1932

Abstract

The impact of anticipated changes in global climate on the arboviruses and the diseases they cause poses a significant challenge for public health. The past evolution of the dengue and yellow fever viruses provides clues about the influence of changes in climate on their future evolution. The evolution of both viruses has been influenced by virus interactions involving the mosquito species and the primate hosts involved in virus transmission, and by their domestic and sylvatic cycles. Information is needed on how viral genes in general influence phenotypic variance for important viral functions. Changes in global climate will alter the interactions of mosquito species with their primate hosts and with the viruses in domestic cycles, and greater attention should be paid to the sylvatic cycles. There is great danger for the evolution of novel viruses, such as new serotypes, that could compromise vaccination programs and jeopardize public health. It is essential to understand () both sylvatic and domestic cycles and () the role of virus genetic and environmental variances in shaping virus phenotypic variance to more fully assess the impact of global climate change.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-110615-035630
2016-09-29
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/virology/3/1/annurev-virology-110615-035630.html?itemId=/content/journals/10.1146/annurev-virology-110615-035630&mimeType=html&fmt=ahah

Literature Cited

  1. Karabatsos N. 1.  1985. International Catalogue of Arboviruses Including Certain Other Viruses of Vertebrates San Antonio, TX: Am. Soc. Trop. Med. Hyg., 3rd ed..
  2. Tabachnick WJ. 2.  2010. Challenges in predicting climate and environmental effects on vector-borne disease episystems in a changing world. J. Exp. Biol. 213:946–54 [Google Scholar]
  3. Githeko AK, Lindsay SW, Confalonieri UE, Patz JA. 3.  2000. Climate change and vector-borne disease: a regional analysis. Bull. World Health Organ. 78:1136–47 [Google Scholar]
  4. Hales S, de Wet N, Macdonald J, Woodward A. 4.  2003. Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. Lancet 360:830–34 [Google Scholar]
  5. Patz JA, Olson SH. 5.  2008. Climate change and health: global to local influences on disease risk. Vector-Borne Diseases: Understanding the Environmental, Human Health, and Ecological Connections88–103 Washington, DC: Natl. Acad. Press [Google Scholar]
  6. Reeves WC, Hardy JL, Reisen WK, Milby MM. 6.  1994. Potential effect of global warming on mosquito-borne arboviruses. J. Med. Entomol. 31:323–32 [Google Scholar]
  7. Rogers DJ, Randolph SE. 7.  2006. Climate change and vector-borne diseases. Adv. Parasitol. 62:345–81 [Google Scholar]
  8. Gage KL, Burkot TR, Eisen RJ, Hayes EB. 8.  2008. Climate and vector-borne diseases. Am. J. Prev. Med. 35:436–50 [Google Scholar]
  9. Gould EA, Higgs S. 9.  2009. Impact of climate change and other factors on emerging arbovirus diseases. R. Soc. Trop. Med. Hyg. 103:109–21 [Google Scholar]
  10. Gubler DJ. 10.  2008. The global threat of emergent/reemergent diseases. Vector-Borne Diseases: Understanding the Environmental, Human Health, and Ecological Connections43–64 Washington, DC: Natl. Acad. Press [Google Scholar]
  11. Parham PE, Waldock J, Christophides GK, Hemming D, Agosto F. 11.  et al. 2015. Climate, environmental and socio-economic change: weighing up the balance in vector-borne disease transmission. Philos. Trans. R. Soc. B 370:20130551 [Google Scholar]
  12. Reiter P. 12.  2001. Climate change and mosquito-borne disease. Environ. Health Perspect. 109:Suppl. 1141–61 [Google Scholar]
