1932

Abstract

In 1970 the independent and simultaneous discovery of reverse transcriptase in retroviruses (then RNA tumor viruses) by David Baltimore and Howard Temin revolutionized molecular biology and laid the foundations for retrovirology and cancer biology. In this historical review we describe the formulation of the controversial provirus hypothesis by Temin, which ultimately was proven by his discovery of reverse transcriptase in Rous sarcoma virus virions. Baltimore arrived at the same discovery through his studies on replication of RNA-containing viruses, starting with poliovirus and then moving to vesicular stomatitis virus, where he discovered a virion RNA polymerase. Subsequent studies of reverse transcriptase led to the elucidation of the mechanism of retrovirus replication, the discovery of oncogenes, the advent of molecular cloning, the search for human cancer viruses, and the discovery and treatment of HIV/AIDS.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-110615-035556
2016-09-29
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/virology/3/1/annurev-virology-110615-035556.html?itemId=/content/journals/10.1146/annurev-virology-110615-035556&mimeType=html&fmt=ahah

Literature Cited

  1. Baltimore D. 1.  1970. RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature 226:1209–11 [Google Scholar]
  2. Temin HM, Mizutani S. 2.  1970. RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature 226:1211–13 [Google Scholar]
  3. Ellerman V, Bang O. 3.  1908. Experimentelle Leukämie bei Hühnern. Zentralbl. Bakteriol. Parasitenkd. Infectionskr. Hyg. Abt. Orig. 46:595–609 [Google Scholar]
  4. Rous P. 4.  1911. A sarcoma of the fowl transmissible by an agent separable from the tumor cells. J. Exp. Med. 13:397–411 [Google Scholar]
  5. Varmus HE. 5.  1990. Nobel lecture. Retroviruses and oncogenes. I.. Biosci. Rep. 10:413–30 [Google Scholar]
  6. Bishop JM. 6.  1990. Nobel lecture. Retroviruses and oncogenes. II.. Biosci. Rep. 10:473–91 [Google Scholar]
  7. Gross L. 7.  1957. Filterable agent causing leukemia following inoculation into newborn mice. Tex. Rep. Biol. Med. 15:603–16 discussion 16–26 [Google Scholar]
  8. Moloney JB. 8.  1966. A virus-induced rhabdomyosarcoma of mice. Natl. Cancer Inst. Monogr. 22:139–42 [Google Scholar]
  9. Bittner JJ. 9.  1936. Some possible effects of nursing on the mammary gland tumor incidence in mice. Science 84:162 [Google Scholar]
  10. Jarrett WF, Martin WB, Crighton GW, Dalton RG, Stewart MF. 10.  1964. Transmission experiments with leukemia (lymphosarcoma). Nature 202:566–67 [Google Scholar]
  11. Fauquet CM, Mayo MA. 11.  2001. The 7th ICTV report. Arch. Virol. 146:189–94 [Google Scholar]
  12. Sharp DG, Beard JW. 12.  1957. Electron micrography of Rous sarcoma virus preparations. Ann. N.Y. Acad. Sci. 68:454–58 [Google Scholar]
  13. Bather R. 13.  1958. Relationship between infectivity and the ribonucleic acid content of partially purified Rous sarcoma virus preparations. Br. J. Cancer 12:256–63 [Google Scholar]
  14. Shope RE, Hurst EW. 14.  1933. Infectious papillomatosis of rabbits: with a note on the histopathology. J. Exp. Med. 58:607–24 [Google Scholar]
