NS1 antigen. PLOS Negl. Trop. Dis. 9:e0004277
    [Google Scholar]
  143. 143.  Halstead SB 2016. Licensed dengue vaccine: public health conundrum and scientific challenge. Am. J. Trop. Med. Hyg. 95:741–45
    [Google Scholar]
  144. 144.  Hadinegoro SR, Arredondo-Garcia JL, Capeding MR, Deseda C, Chotpitayasunondh T et al. 2015. Efficacy and long-term safety of a dengue vaccine in regions of endemic disease. N. Engl. J. Med. 373:1195–206
    [Google Scholar]
  145. 145.  Wan SW, Lin CF, Chen MC, Lei HY, Liu HS et al. 2008. C-terminal region of dengue virus nonstructural protein 1 is involved in endothelial cell cross-reactivity via molecular mimicry. Am J. Infect. Dis. 4:85–91
    [Google Scholar]
  146. 146.  Chu YT, Wan SW, Chang YC, Lee CK, Wu-Hsieh BA et al. 2017. Antibodies against nonstructural protein 1 protect mice from dengue virus-induced mast cell activation. Lab Invest 97:602–14
    [Google Scholar]
  147. 147.  Falconar AK, Young PR, Miles MA 1994. Precise location of sequential dengue virus subcomplex and complex B cell epitopes on the nonstructural-1 glycoprotein. Arch. Virol. 137:315–26
    [Google Scholar]
  148. 148.  Chen Y, Pan Y, Guo Y, Qiu L, Ding X, Che X 2010. Comprehensive mapping of immunodominant and conserved serotype- and group-specific B-cell epitopes of nonstructural protein 1 from dengue virus type 1. Virology 398:290–98
    [Google Scholar]
  149. 149.  Tang YL, Liu IJ, Li PC, Chiu CY, Lin CY et al. 2017. Generation and characterization of antinonstructural protein 1 monoclonal antibodies and development of diagnostics for dengue virus serotype 2. Am. J. Trop. Med. Hyg. 97:1049–61
    [Google Scholar]
  150. 150.  Shu PY, Chen LK, Chang SF, Yueh YY, Chow L et al. 2002. Potential application of nonstructural protein NS1 serotype-specific immunoglobulin G enzyme-linked immunosorbent assay in the seroepidemiologic study of dengue virus infection: correlation of results with those of the plaque reduction neutralization test. J. Clin. Microbiol. 40:1840–44
    [Google Scholar]
  151. 151.  Falconar AK 1997. The dengue virus nonstructural-1 protein (NS1) generates antibodies to common epitopes on human blood clotting, integrin/adhesin proteins and binds to human endothelial cells: potential implications in haemorrhagic fever pathogenesis. Arch. Virol. 142:897–916
    [Google Scholar]
  152. 152.  Lin CF, Wan SW, Chen MC, Lin SC, Cheng CC et al. 2008. Liver injury caused by antibodies against dengue virus nonstructural protein 1 in a murine model. Lab Invest 88:1079–89
    [Google Scholar]
  153. 153.  Lin YS, Yeh TM, Lin CF, Wan SW, Chuang YC et al. 2011. Molecular mimicry between virus and host and its implications for dengue disease pathogenesis. Exp. Biol. Med. 236:515–23
    [Google Scholar]
  154. 154.  Falconar AK 1999. Identification of an epitope on the dengue virus membrane (M) protein defined by cross-protective monoclonal antibodies: design of an improved epitope sequence based on common determinants present in both envelope (E and M) proteins. Arch. Virol. 144:2313–31
    [Google Scholar]
  155. 155.  Lin CF, Chiu SC, Hsiao YL, Wan SW, Lei HY et al. 2005. Expression of cytokine, chemokine, and adhesion molecules during endothelial cell activation induced by antibodies against dengue virus nonstructural protein 1. J. Immunol. 174:395–403
    [Google Scholar]
  156. 156.  Falconar AK, Martinez F 2011. The NS1 glycoprotein can generate dramatic antibody-enhanced dengue viral replication in normal out-bred mice resulting in lethal multi-organ disease. PLOS ONE 6:e21024
    [Google Scholar]
  157. 157.  Sun DS, King CC, Huang HS, Shih YL, Lee CC et al. 2007. Antiplatelet autoantibodies elicited by dengue virus non-structural protein 1 cause thrombocytopenia and mortality in mice. J. Thromb. Haemost. 5:2291–99
    [Google Scholar]
  158. 158.  Lin CF, Lei HY, Shiau AL, Liu HS, Yeh TM et al. 2002. Endothelial cell apoptosis induced by antibodies against dengue virus nonstructural protein 1 via production of nitric oxide. J. Immunol. 169:657–64
    [Google Scholar]
  159. 159.  Lin CF, Lei HY, Shiau AL, Liu CC, Liu HS et al. 2003. Antibodies from dengue patient sera cross-react with endothelial cells and induce damage. J. Med. Virol. 69:82–90
    [Google Scholar]
  160. 160.  Chuang YC, Lei HY, Lin YS, Liu HS, Wu HL, Yeh TM 2011. Dengue virus-induced autoantibodies bind to plasminogen and enhance its activation. J. Immunol. 187:6483–90
    [Google Scholar]
  161. 161.  Chen CL, Lin CF, Wan SW, Wei LS, Chen MC et al. 2013. Anti-dengue virus nonstructural protein 1 antibodies cause NO-mediated endothelial cell apoptosis via ceramide-regulated glycogen synthase kinase-3β and NF-κB activation. J. Immunol. 191:1744–52