  13. Reiter P, Thomas CJ, Atkinson PM, Hay SI, Randolph SE. 13.  et al. 2004. Global warming and malaria: a call for accuracy. Lancet 4:323–24 [Google Scholar]
  14. Russell RC. 14.  2009. Mosquito-borne disease and climate change in Australia: time for a reality check. Aust. J. Entomol. 48:1–7 [Google Scholar]
  15. Slenning BD. 15.  2010. Global climate change and implications for disease emergence. Vet. Pathol. 47:28–33 [Google Scholar]
  16. Sutherst RW. 16.  2004. Global change and human vulnerability to vector-borne diseases. Clin. Microbiol. Rev. 17:136–73 [Google Scholar]
  17. Tabachnick WJ, Day JF. 17.  2014. Impact of climate change on vector-borne arboviral episystems. Viral Infections and Global Change SK Singh 57–75 Hoboken, NJ: Wiley [Google Scholar]
  18. Thai KT, Anders KL. 18.  2011. The role of climate variability and change in the transmission dynamics and geographic distribution of dengue. Exp. Biol. Med. 236:944–54 [Google Scholar]
  19. Brault AC, Reisen WK. 19.  2014. Environmental perturbations that influence arboviral host range: insight into emergence mechanisms. Viral Infections and Global Change SK Singh 21–34 Hoboken, NJ: Wiley [Google Scholar]
  20. Guis H, Caminade C, Calvete C, Morse AP, Tran A, Baylis M. 20.  2012. Modeling the effects of past and future climate on the risk of bluetongue emergence in Europe. J. R. Soc. Interface 9:339–50 [Google Scholar]
  21. Messina JP, Brady OJ, Pigott DM, Golding N, Kraemer MUG. 21.  et al. 2015. The many projected futures of dengue. Nat. Rev. Microbiol. 13:230–39 [Google Scholar]
  22. Negev M, Paz S, Clermont A, Pri-Or NG, Shalom U. 22.  et al. 2015. Impacts of climate change on vector borne diseases in the Mediterranean Basin—implications for preparedness and adaptation policy. Int. J. Environ. Res. Public Health 12:6745–70 [Google Scholar]
  23. Niash S, Dale P, MacKenzie JS, McBride J, Mengersen K, Tong S. 23.  2014. Climate change and dengue: a critical and systematic review of quantitative modelling approaches. BMC Infect. Dis. 14:167–80 [Google Scholar]
  24. Walton WW, Reisen WK. 24.  2014. Influence of climate change on mosquito development and blood-feeding patterns. Viral Infections and Global Change SK Singh 35–56 Hoboken, NJ: Wiley [Google Scholar]
  25. Zhang Y, Hansen A, Bi P. 25.  2014. Climate change and vector-borne viral diseases. Viral Infections and Global Change SK Singh 3–20 Hoboken, NJ: Wiley [Google Scholar]
  26. Althouse BM, Hanley KA. 26.  2015. The tortoise or the hare? Impacts of within-host dynamics on transmission success of arthropod-borne viruses. Philos. Trans. R. Soc. B 370:20140299 [Google Scholar]
  27. Astrom C, Rocklov J, Hales S, Beguin A, Louis V, Sauerborn R. 27.  2012. Potential distribution of dengue fever under scenarios of climate change and economic development. EcoHealth 9:448–54 [Google Scholar]
  28. Bouzid M, Colon-Gonzalez FJ, Lung T, Lake IR, Hunter PR. 28.  2014. Climate change and the emergence of vector-borne diseases in Europe: case study of dengue fever. BMC Public Health 14:781 [Google Scholar]
  29. Brady OJ, Golding N, Pigott DM, Kraemer MU, Messina JP. 29.  et al. 2014. Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Parasites Vectors 7:338 [Google Scholar]
  30. Campbell KM, Haldeman K, Lehnig C, Munayco CV, Halsey ES. 30.  et al. 2015. Weather regulates location, timing, and intensity of dengue virus transmission between humans and mosquitoes. PLOS Negl. Trop. Dis. 9:e0003957 [Google Scholar]