  15. Duesberg PH. 15.  1968. Physical properties of Rous sarcoma virus RNA. PNAS 60:1511–18 [Google Scholar]
  16. Billeter MA, Parsons JT, Coffin JM. 16.  1974. The nucleotide sequence complexity of avian tumor virus RNA. PNAS 71:3560–64 [Google Scholar]
  17. Stent G. 17.  2007. Phage and the Origins of Molecular Biology Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press
  18. Crick F. 18.  1970. Central dogma of molecular biology. Nature 227:561–63 [Google Scholar]
  19. Temin HM. 19.  1976. Howard M. Temin—biographical. Les Prix Nobel en 1975 W Odelberg Stockholm: Nobel Found. http://www.nobelprize.org/nobel_prizes/medicine/laureates/1975/temin-bio.html [Google Scholar]
  20. Dulbecco R, Vogt M. 20.  1954. Plaque formation and isolation of pure lines with poliomyelitis viruses. J. Exp. Med. 99:167–82 [Google Scholar]
  21. Dulbecco R. 21.  1964. Transformation of cells in vitro by DNA-containing viruses. JAMA 190:721–26 [Google Scholar]
  22. Groupe V, Dunkel VC, Manaker RA. 22.  1957. Improved pock counting method for the titration of Rous sarcoma virus in embryonated eggs. J. Bacteriol. 74:409–10 [Google Scholar]
  23. Temin HM, Rubin H. 23.  1958. Characteristics of an assay for Rous sarcoma virus and Rous sarcoma cells in tissue culture. Virology 6:669–88 [Google Scholar]
  24. Temin HM. 24.  1960. The control of cellular morphology in embryonic cells infected with Rous sarcoma virus in vitro. Virology 10:182–97 [Google Scholar]
  25. Rubin H. 25.  1970. Replication and persistence of the RNA oncogenic viruses. Oncology 1970: Being the Proceedings of the Tenth International Cancer Congress RL Clark, RW Cumley, JE McCay, MM Copeland 763–68 Chicago: Yearb. Med. Publ.
  26. Temin HM. 26.  1963. The effects of actinomycin D on growth of Rous sarcoma virus in vitro. Virology 20:577–82 [Google Scholar]
  27. Temin HM. 27.  1964. The participation of DNA in Rous sarcoma virus production. Virology 23:486–94 [Google Scholar]
  28. Boeke JD, Stoye JS. 28.  1997. Retrotransposons, endogenous retroviruses, and the evolution of retroelements. Retroviruses JM Coffin, SH Hughes, HE Varmus 343–435 Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press [Google Scholar]
  29. Temin HM. 29.  1969. Control of cell multiplication in uninfected chicken cells and chicken cells converted by avian sarcoma viruses. J. Cell. Physiol. 74:9–16 [Google Scholar]
  30. Svoboda J, Machala O, Deozanek T. 30.  1968. Rescue of Rous sarcoma virus in mixed cultures of virogenic mammalian and chicken cells, treated and untreated with Sendai virus and detected by focus assay. J. Gen. Virol. 2:461–64 [Google Scholar]
  31. Boettiger D, Temin HM. 31.  1970. Light inactivation of focus formation by chicken embryo fibroblasts infected with avian sarcoma virus in the presence of 5-bromodeoxyuridine. Nature 228:622–24 [Google Scholar]
  32. Temin HM. 32.  1970. The DNA provirus of RNA tumor viruses. Oncology 1970: Being the Proceedings of the Tenth International Cancer Congress RL Clark, RW Cumley, JE McCay, MM Copeland 776–80 Chicago: Yearb. Med. Publ.
