1932

Abstract

The small RNA regulatory molecules called microRNAs (miRNAs) play key roles in the development of most organisms. The expression of many different miRNAs has been described in the developing and mature vertebrate retina. The ability of miRNAs to regulate a diversity of messenger RNA targets allows them to have effects on many different developmental processes, but the functions of only a few miRNAs have been documented to date. Developmental transitions between cell states appear to be particularly sensitive to miRNA loss of function, as evidenced by specific miRNA knockdowns or from global perturbations in miRNA levels (e.g., Dicer deletion). However, we are still in only the very early stages of understanding the range of cellular functions miRNAs control during development.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-091517-034357
2018-09-15
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/vision/4/1/annurev-vision-091517-034357.html?itemId=/content/journals/10.1146/annurev-vision-091517-034357&mimeType=html&fmt=ahah

Literature Cited

  1. Akhtar S, Patnaik SR, Kotapati Raghupathy R, Al-Mubrad TM, Craft JA, Shu X 2015. Histological characterization of the Dicer1 mutant zebrafish retina. J. Ophthalmol. 2015:309510
    [Google Scholar]
  2. Ambros V, Horvitz HR 1984. Heterochronic mutants of the nematode Caenorhabditis elegans. . Science 226:409–16
    [Google Scholar]
  3. Anchan RM, Reh TA, Angello J, Balliet A, Walker M 1991. EGF and TGF-α stimulate retinal neuroepithelial cell proliferation in vitro. Neuron 6:923–36
    [Google Scholar]
  4. Arora A, Guduric-Fuchs J, Harwood L, Dellett M, Cogliati T, Simpson DA 2010. Prediction of microRNAs affecting mRNA expression during retinal development. BMC Dev. Biol. 10:1
    [Google Scholar]
  5. Arora A, McKay GJ, Simpson DA 2007. Prediction and verification of miRNA expression in human and rat retinas. Investig. Ophthalmol. Vis. Sci. 48:3962–67
    [Google Scholar]
  6. Baba Y, Aihara Y, Watanabe S 2015. MicroRNA-7a regulates Müller glia differentiation by attenuating Notch3 expression. Exp. Eye Res. 138:59–65
    [Google Scholar]
  7. Bagga S, Bracht J, Hunter S, Massirer K, Holtz J, Eachus R, Pasquinelli AE 2005. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122:553–63
    [Google Scholar]
  8. Bartel DP 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–97
    [Google Scholar]
  9. Baudet ML, Zivraj KH, Abreu-Goodger C, Muldal A, Armisen J et al. 2011. miR-124 acts through CoREST to control onset of Sema3A sensitivity in navigating retinal growth cones. Nat. Neurosci. 15:29–38
    [Google Scholar]
  10. Bellon A, Iyer A, Bridi S, Lee FCY, Ovando-Vázquez C et al. 2017. miR-182 regulates Slit2-mediated axon guidance by modulating the local translation of a specific mRNA. Cell Rep 18:1171–86
    [Google Scholar]
  11. Boehm M, Slack F 2005. A developmental timing microRNA and its target regulate life span in C. elegans. . Science 310:1954–57
    [Google Scholar]
  12. Boehm M, Slack FJ 2006. MicroRNA control of lifespan and metabolism. Cell Cycle 5:837–40
    [Google Scholar]
  13. Brzezinski JAT, Kim EJ, Johnson JE, Reh TA 2011. Ascl1 expression defines a subpopulation of lineage-restricted progenitors in the mammalian retina. Development 138:3519–31
    [Google Scholar]
  14. Chi SW, Zang JB, Mele A, Darnell RB 2009. Argonaute HITS-CLIP decodes microRNA–mRNA interaction maps. Nature 460:479–86
    [Google Scholar]
  15. Conte I, Carrella S, Avellino R, Karali M, Marco-Ferreres R et al. 2010. miR-204 is required for lens and retinal development via Meis2 targeting. PNAS 107:15491–96
    [Google Scholar]
  16. Conte I, Hadfield KD, Barbato S, Carrella S, Pizzo M et al. 2015. MiR-204 is responsible for inherited retinal dystrophy associated with ocular coloboma. PNAS 112:E3236–45
    [Google Scholar]
  17. Conte I, Merella S, Garcia-Manteiga JM, Migliore C, Lazarevic D et al. 2014. The combination of transcriptomics and informatics identifies pathways targeted by miR-204 during neurogenesis and axon guidance. Nucleic Acids Res 42:7793–806