  31. Campbell LP, Luther C, Moo-Llanes D, Ramsey JM, Danis-Lozano R, Peterson AT. 31.  2015. Climate change influences on global distributions of dengue and chikungunya virus vectors. Philos. Trans. R. Soc. B 370:20140135 [Google Scholar]
  32. Gubler DJ, Reiter P, Kristie LE, Yap W, Nasci R, Patz JA. 32.  2001. Climate variability and change in the United States: potential impacts on vector- and rodent-borne diseases. Environ. Health Perspect. 109:Suppl. 2223–33 [Google Scholar]
  33. Morin CW, Comrie AC, Ernst K. 33.  2013. Climate and dengue transmission: evidence and implications. Environ. Health Perspect. 121:1264–72 [Google Scholar]
  34. Rogers DJ. 34.  2015. Dengue: recent, past and future threats. Philos. Trans. R. Soc. B 370:20130562 [Google Scholar]
  35. Rogers DJ, Wilson AJ, Hay SI, Graham AJ. 35.  2006. The global distribution of yellow fever and dengue. Adv. Parasitol. 62:181–220 [Google Scholar]
  36. Shope RE. 36.  1991. Global climate change and infectious diseases. Environ. Health Perspect. 96:171–74 [Google Scholar]
  37. Henson R. 37.  2007. The Rough Guide to Weather London: Rough Guides
  38. Holmes EC. 38.  2009. The evolutionary genetics of emerging viruses. Annu. Rev. Ecol. Evol. Syst. 40:353–72 [Google Scholar]
  39. Amaku M, Coutinho FAB, Massad E. 39.  2011. Why dengue and yellow fever coexist in some areas of the world and not in others?. BioSystems 106:111–20 [Google Scholar]
  40. Barrett ADT. 40.  2010. Molecular epidemiology of yellow fever virus. Rev. Biomed. 21:213–20 [Google Scholar]
  41. Beasley DWC, McAuley AJ, Bente DA. 41.  2015. Yellow fever virus: genetic and phenotypic diversity and implications for detection, prevention and therapy. Antivir. Res. 115:48–70 [Google Scholar]
  42. Bryant JE, Holmes EC, Barrett ADT. 42.  2007. Out of Africa: a molecular perspective on the introduction of yellow fever virus into the Americas. PLOS Pathog. 3:e75 [Google Scholar]
  43. Carrington CVF, Auguste AJ. 43.  2013. Evolutionary and ecological factors underlying the tempo and distribution of yellow fever virus activity. Infect. Genet. Evol. 13:198–210 [Google Scholar]
  44. Chen R, Vasilakis N. 44.  2011. Dengue—quo tu et quo vadis?. Viruses 3:1562–608 [Google Scholar]
  45. Costa RL, Voloch CM, Schrago CC. 45.  2012. Comparative evolutionary epidemiology of dengue virus serotypes. Infect. Genet. Evol. 12:309–14 [Google Scholar]
  46. Hanley KA, Monath TP, Weaver SC, Rossi SL, Richman RL, Vasilakis N. 46.  2013. Fever versus fever: the role of host and vector susceptibility and interspecific competition in shaping the current and future distributions of the sylvatic cycles of dengue virus and yellow fever virus. Infect. Genet. Evol. 19:292–311 [Google Scholar]
  47. Rico-Hesse R. 47.  2003. Microevolution and virulence of dengue viruses. Adv. Virus. Res. 59:315–41 [Google Scholar]
  48. Vasilakis N, Cardosa J, Hanley KA, Holmes EC, Weaver SC. 48.  2011. Fever from the forest: prospects for the continued emergence of sylvatic dengue virus and its impact on public health. Nat. Rev. Microbiol. 9:532–41 [Google Scholar]
  49. Weaver SC. 49.  2006. Evolutionary influences in arboviral disease. Curr. Top. Microbiol. Immunol. 299:285–314 [Google Scholar]
  50. Weaver SC, Vasilakis N. 50.  2009. Molecular evolution of dengue viruses: contributions of phylogenetics to understanding the history and epidemiology of the preeminent viral arboviral disease. Infect. Genet. Evol. 9:523–40 [Google Scholar]
  51. Eigen M. 51.  1971. Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58:465–523 [Google Scholar]
  52. Andino R, Domingo E. 52.  2015. Viral quasispecies. Virology 479–80:46–51 [Google Scholar]