  33. Kates JR, McAuslan BR. 33.  1967. Poxvirus DNA-dependent RNA polymerase. PNAS 58:134–41 [Google Scholar]
  34. Borsa J, Graham AF. 34.  1968. Reovirus: RNA polymerase activity in purified virions. Biochem. Biophys. Res. Commun. 33:895–901 [Google Scholar]
  35. Shatkin AJ, Sipe JD. 35.  1968. RNA polymerase activity in purified reoviruses. PNAS 61:1462–69 [Google Scholar]
  36. Baltimore D, Huang AS, Stampfer M. 36.  1970. Ribonucleic acid synthesis of vesicular stomatitis virus. II. An RNA polymerase in the virion. PNAS 66:572–76 [Google Scholar]
  37. 37. Cancer: DNA from an RNA template 1970. Nature 226:1003
  38. Watson JD, Crick FH. 38.  1953. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171:737–38 [Google Scholar]
  39. Mizutani S, Boettiger D, Temin HM. 39.  1970. A DNA-dependent DNA polymerase and a DNA endonuclease in virions of Rous sarcoma virus. Nature 228:424–27 [Google Scholar]
  40. Mizutani S, Temin HM, Kodama M, Wells RT. 40.  1971. DNA ligase and exonuclease activities in virions of Rous sarcoma virus. Nat. New Biol. 230:232–35 [Google Scholar]
  41. Après Temin, le déluge. 41.  1970. Nature 227:998
  42. Baltimore D, Eggers HJ, Franklin RM, Tamm I. 42.  1963. Poliovirus-induced RNA polymerase and the effects of virus-specific inhibitors on its production. PNAS 49:843–49 [Google Scholar]
  43. Baltimore D. 43.  1964. In vitro synthesis of viral RNA by the poliovirus RNA polymerase. PNAS 51:450–56 [Google Scholar]
  44. Baltimore D, Becker Y, Darnell JE. 44.  1964. Virus-specific double-stranded RNA in poliovirus-infected cells. Science 143:1034–36 [Google Scholar]
  45. Baltimore D. 45.  1968. Structure of the poliovirus replicative intermediate RNA. J. Mol. Biol. 32:359–68 [Google Scholar]
  46. Jacobson MF, Baltimore D. 46.  1968. Polypeptide cleavages in the formation of poliovirus proteins. PNAS 61:77–84 [Google Scholar]
  47. Schaffer FL, Hackett AJ, Soergel ME. 47.  1968. Vesicular stomatitis virus RNA: complementarity between infected cell RNA and RNAs from infectious and autointerfering viral fractions. Biochem. Biophys. Res. Commun. 31:685–92 [Google Scholar]
  48. Munyon W, Paoletti E, Grace JT Jr. 48.  1967. RNA polymerase activity in purified infectious vaccinia virus. PNAS 58:2280–87 [Google Scholar]
  49. Biswal N, Benyesh-Melnick M. 49.  1969. Complementary nuclear RNAs of murine sarcoma-leukemia virus complex in transformed cells. PNAS 64:1372–79 [Google Scholar]
  50. Baltimore D. 50.  1970. RNA-dependent DNA synthesis by virions of mouse leukemia virus. Cold Spring Harb. Symp. Quant. Biol. 35:843–46 [Google Scholar]
  51. Mizutani S, Temin H. 51.  1970. An RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Cold Spring Harb. Symp. Quant. Biol. 35:847–49 [Google Scholar]
  52. 52. Cancer viruses: more of the same 1970. Nat. New Biol. 227:887–88
  53. Spiegelman S, Burny A, Das MR, Keydar J, Schlom J. 53.  et al. 1970. Characterization of the products of DNA-directed DNA polymerases in oncogenic RNA viruses. Nature 227:563–67 [Google Scholar]
  54. Riman J, Beaudreau GS. 54.  1970. Viral DNA-dependent DNA polymerase and the properties of thymidine labelled material in virions of an oncogenic RNA virus. Nature 228:427–30 [Google Scholar]
  55. Spiegelman S, Burny A, Das MR, Keydar J, Schlom J. 55.  et al. 1970. DNA-directed DNA polymerase activity in oncogenic RNA viruses. Nature 227:1029–31 [Google Scholar]
  56. Spiegelman S, Burny A, Das MR, Keydar J, Schlom J. 56.  et al. 1970. Synthetic DNA-RNA hybrids and RNA-RNA duplexes as templates for the polymerases of the oncogenic RNA viruses. Nature 228:430–32 [Google Scholar]