    [Google Scholar]
  18. Damiani D, Alexander JJ, O'Rourke JR, McManus M, Jadhav AP et al. 2008. Dicer inactivation leads to progressive functional and structural degeneration of the mouse retina. J. Neurosci. 28:4878–87
    [Google Scholar]
  19. Davis N, Mor E, Ashery-Padan R 2011. Roles for Dicer1 in the patterning and differentiation of the optic cup neuroepithelium. Development 138:127–38
    [Google Scholar]
  20. Decembrini S, Bressan D, Vignali R, Pitto L, Mariotti S et al. 2009. MicroRNAs couple cell fate and developmental timing in retina. PNAS 106:21179–84
    [Google Scholar]
  21. Deo M, Yu J-Y, Chung K-H, Tippens M, Turner DL 2006. Detection of mammalian microRNA expression by in situ hybridization with RNA oligonucleotides. Dev. Dyn. 235:2538–48
    [Google Scholar]
  22. Drager UC, Olsen JF 1980. Origins of crossed and uncrossed retinal projections in pigmented and albino mice. J. Comp. Neurol. 191:383–412
    [Google Scholar]
  23. Drummond MJ, McCarthy JJ, Sinha M, Spratt HM, Volpi E et al. 2011. Aging and microRNA expression in human skeletal muscle: a microarray and bioinformatics analysis. Physiol. Genom. 43:595–603
    [Google Scholar]
  24. Eichhorn SW, Guo H, McGeary SE, Rodriguez-Mias RA, Shin C et al. 2014. mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues. Mol. Cell 56:104–15
    [Google Scholar]
  25. Erskine L, Herrera E 2014. Connecting the retina to the brain. ASN Neuro 6:1759091414562107
    [Google Scholar]
  26. Feldheim DA, O'Leary DD 2010. Visual map development: bidirectional signaling, bifunctional guidance molecules, and competition. Cold Spring Harb. Perspect. Biol. 2:a001768
    [Google Scholar]
  27. Georgi SA, Reh TA 2010. Dicer is required for the transition from early to late progenitor state in the developing mouse retina. J. Neurosci. 30:4048–61
    [Google Scholar]
  28. Georgi SA, Reh TA 2011. Dicer is required for the maintenance of notch signaling and gliogenic competence during mouse retinal development. Dev. Neurobiol. 71:1153–69
    [Google Scholar]
  29. Ha M, Kim VN 2014. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 15:509–24
    [Google Scholar]
  30. Hackler L Jr., Wan J, Swaroop A, Qian J, Zack DJ 2010. MicroRNA profile of the developing mouse retina. Investig. Ophthalmol. Vis. Sci. 51:1823–31
    [Google Scholar]
  31. Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J et al. 2010. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141:129–41
    [Google Scholar]
  32. Hancock ML, Preitner N, Quan J, Flanagan JG 2014. MicroRNA-132 is enriched in developing axons, locally regulates Rasa1 mRNA, and promotes axon extension. J. Neurosci. 34:66–78
    [Google Scholar]
  33. He C, Kraft P, Chen C, Buring JE, Paré G et al. 2009. Genome-wide association studies identify loci associated with age at menarche and age at natural menopause. Nat. Genet. 41:724–28
    [Google Scholar]
  34. Helwak A, Kudla G, Dudnakova T, Tollervey D 2013. Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153:654–65
    [Google Scholar]
  35. Hengst U, Cox LJ, Macosko EZ, Jaffrey SR 2006. Functional and selective RNA interference in developing axons and growth cones. J. Neurosci. 26:5727–32
    [Google Scholar]
  36. Herrera E, Brown L, Aruga J, Rachel RA, Dolen G et al. 2003. Zic2 patterns binocular vision by specifying the uncrossed retinal projection. Cell 114:545–57
    [Google Scholar]
  37. Hindges R, McLaughlin T, Genoud N, Henkemeyer M, O'Leary DD 2002. EphB forward signaling controls directional branch extension and arborization required for dorsal-ventral retinotopic mapping. Neuron 35:475–87
    [Google Scholar]
  38. Iida A, Shinoe T, Baba Y, Mano H, Watanabe S 2011. Dicer plays essential roles for retinal development by regulation of survival and differentiation. Investig. Ophthalmol. Vis. Sci. 52:3008–17
    [Google Scholar]
  39. Iyer AN, Bellon A, Baudet M-L 2014. microRNAs in axon guidance. Front. Cell Neurosci. 8:78
    [Google Scholar]