  53. Borderia AV, Stapleford KA, Vignuzzi M. 53.  2011. RNA virus population diversity: implications for inter-species transmission. Curr. Opin. Virol. 1:643–48 [Google Scholar]
  54. Bull JJ, Meyers LA, Lachman M. 54.  2005. Quasispecies made simple. PLOS Comput. Biol. 1:450–60 [Google Scholar]
  55. Domingo E, Martin V, Perales C, Grande-Perez A, Garcia-Arriaza J, Arias A. 55.  2006. Viruses as quasispecies: biological implications. Curr. Top. Microbiol. Immunol. 299:51–82 [Google Scholar]
  56. Domingo E, Sheldon J, Perales C. 56.  2012. Viral quasispecies evolution. Microbiol. Mol. Biol. Rev. 76:159–216 [Google Scholar]
  57. Holmes EC. 57.  2010. The RNA virus quasispecies: Fact or fiction?. J. Mol. Biol. 400:271–73 [Google Scholar]
  58. Holmes EC, Moya A. 58.  2002. Is the quasispecies concept relevant to RNA viruses?. J. Virol. 76:460–62 [Google Scholar]
  59. Lauring AS, Andino R. 59.  2010. Quasispecies theory and the behavior of RNA viruses. PLOS Pathog 6:3780–91 [Google Scholar]
  60. Wilke CO. 60.  2005. Quasispecies theory in the context of population genetics. BMC Evol. Biol. 5:44–51 [Google Scholar]
  61. de la Torre JC, Holland JJ. 61.  1990. RNA quasispecies populations can suppress vastly superior mutant progeny. J. Virol. 64:6278–81 [Google Scholar]
  62. Wilke CO, Wang JL, Ofria C, Lenski RE, Adami C. 62.  2001. Evolution of digital organisms at high mutation rates leads to survival of the flattest. Nature 412:331–33 [Google Scholar]
  63. Moya A, Elena SF, Bracho A, Miralles R, Barrio E. 63.  2000. The evolution of RNA viruses: a population genetics view. PNAS 97:6967–73 [Google Scholar]
  64. Moya A, Holmes EC, Gonzalez-Candelas F. 64.  2004. The population genetics and evolutionary epidemiology of RNA viruses. Nat. Rev. Microbiol. 2:279–88 [Google Scholar]
  65. Smith JM. 65.  1984. Group selection. Genes, Organisms, Populations RN Brandon, RM Burian 238–49 Cambridge, MA: MIT Press [Google Scholar]
  66. Kurosu T. 66.  2011. Quasispecies of dengue virus. Trop. Med. Health 39:Suppl.29–36 [Google Scholar]
  67. Hey J. 67.  2011. Regarding the confusion between the population concept and Mayr's “population thinking.”. Q. Rev. Biol. 86:253–64 [Google Scholar]
  68. Shtulman A, Schulz L. 68.  2008. The relation between essentialist beliefs and evolutionary reasoning. Cogn. Sci. 32:1049–62 [Google Scholar]
  69. Levit GS, Meister K. 69.  2006. The history of essentialism versus Ernst Mayr's “Essentialism Story”: a case study of German idealistic morphology. Theory Biosci 124:281–307 [Google Scholar]
  70. Tabachnick WJ. 70.  1991. Evolutionary genetics and insect borne disease: the yellow fever mosquito, Aedes aegypti. Am. Entomol. 37:14–24 [Google Scholar]
  71. Martina BE. 71.  2014. Dengue pathogenesis: a disease driven by the host response. Sci. Prog. 97:Pt. 3197–214 [Google Scholar]
  72. Martina BEE, Koraka P, Osterhaus ADME. 72.  2009. Dengue virus pathogenesis: an integrated view. Clin. Microbiol. Rev. 22:564–81 [Google Scholar]
  73. Monath TP, Barrett AD. 73.  2003. Pathogenesis and pathophysiology of yellow fever. Adv. Virus Res. 60:343–95 [Google Scholar]
  74. Monath TP, Vasconcelos PFC. 74.  2015. Yellow fever. J. Clin. Virol. 64:160–73 [Google Scholar]
  75. Quaresma JA, Pagliari C, Medeiros DB, Duarte MI, Vasconcelos PF. 75.  2013. Immunity and immune response, pathology and pathologic changes: progress and challenges in the immunopathology of yellow fever. Rev. Med. Virol. 23:305–18 [Google Scholar]