  57. Baltimore D, Smoler D. 57.  1971. Primer requirement and template specificity of the DNA polymerase of RNA tumor viruses. PNAS 68:1507–11 [Google Scholar]
  58. Verma IM, Meuth NL, Bromfeld E, Manly KF, Baltimore D. 58.  1971. Covalently linked RNA-DNA molecule as initial product of RNA tumour virus DNA polymerase. Nat. New Biol. 233:131–34 [Google Scholar]
  59. Verma IM, Mason WS, Drost SD, Baltimore D. 59.  1974. DNA polymerase activity from two temperature-sensitive mutants of Rous sarcoma virus is thermolabile. Nature 251:27–31 [Google Scholar]
  60. Verma IM, Temple GF, Fan H, Baltimore D. 60.  1972. In vitro synthesis of DNA complementary to rabbit reticulocyte 10S RNA. Nat. New Biol. 235:163–67 [Google Scholar]
  61. 61. Deluge unabated 1970. Nature 228:410
  62. Wade N. 62.  1971. Special Virus Cancer Program: travails of a biological moonshot. Science 174:1306–11 [Google Scholar]
  63. Telesnitsky A, Goff SP. 63.  1997. Reverse transcriptase and the generation of retroviral DNA. Retroviruses JM Coffin, SH Hughes, HE Varmus 121–60 Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press [Google Scholar]
  64. Brown PO. 64.  1997. Integration. Retroviruses JM Coffin, SH Hughes, HE Varmus 161–203 Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press [Google Scholar]
  65. Rabson AB, Graves BJ. 65.  1997. Synthesis and processing of viral RNA. Retroviruses JM Coffin, SH Hughes, HE Varmus 205–61 Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press [Google Scholar]
  66. Kacian DL, Spiegelman S, Bank A, Terada M, Metafora S. 66.  et al. 1972. In vitro synthesis of DNA components of human genes for globins. Nat. New Biol. 235:167–69 [Google Scholar]
  67. Ross J, Aviv H, Scolnick E, Leder P. 67.  1972. In vitro synthesis of DNA complementary to purified rabbit globin mRNA (RNA-dependent DNA polymerase/reticulocyte/hemoglobin/density gradient centrifugation/oligo(dT) primer). PNAS 69:264–68 [Google Scholar]
  68. Edmonds M, Vaughan MH Jr, Nakazato H. 68.  1971. Polyadenylic acid sequences in the heterogeneous nuclear RNA and rapidly-labeled polyribosomal RNA of HeLa cells: possible evidence for a precursor relationship. PNAS 68:1336–40 [Google Scholar]
  69. Ross J, Ikawa Y, Leder P. 69.  1972. Globin messenger-RNA induction during erythroid differentiation of cultured leukemia cells. PNAS 69:3620–23 [Google Scholar]
  70. Berns AJ, Bloemendal H, Kaufman SJ, Verma IM. 70.  1973. Synthesis of DNA complementary to 14S calf lens crystallin messenger RNA by reverse transcriptase. Biochem. Biophys. Res. Commun. 52:1013–19 [Google Scholar]
  71. McDonnell JP, Garapin AC, Levinson WE, Quintrell N, Fanshier L, Bishop JM. 71.  1970. DNA polymerases of Rous sarcoma virus: delineation of two reactions with actinomycin. Nature 228:433–35 [Google Scholar]
  72. Stehelin D, Varmus HE, Bishop JM, Vogt PK. 72.  1976. DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature 260:170–73 [Google Scholar]
  73. Duesberg PH, Vogt PK. 73.  1970. Differences between the ribonucleic acids of transforming and nontransforming avian tumor viruses. PNAS 67:1673–80 [Google Scholar]
  74. Stehelin D, Guntaka RV, Varmus HE, Bishop JM. 74.  1976. Purification of DNA complementary to nucleotide sequences required for neoplastic transformation of fibroblasts by avian sarcoma viruses. J. Mol. Biol. 101:349–65 [Google Scholar]
  75. Rosenberg N, Jolicoeur P. 75.  1997. Retroviral pathogenesis. Retroviruses JM Coffin, SH Hughes, HE Varmus 475–585 Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press [Google Scholar]
  76. Tabin CJ, Bradley SM, Bargmann CI, Weinberg RA, Papageorge AG. 76.  et al. 1982. Mechanism of activation of a human oncogene. Nature 300:143–49 [Google Scholar]