  40. Jin ZB, Hirokawa G, Gui L, Takahashi R, Osakada F et al. 2009. Targeted deletion of miR-182, an abundant retinal microRNA. Mol. Vis. 15:523–33
    [Google Scholar]
  41. Jung H, Gkogkas CG, Sonenberg N, Holt CE 2014. Remote control of gene function by local translation. Cell 157:26–40
    [Google Scholar]
  42. Kapsimali M, Kloosterman WP, de Bruijn E, Rosa F, Plasterk RH, Wilson SW 2007. MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system. Genome Biol 8:R173
    [Google Scholar]
  43. Karali M, Peluso I, Gennarino VA, Bilio M, Verde R et al. 2010. miRNeye: a microRNA expression atlas of the mouse eye. BMC Genom 11:715
    [Google Scholar]
  44. Karali M, Peluso I, Marigo V, Banfi S 2007. Identification and characterization of microRNAs expressed in the mouse eye. Investig. Ophthalmol. Vis. Sci. 48:509–15
    [Google Scholar]
  45. Keyte AL, Smith KK 2014. Heterochrony and developmental timing mechanisms: changing ontogenies in evolution. Semin. Cell Dev. Biol. 34:99–107
    [Google Scholar]
  46. La Torre A, Georgi S, Reh TA 2013. Conserved microRNA pathway regulates developmental timing of retinal neurogenesis. PNAS 110:E2362–70
    [Google Scholar]
  47. Lee RC, Feinbaum RL, Ambros V 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. . Cell 75:843–54
    [Google Scholar]
  48. Li X, Carthew RW 2005. A microRNA mediates EGF receptor signaling and promotes photoreceptor differentiation in the Drosophila eye. Cell 123:1267–77
    [Google Scholar]
  49. Lillien L, Cepko C 1992. Control of proliferation in the retina: temporal changes in responsiveness to FGF and TGFα. Development 115:253–66
    [Google Scholar]
  50. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM et al. 2005. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–73
    [Google Scholar]
  51. Livesey FJ, Cepko CL 2001.a Vertebrate neural cell-fate determination: lessons from the retina. Nat. Rev. Neurosci. 2:109–18
    [Google Scholar]
  52. Livesey R, Cepko C 2001.b Neurobiology: developing order. Nature 413:471–73
    [Google Scholar]
  53. Loscher CJ, Hokamp K, Kenna PF, Ivens AC, Humphries P et al. 2007. Altered retinal microRNA expression profile in a mouse model of retinitis pigmentosa. Genome Biol 8:R248
    [Google Scholar]
  54. Loscher CJ, Hokamp K, Wilson JH, Li T, Humphries P et al. 2008. A common microRNA signature in mouse models of retinal degeneration. Exp. Eye Res. 87:529–34
    [Google Scholar]
  55. Maiorano NA, Hindges R 2013. Restricted perinatal retinal degeneration induces retina reshaping and correlated structural rearrangement of the retinotopic map. Nat. Commun. 4:1938
    [Google Scholar]
  56. Makarev E, Spence JR, Del Rio-Tsonis K, Tsonis PA 2006. Identification of microRNAs and other small RNAs from the adult newt eye. Mol. Vis. 12:1386–91
    [Google Scholar]
  57. Marler KJ, Becker-Barroso E, Martinez A, Llovera M, Wentzel C et al. 2008. A TrkB/EphrinA interaction controls retinal axon branching and synaptogenesis. J. Neurosci. 28:12700–12
    [Google Scholar]
  58. Mathers PH, Grinberg A, Mahon KA, Jamrich M 1997. The Rx homeobox gene is essential for vertebrate eye development. Nature 387:603–7
    [Google Scholar]
  59. Moore MJ, Scheel TK, Luna JM, Park CY, Fak JJ et al. 2015. miRNA–target chimeras reveal miRNA 3′-end pairing as a major determinant of Argonaute target specificity. Nat. Commun. 6:8864
    [Google Scholar]
  60. Moss EG, Lee RC, Ambros V 1997. The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA. Cell 88:637–46
    [Google Scholar]
  61. Moss EG, Romer-Seibert J 2014. Cell-intrinsic timing in animal development. Wiley Interdiscip. Rev. Dev. Biol. 3:365–77
    [Google Scholar]
  62. Natera-Naranjo O, Aschrafi A, Gioio AE, Kaplan BB 2010. Identification and quantitative analyses of microRNAs located in the distal axons of sympathetic neurons. RNA 16:1516–29
    [Google Scholar]
  63. Nelson BR, Hartman BH, Georgi SA, Lan MS, Reh TA 2007. Transient inactivation of Notch signaling synchronizes differentiation of neural progenitor cells. Dev. Biol. 304:479–98
    [Google Scholar]