  76. Rico-Hesse R. 76.  2010. Dengue virus virulence and transmission determinants. Curr. Top. Microbiol. Immunol. 338:45–55 [Google Scholar]
  77. Barrett ADT, Higgs S. 77.  2007. Yellow fever: a disease that has yet to be conquered. Annu. Rev. Entomol. 52:209–29 [Google Scholar]
  78. Barratt ADT, Monath TP. 78.  2003. Epidemiology and ecology of yellow fever virus. Adv. Virus Res. 61:291–315 [Google Scholar]
  79. Rodhain F. 79.  1991. The role of monkeys in the biology of dengue and yellow fever. Comp. Immunol. Microbiol. Infect. Dis. 14:9–19 [Google Scholar]
  80. Huang YJ, Higgs S, McElroy K, Vanlandingham DL. 80.  2014. Flavivirus-mosquito interactions. Viruses 6:4703–30 [Google Scholar]
  81. Tabachnick WJ. 81.  2014. Nature, nurture and evolution of intra-species variation in mosquito arbovirus transmission competence. Int. J. Environ. Res. Public Health 10:249–77 [Google Scholar]
  82. McElroy KL, Tsetsarkin KA, Vanlandingham DL, Higgs S. 82.  2006. Role of the yellow fever virus structural protein genes in viral dissemination from the Aedes aegypti mosquito midgut. J. Gen. Virol. 87:Pt. 102993–3001 [Google Scholar]
  83. McElroy KL, Tsetsarkin KA, Vanlandingham DL, Higgs S. 83.  2006. Manipulation of the yellow fever virus non-structural genes 2A and 4B and the 3′ non-coding region to evaluate genetic determinants of viral dissemination from the Aedes aegypti midgut. Am. J. Trop. Med. Hyg 75:1158–64 [Google Scholar]
  84. Sim S, Jupatanakul N, Dimopoulos G. 84.  2014. Mosquito immunity against arboviruses. Viruses 6:4479–504 [Google Scholar]
  85. Tham HW, Balasubramaniam VR, Tejo BA, Ahmad H, Hassan SS. 85.  2014. CPB1 of Aedes aegypti interacts with DENV2 E protein and regulates intracellular viral accumulation and release from midgut cells. Viruses 6:5028–48 [Google Scholar]
  86. Kraemer MU, Sinka ME, Duda KA, Mylne A, Shearer FM. 86.  et al. 2015. The global compendium of Aedes aegypti and Ae. albopictus occurrence. Sci. Data 2:150035 [Google Scholar]
  87. Dickson LB, Sanchez-Vargas I, Sylla M, Fleming K, Black WC IV. 87.  2014. Vector competence in West African Aedes aegypti is Flavivirus species and genotype dependent. PLOS Negl. Trop. Dis. 8:e3153 [Google Scholar]
  88. Higgs S. 88.  2004. How do mosquitoes live with their viruses?. Microbe-Vector Interactions in Vector-Borne Diseases SH Gillespie, GL Smith, A Osbourn 104–38 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  89. Moncayo AC, Fernandez Z, Ortiz D, Diallo M, Sall A. 89.  et al. 2004. Dengue emergence and adaptation to peridomestic mosquitoes. Emerg. Infect. Dis. 10:1790–96 [Google Scholar]
  90. Forattini OP. 90.  2003. Epidemiology and phylogenetic relationships of dengue viruses. Dengue Bull. 27:91–94 [Google Scholar]
  91. Mustafa MS, Rasotgi V, Jain S, Gupta V. 91.  2014. Discovery of fifth serotype of dengue virus (DENV-5): a new public health dilemma in dengue control. Med. J. Armed Forces India 71:67–70 [Google Scholar]
  92. Rico-Hesse R. 92.  1990. Molecular evolution and distribution of dengue viruses type 1 and 2 in nature. Virology 174:479–93 [Google Scholar]
  93. Holmes EC, Simmons CP. 93.  2012. High-resolution analysis of intrahost genetic diversity in dengue virus serotype 1 infection identifies mixed infections. J. Virol. 86:835–43 [Google Scholar]
  94. Thai KTD, Henn MR, Zody MC, Tricou V, Nguyet NM. 94.  et al. 2012. High resolution analysis of intrahost genetic diversity in dengue virus serotype 1 infection identifies mixed infections. J. Virol. 86:835–43 [Google Scholar]
  95. Mukhopadhyay S, Kuhn RJ, Rossman MG. 95.  2005. A structural perspective of the Flavivirus life cycle. Nat. Rev. Microbiol. 3:13–22 [Google Scholar]