  77. Alitalo K, Schwab M, Lin CC, Varmus HE, Bishop JM. 77.  1983. Homogeneously staining chromosomal regions contain amplified copies of an abundantly expressed cellular oncogene (c-myc) in malignant neuroendocrine cells from a human colon carcinoma. PNAS 80:1707–11 [Google Scholar]
  78. de Klein A, van Kessel AG, Grosveld G, Bartram CR, Hagemeijer A. 78.  et al. 1982. A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukaemia. Nature 300:765–67 [Google Scholar]
  79. Druker BJ, Sawyers CL, Kantarjian H, Resta DJ, Reese SF. 79.  et al. 2001. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N. Engl. J. Med. 344:1038–42 [Google Scholar]
  80. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V. 80.  et al. 2001. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344:783–92 [Google Scholar]
  81. Payne LN, Chubb RC. 81.  1968. Studies on the nature and genetic control of an antigen in normal chick embryos which reacts in the COFAL test. J. Gen. Virol. 3:379–91 [Google Scholar]
  82. Gelb LD, Aaronson SA, Martin MA. 82.  1971. Heterogeneity of murine leukemia virus in vitro DNA; detection of viral DNA in mammalian cells. Science 172:1353–55 [Google Scholar]
  83. Steffen D, Weinberg RA. 83.  1978. The integrated genome of murine leukemia virus. Cell 15:1003–10 [Google Scholar]
  84. Frankel WN, Stoye JP, Taylor BA, Coffin JM. 84.  1990. A linkage map of endogenous murine leukemia proviruses. Genetics 124:221–36 [Google Scholar]
  85. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC. 85.  et al. 2001. Initial sequencing and analysis of the human genome. Nature 409:860–921 [Google Scholar]
  86. Singer MF. 86.  1982. SINEs and LINEs: highly repeated short and long interspersed sequences in mammalian genomes. Cell 28:433–34 [Google Scholar]
  87. Temin HM. 87.  1971. The protovirus hypothesis: speculations on the significance of RNA-directed DNA synthesis for normal development and for carcinogenesis. J. Natl. Cancer Inst. 46:3–7 [Google Scholar]
  88. Lingner J, Hughes TR, Shevchenko A, Mann M, Lundblad V, Cech TR. 88.  1997. Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276:561–67 [Google Scholar]
  89. Feng J, Funk WD, Wang SS, Weinrich SL, Avilion AA. 89.  et al. 1995. The RNA component of human telomerase. Science 269:1236–41 [Google Scholar]
  90. Hartley JW, Rowe WP. 90.  1966. Production of altered cell foci in tissue culture by defective Moloney sarcoma virus particles. PNAS 55:780–86 [Google Scholar]
  91. Boni J, Pyra H, Schupbach J. 91.  1996. Sensitive detection and quantification of particle-associated reverse transcriptase in plasma of HIV-1-infected individuals by the product-enhanced reverse transcriptase (PERT) assay. J. Med. Virol. 49:23–28 [Google Scholar]
  92. Gallo RC, Sarin PS, Allen PT, Newton WA, Priori ES. 92.  et al. 1971. Reverse transcriptase in type C virus particles of human origin. Nat. New Biol. 232:140–42 [Google Scholar]
  93. Schlom J, Spiegelman S. 93.  1971. Simultaneous detection of reverse transcriptase and high molecular weight RNA unique to oncogenic RNA viruses. Science 174:840–43 [Google Scholar]
  94. Schlom J, Spiegelman S, Moore D. 94.  1971. RNA-dependent DNA polymerase activity in virus-like particles isolated from human milk. Nature 231:97–100 [Google Scholar]
  95. Kasiviswanathan R, Copeland WC. 95.  2011. Ribonucleotide discrimination and reverse transcription by the human mitochondrial DNA polymerase. J. Biol. Chem. 286:31490–500 [Google Scholar]
  96. Voisset C, Weiss RA, Griffiths DJ. 96.  2008. Human RNA “rumor” viruses: the search for novel human retroviruses in chronic disease. Microbiol. Mol. Biol. Rev. 72:157–96 [Google Scholar]