    [Google Scholar]
  162. 162.  Chen MC, Lin CF, Lei HY, Lin SC, Liu HS et al. 2009. Deletion of the C-terminal region of dengue virus nonstructural protein 1 (NS1) abolishes anti-NS1-mediated platelet dysfunction and bleeding tendency. J. Immunol. 183:1797–803
    [Google Scholar]
  163. 163.  Cheng HJ, Lei HY, Lin CF, Luo YH, Wan SW et al. 2009. Anti-dengue virus nonstructural protein 1 antibodies recognize protein disulfide isomerase on platelets and inhibit platelet aggregation. Mol. Immunol. 47:398–406
    [Google Scholar]
  164. 164.  Clarke D, Griffin S, Beales L, Gelais CS, Burgess S et al. 2006. Evidence for the formation of a heptameric ion channel complex by the hepatitis C virus p7 protein in vitro. J. Biol. Chem. 281:37057–68
    [Google Scholar]
  165. 165.  Madan V, Bartenschlager R 2015. Structural and functional properties of the hepatitis C virus p7 viroporin. Viruses 7:4461–81
    [Google Scholar]
  166. 166.  Montserret R, Saint N, Vanbelle C, Salvay AG, Simorre JP et al. 2010. NMR structure and ion channel activity of the p7 protein from hepatitis C virus. J. Biol. Chem. 285:31446–61
    [Google Scholar]
  167. 167.  Atoom AM, Taylor NG, Russell RS 2014. The elusive function of the hepatitis C virus p7 protein. Virology 462–63:377–87
    [Google Scholar]
  168. 168.  Luik P, Chew C, Aittoniemi J, Chang J, Wentworth P Jr. et al. 2009. The 3-dimensional structure of a hepatitis C virus p7 ion channel by electron microscopy. PNAS 106:12712–16
    [Google Scholar]
  169. 169.  Jeffers SA, Sanders DA, Sanchez A 2002. Covalent modifications of the Ebola virus glycoprotein. J. Virol. 76:12463–72
    [Google Scholar]
  170. 170.  Volchkov VE 1999. Processing of the Ebola virus glycoprotein. Curr. Top. Microbiol. Immunol. 235:35–47
    [Google Scholar]
  171. 171.  Dolnik O, Volchkova V, Garten W, Carbonnelle C, Becker S et al. 2004. Ectodomain shedding of the glycoprotein GP of Ebola virus. EMBO J 23:2175–84
    [Google Scholar]
  172. 172.  Falzarano D, Krokhin O, Wahl-Jensen V, Seebach J, Wolf K et al. 2006. Structure-function analysis of the soluble glycoprotein, sGP, of Ebola virus. ChemBioChem 7:1605–11
    [Google Scholar]
  173. 173.  Escudero-Perez B, Volchkova VA, Dolnik O, Lawrence P, Volchkov VE 2014. Shed GP of Ebola virus triggers immune activation and increased vascular permeability. PLOS Pathog 10:e1004509
    [Google Scholar]
  174. 174.  Ousingsawat J, Mirza M, Tian Y, Roussa E, Schreiber R et al. 2011. Rotavirus toxin NSP4 induces diarrhea by activation of TMEM16A and inhibition of Na+ absorption. Pflugers Arch 461:579–89
    [Google Scholar]
  175. 175.  Didsbury A, Wang C, Verdon D, Sewell MA, McIntosh JD, Taylor JA 2011. Rotavirus NSP4 is secreted from infected cells as an oligomeric lipoprotein and binds to glycosaminoglycans on the surface of non-infected cells. Virol. J. 8:551
    [Google Scholar]
  176. 176.  Ge Y, Mansell A, Ussher JE, Brooks AE, Manning K et al. 2013. Rotavirus NSP4 triggers secretion of proinflammatory cytokines from macrophages via Toll-like receptor 2. J. Virol. 87:11160–67
    [Google Scholar]
  177. 177.  Huang JH, Wey JJ, Sun YC, Chin C, Chien LJ, Wu YC 1999. Antibody responses to an immunodominant nonstructural 1 synthetic peptide in patients with dengue fever and dengue hemorrhagic fever. J. Med. Virol. 57:1–8
    [Google Scholar]
  178. 178.  Masrinoul P, Diata MO, Pambudi S, Limkittikul K, Ikuta K, Kurosu T 2011. Highly conserved region 141168 of the NS1 protein is a new common epitope region of dengue virus. Jpn. J. Infect. Dis. 64:109–15
    [Google Scholar]
  179. 179.  Jiang L, Zhou JM, Yin Y, Fang DY, Tang YX, Jiang LF 2010. Selection and identification of B-cell epitope on NS1 protein of dengue virus type 2. Virus Res 150:49–55
    [Google Scholar]
  180. 180.  Liu IJ, Chiu CY, Chen YC, Wu HC 2011. Molecular mimicry of human endothelial cell antigen by autoantibodies to nonstructural protein 1 of dengue virus. J. Biol. Chem. 286:9726–36
    [Google Scholar]
  181. 181.  Steidel M, Fragnoud R, Guillotte M, Roesch C, Michel S et al. 2012. Nonstructural protein NS1 immunodominant epitope detected specifically in dengue virus infected material by a SELDI-TOF/MS based assay. J. Med. Virol. 84:490–99
    [Google Scholar]
  182. 182.  Chisenhall DM, Christofferson RC, McCracken MK, Johnson AF, Londono-Renteria B, Mores CN 2014. Infection with dengue-2 virus alters proteins in naturally expectorated saliva of Aedes aegypti mosquitoes. Parasites Vectors 7:252
    [Google Scholar]
/content/journals/10.1146/annurev-virology-101416-041848
Loading
/content/journals/10.1146/annurev-virology-101416-041848
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error