  96. Rudnick A. 96.  1965. Studies of the ecology of dengue in Malaysia: a preliminary report. J. Med. Entomol. 2:203–8 [Google Scholar]
  97. Rudnick A. 97.  1986. Dengue virus ecology in Asia. Inst. Med. Res. Malays. Bull. 23:51–152 [Google Scholar]
  98. Germain M, Cornet M, Mouchet J, Herve JP, Robert V. 98.  et al. 1981. Sylvatic yellow fever in Africa: recent advances and present approach. Med. Trop. 4131–43 (In French) [Google Scholar]
  99. Lin SR, Hsieh SC, Yueh YY, Lin TH, Chao DY. 99.  et al. 2004. Study of sequence variation of dengue type 3 virus in naturally infected mosquitoes and human hosts: implications for transmission and evolution. J. Virol. 78:12717–21 [Google Scholar]
  100. Vasilakis N, Deardorff ER, Kenny JL, Rossi SL, Hanley KA, Weaver SC. 100.  2009. Mosquitoes put the brake on arbovirus evolution: experimental evolution reveals slower mutation accumulation in mosquito than vertebrate cells. PLOS Pathog. 5:e1000467 [Google Scholar]
  101. Beck A, Guzman H, Li L, Ellis B, Tesh RB, Barrett ADT. 101.  2013. Phylogeographic reconstruction of African yellow fever virus isolates indicates recent simultaneous dispersal into East and West Africa. PLOS Negl. Trop. Dis. 7:e1910 [Google Scholar]
  102. McMullan LK, Frace M, Sammons SA, Shoemaker T, Balinandi S. 102.  et al. 2012. Using next generation sequencing to identify yellow fever virus in Uganda. Virology 422:1–5 [Google Scholar]
  103. Sall AA, Faye O, Diallo M, Firth C, Kitchen A, Holmes EC. 103.  2010. Yellow fever virus exhibits slower evolutionary dynamics than dengue virus. J. Virol. 84:765–72 [Google Scholar]
  104. Twiddy SS, Holmes EC, Rambaut A. 104.  2003. Inferring the rate and time-scale of dengue virus evolution. Mol. Biol. Evol. 20:122–29 [Google Scholar]
  105. Vasilakis N, Holmes EC, Fokam EB, Ousmane F, Diallo M. 105.  et al. 2007. Evolutionary processes among sylvatic dengue type 2 viruses. J. Virol. 81:9591–95 [Google Scholar]
  106. Gebhard LG, Filomatori CV, Gamarnik AV. 106.  2011. Functional RNA elements in the dengue virus genome. Viruses 3:1739–56 [Google Scholar]
  107. Bennett SN, Holmes EC, Chirivella M, Rodriguez DM, Beltran M. 107.  et al. 2006. Molecular evolution of dengue 2 virus in Puerto Rico: Positive selection in the viral envelop accompanies clade reintroduction. J. Gen. Virol. 87:885–93 [Google Scholar]
  108. Rodpothong P, Auewarakul P. 108.  2012. Positive selection sites in the surface genes of dengue virus: phylogenetic analysis of the interserotypic branches of the four serotypes. Virus Genes 44:408–14 [Google Scholar]
  109. Lourenco J, Recker M. 109.  2010. Viral and epidemiological determinants of the invasion dynamics of novel dengue genotypes. PLOS Negl. Trop. Dis. 4:e894 [Google Scholar]
  110. Holmes EC, Twiddy SS. 110.  2003. The origin, emergence and evolutionary genetics of dengue virus. Infect. Genet. Evol. 3:19–28 [Google Scholar]
  111. Wang E, Ni H, Xu R, Barrett AD, Watowich SJ. 111.  et al. 2000. Evolutionary relationships of endemic/epidemic and sylvatic dengue viruses. J. Virol. 74:3227–34 [Google Scholar]
  112. Franco L, Palacios G, Martinez JA, Vasquez A, Savji N. 112.  et al. 2011. A first report of sylvatic DENV-2-associated hemorrhagic fever in West Africa. PLOS Negl. Trop. Dis. 5e1251
  113. Monlun E, Zeller H, Traore-Lamizana M, Hervy JP, Adam F. 113.  et al. 1992. Caractères cliniques et épidémiologiques de la dengue 2 au Sénégal. Med. Mal. Infect. 22:718–21 [Google Scholar]