  97. Weiss RA. 97.  1982. The search for human RNA tumor viruses. RNA Tumor Viruses RA Weiss, N Teich, HE Varmus, JM Coffin 1205–81 Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press [Google Scholar]
  98. Bishop JM, Varmus HE. 98.  1982. Functions and origins of retroviral transforming genes. RNA Tumor Viruses RA Weiss, N Teich, HE Varmus, JM Coffin 999–1108 Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press [Google Scholar]
  99. Lombardi VC, Ruscetti FW, Das Gupta J, Pfost MA, Hagen KS. 99.  et al. 2009. Detection of an infectious retrovirus, XMRV, in blood cells of patients with chronic fatigue syndrome. Science 326:585–89 [Google Scholar]
  100. Urisman A, Molinaro RJ, Fischer N, Plummer SJ, Casey G. 100.  et al. 2006. Identification of a novel Gammaretrovirus in prostate tumors of patients homozygous for R462Q RNASEL variant. PLOS Pathog 2:e25 [Google Scholar]
  101. Paprotka T, Delviks-Frankenberry KA, Cingoz O, Martinez A, Kung HJ. 101.  et al. 2011. Recombinant origin of the retrovirus XMRV. Science 333:97–101 [Google Scholar]
  102. Hanafusa H, Hanafusa T, Rubin H. 102.  1963. The defectiveness of Rous sarcoma virus. PNAS 49:572–80 [Google Scholar]
  103. Poiesz BJ, Ruscetti FW, Gazdar AF, Bunn PA, Minna JD, Gallo RC. 103.  1980. Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. PNAS 77:7415–19 [Google Scholar]
  104. 104. CDC (Cent. Dis. Control) 1981. Kaposi's sarcoma and Pneumocystis pneumonia among homosexual men—New York City and California. Morb. Mortal. Wkly. Rep. 30:305–8 [Google Scholar]
  105. 105. CDC (Cent. Dis. Control) 1981. Pneumocystis pneumonia—Los Angeles. Morb. Mortal. Wkly. Rep. 30:250–52 [Google Scholar]
  106. Barre-Sinoussi F, Chermann JC, Rey F, Nugeyre MT, Chamaret S. 106.  et al. 1983. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220:868–71 [Google Scholar]
  107. Horwitz JP, Chua J, Noel M. 107.  1964. Nucleosides. V. The monomesylates of 1-(2′-deoxy-β-d-lyxofuranosyl) thymines. J. Org. Chem. 29:2076–79 [Google Scholar]
  108. Furman PA, Fyfe JA St, Clair MH, Weinhold K, Rideout JL. 108.  et al. 1986. Phosphorylation of 3′-azido-3′-deoxythymidine and selective interaction of the 5′-triphosphate with human immunodeficiency virus reverse transcriptase. PNAS 83:8333–37 [Google Scholar]
  109. Fischl MA, Richman DD, Grieco MH, Gottlieb MS, Volberding PA. 109.  et al. 1987. The efficacy of azidothymidine (AZT) in the treatment of patients with AIDS and AIDS-related complex. A double-blind, placebo-controlled trial. N. Engl. J. Med. 317:185–91 [Google Scholar]
  110. Larder BA, Darby G, Richman DD. 110.  1989. HIV with reduced sensitivity to zidovudine (AZT) isolated during prolonged therapy. Science 243:1731–34 [Google Scholar]
  111. Palmer S, Wiegand AP, Maldarelli F, Bazmi H, Mican JM. 111.  et al. 2003. New real-time reverse transcriptase-initiated PCR assay with single-copy sensitivity for human immunodeficiency virus type 1 RNA in plasma. J. Clin. Microbiol. 41:4531–36 [Google Scholar]
  112. Gilboa E, Mitra SW, Goff S, Baltimore D. 112.  1979. A detailed model of reverse transcription and tests of crucial aspects. Cell 18:93–100 [Google Scholar]
  113. Witte ON, Rosenberg N, Paskind M, Shields A, Baltimore D. 113.  1978. Identification of an Abelson murine leukemia virus-encoded protein present in transformed fibroblast and lymphoid cells. PNAS 75:2488–92 [Google Scholar]
  114. Witte ON, Sun L, Rosenberg N, Baltimore D. 114.  1980. A trans-acting protein kinase identified in cells transformed by Abelson murine leukemia virus. Cold Spring Harb. Symp. Quant. Biol. 44:855–57 [Google Scholar]
/content/journals/10.1146/annurev-virology-110615-035556
Loading
/content/journals/10.1146/annurev-virology-110615-035556
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error