  114. Vasilakis N, Cardosa J, Diallo M, Sall AA, Holmes EC. 114.  et al. 2010. Letter to the Editor. Sylvatic dengue viruses share the pathogenic potential of urban/endemic dengue viruses. J. Virol. 84:3726–27 [Google Scholar]
  115. Saluzzo JF, Cornet M, Castagnet P, Rey C, Digoutte JP. 115.  1986. Isolation of dengue 2 and dengue 4 viruses from patients in Senegal. Trans. R. Soc. Trop. Med. Hyg. 80:5 [Google Scholar]
  116. Mota J, Rico-Hesse R. 116.  2009. Humanized mice show clinical signs of dengue fever according to infecting virus genotype. J. Virol. 83:8638–45 [Google Scholar]
  117. Mota J, Rico-Hesse R. 117.  2010. Authors' reply. Sylvatic dengue viruses share the pathogenic potential of urban/endemic dengue viruses. J. Virol. 84:3727–28 [Google Scholar]
  118. Mutebi JP, Barrett AD. 118.  2002. The epidemiology of yellow fever in Africa. Microbes Infect. 4:1459–68 [Google Scholar]
  119. Nunes MRT, Palacios G, Cardoso JF, Martins LC, Sousa EC Jr.. 119.  et al. 2010. Genomic and phylogenetic characterization of Brazilian yellow fever virus strains. J. Virol. 86:13263–71 [Google Scholar]
  120. Stock NK, Laraway H, Faye O, Diallo M, Niedrig M, Sall AA. 120.  2013. Biological and phylogenetic characteristics of yellow fever virus lineages from West Africa. J. Virol. 87:2895–907 [Google Scholar]
  121. Von Linden JJ, Aroner S, Barrett ND, Wicker JA, Davis CT, Barrett AD. 121.  2006. Genome analysis and phylogenetic relationships between East, Central and West African isolates of yellow fever virus. J. Gen. Virol. 87:895–907 [Google Scholar]
  122. Hanley KA, Guerbois M, Kautz TF, Brown M, Whitehead SS. 122.  et al. 2014. Infection dynamics of sylvatic dengue virus in a natural primate host, the African Green Monkey. Am. J. Trop. Med. Hyg. 91:672–76 [Google Scholar]
  123. Mutebi JP, Wang H, Li L, Bryant JE, Barrett ADT. 123.  2001. Phylogenetic and evolutionary relationships among yellow fever virus isolates in Africa. J. Virol. 75:6999–7008 [Google Scholar]
  124. Fibriansah G, Ibarra KD, Thiam-Seng N, Smith SA, Tan JL. 124.  et al. 2015. Cryo-EM structure of an antibody that neutralizes dengue virus type 2 by locking E protein dimers. Science 349:88–91 [Google Scholar]
  125. Seligman SJ. 125.  2008. Constancy and diversity in the flavivirus fusion peptide. Virol. J. 5:27–36 [Google Scholar]
  126. Weaver SC. 126.  2005. Host range, amplification and arboviral disease emergence. Arch. Virol. Suppl. 19:33–44 [Google Scholar]
  127. Monath TP. 127.  1988. Yellow fever. The Arboviruses: Epidemiology and Ecology WR Hess 139–241 Boca Raton, FL: CRC Press [Google Scholar]
  128. Monath TP. 128.  1989. The absence of yellow fever in Asia: hypotheses. A cause for concern?. Virus Inf. Exchange Newsl. 6:106–7 [Google Scholar]
  129. Cathey JT, Marr JS. 129.  2014. Yellow fever, Asia and the East African slave trade. Trans. R. Soc. Trop. Med. Hyg. 108:252–57 [Google Scholar]
  130. Ashcroft MT. 130.  1979. Historical evidence of resistance to yellow fever acquired by residence in India. Trans. R. Soc. Trop. Med. Hyg. 73:247–48 [Google Scholar]
  131. Espinosa M. 131.  2014. The question of racial immunity to yellow fever in history and historiography. Soc. Sci. Hist. 38:437–53 [Google Scholar]
  132. Tuboi SH, Costa ZG, da Costa Vasconcelos PF, Hatch D. 132.  2007. Clinical and epidemiological characteristics of yellow fever in Brazil: analysis of reported cases 1998–2002. Trans. R. Soc. Trop. Med. Hyg. 101:169–75 [Google Scholar]
  133. Althouse BM, Durbin AP, Hanley KA, Halstead SB, Weaver SC, Cummings DA. 133.  2014. Viral kinetics of dengue virus infection in non-human primates: a systematic review and individual pooled analysis. Virology 452–53:237–46 [Google Scholar]
  134. Althouse BM, Hanley KA, Diallo M, Sall AA, Ba Y. 134.  et al. 2015. Impact of climate and mosquito vector abundance on sylvatic arbovirus circulation dynamics in Senegal. Am. J. Trop. Med. Hyg. 92:88–97 [Google Scholar]
  135. Tabachnick WJ. 135.  2003. Reflections on the Anopheles gambiae genome sequence, transgenic mosquitoes and the prospect for controlling malaria and other vector borne diseases. J. Med. Entomol. 40:597–606 [Google Scholar]
  136. Lee E, Lobigs M. 136.  2008. E protein domain III determinants of yellow fever virus 17D vaccine strain enhance binding to glycosaminoglycans, impede virus spread, and attenuate virulence. J. Virol. 82:6024–33 [Google Scholar]
  137. Muller DA, Young PR. 137.  2013. The flavivirus NS1 protein: molecular and structural biology, immunology, role in pathogenesis and application as a diagnostic biomarker. Antivir. Res. 98:192–208 [Google Scholar]
  138. Paranjape SM, Harris E. 138.  2010. Control of dengue virus translation and replication. Curr. Top. Microbiol. Immunol. 336:15–34 [Google Scholar]
  139. Roehrig JT. 139.  1997. Immunochemistry of dengue viruses. Dengue and Dengue Hemorrhagic Fever DJ Gubler, G Kuno 199–219 London: CAB Int. [Google Scholar]
  140. Urcuqui-Inchima S, Patino C, Torres S, Haenni AL, Diaz FJ. 140.  2010. Recent developments in understanding dengue virus replication. Adv. Virus Res. 77:1–39 [Google Scholar]
  141. Villordo SM, Filomatori CV, Sanchesz-Vargas JC, Blair CD, Gamarnik AV. 141.  2015. Dengue virus RNA structure specialization facilitates host adaptation. PLOS Pathog. 11:e1004604 [Google Scholar]
  142. Katzelnick LC, Fonville JM, Gromowski GD, Arriaga JB, Green A. 142.  et al. 2015. Dengue viruses cluster antigenically but not as discrete serotypes. Science 349:13338–43 [Google Scholar]
  143. Khan AM, Miotto O, Nascimento EJM, Srinivasan KN, Heiny AT. 143.  et al. 2008. Conservation and variability of dengue virus proteins: implications for vaccine design. PLOS Negl. Trop. Dis. 2:e272 [Google Scholar]
  144. Hecksel C, Rico-Hesse R. 144.  2016. Arbovirus evolution, vector competence, and virulence models—changing patterns of infection. The Influence of Global Environmental Change on Infectious Disease Dynamics Washington, DC: Natl. Acad. Press. In press [Google Scholar]
  145. Quiner CA, Parameswaran P, Ciota AT, Ehrbar DJ, Dodson BL. 145.  et al. 2014. Increased replicative fitness of a dengue 2 virus clade in native mosquitoes: potential contribution to a clade replacement event in Nicaragua. J. Virol. 88:13125–34 [Google Scholar]
  146. Allonso D, Andrade IS, Conde JN, Coelho DR, Daniele CP. 146.  et al. 2015. Dengue virus NS1 protein modulates cellular energy metabolism by increasing glyceraldehyde-3-phosphate dehydrogenase activity. J. Virol. 89:11871–83 [Google Scholar]
  147. Lin HH, Lee HC, Li XF, Tsai MJ, Hsiao HJ. 147.  et al. 2014. Dengue type four viruses with E-Glu345Lys adaptive mutation from MRC-5 cells induce low viremia but elicit potent neutralizing antibodies in rhesus monkeys. PLOS ONE 9:e1001030 [Google Scholar]
  148. Cong L, Ran FA, Cox D, Lin S, Barretto R. 148.  et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–23 [Google Scholar]
  149. Falconer DS, Mackay TFC. 149.  1996. Introduction to Quantitative Genetics Harlow, UK: Longman
/content/journals/10.1146/annurev-virology-110615-035630
Loading
/content/journals/10.1146/annurev-virology-110615-035630
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error