  64. Nelson BR, Hartman BH, Ray CA, Hayashi T, Bermingham-McDonogh O, Reh TA 2009. Acheate-scute like 1 (Ascl1) is required for normal Delta-like (Dll) gene expression and Notch signaling during retinal development. Dev. Dyn. 238:2163–78
    [Google Scholar]
  65. Olena AF, Rao MB, Thatcher EJ, Wu SY, Patton JG 2015. miR-216a regulates snx5, a novel notch signaling pathway component, during zebrafish retinal development. Dev. Biol. 400:72–81
    [Google Scholar]
  66. Olsen PH, Ambros V 1999. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol. 216:671–80
    [Google Scholar]
  67. Ong KK, Elks CE, Li S, Zhao JH, Luan J et al. 2009. Genetic variation in LIN28B is associated with the timing of puberty. Nat. Genet. 41:729–33
    [Google Scholar]
  68. Pinter R, Hindges R 2010. Perturbations of microRNA function in mouse dicer mutants produce retinal defects and lead to aberrant axon pathfinding at the optic chiasm. PLOS ONE 5:e10021
    [Google Scholar]
  69. Rajman M, Schratt G 2017. MicroRNAs in neural development: from master regulators to fine-tuners. Development 144:2310–22
    [Google Scholar]
  70. Reber M, Hindges R, Lemke G 2007. Eph receptors and ephrin ligands in axon guidance. Adv. Exp. Med. Biol. 621:32–49
    [Google Scholar]
  71. Reh TA, Cagan RL 1994. Intrinsic and extrinsic signals in the developing vertebrate and fly eyes: viewing vertebrate and invertebrate eyes in the same light. Perspect. Dev. Neurobiol. 2:183–90
    [Google Scholar]
  72. Ryan DG, Oliveira-Fernandes M, Lavker RM 2006. MicroRNAs of the mammalian eye display distinct and overlapping tissue specificity. Mol. Vis. 12:1175–84
    [Google Scholar]
  73. Sanuki R, Onishi A, Koike C, Muramatsu R, Watanabe S et al. 2011. miR-124a is required for hippocampal axogenesis and retinal cone survival through Lhx2 suppression. Nat. Neurosci. 14:1125–34
    [Google Scholar]
  74. Sasaki Y, Gross C, Xing L, Goshima Y, Bassell GJ 2014. Identification of axon-enriched microRNAs localized to growth cones of cortical neurons. Dev. Neurobiol. 74:397–406
    [Google Scholar]
  75. Shaham O, Gueta K, Mor E, Oren-Giladi P, Grinberg D et al. 2013. Pax6 regulates gene expression in the vertebrate lens through miR-204. PLOS Genet 9:e1003357
    [Google Scholar]
  76. Shen J, Yang X, Xie B, Chen Y, Swaim M et al. 2008. MicroRNAs regulate ocular neovascularization. Mol. Ther. 16:1208–16
    [Google Scholar]
  77. Shi L, Ko ML, Ko GY-P 2009. Rhythmic expression of microRNA-26a regulates the L-type voltage-gated calcium channel α1C subunit in chicken cone photoreceptors. J. Biol. Chem. 284:25791–803
    [Google Scholar]
  78. Shigeoka T, Jung H, Jung J, Turner-Bridger B, Ohk J et al. 2016. Dynamic axonal translation in developing and mature visual circuits. Cell 166:181–92
    [Google Scholar]
  79. Sulem P, Gudbjartsson DF, Rafnar T, Holm H, Olafsdottir EJ et al. 2009. Genome-wide association study identifies sequence variants on 6q21 associated with age at menarche. Nat. Genet. 41:734–38
    [Google Scholar]
  80. Sundermeier TR, Palczewski K 2016. The impact of microRNA gene regulation on the survival and function of mature cell types in the eye. FASEB J 30:23–33
    [Google Scholar]
  81. Sundermeier TR, Zhang N, Vinberg F, Mustafi D, Kohno H et al. 2014. DICER1 is essential for survival of postmitotic rod photoreceptor cells in mice. FASEB J 28:3780–91
    [Google Scholar]
  82. Swindell EC, Bailey TJ, Loosli F, Liu C, Amaya-Manzanares F et al. 2006. Rx-Cre, a tool for inactivation of gene expression in the developing retina. Genesis 44:361–63
    [Google Scholar]
  83. Walker JC, Harland RM 2009. microRNA-24a is required to repress apoptosis in the developing neural retina. Genes Dev 23:1046–51
    [Google Scholar]
  84. Wightman B, Ha I, Ruvkun G 1993. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. . Cell 75:855–62
    [Google Scholar]
  85. Wohl SG, Reh TA 2016. The microRNA expression profile of mouse Müller glia in vivo and in vitro. Sci. Rep. 6:35423
    [Google Scholar]
  86. Xu S, Witmer PD, Lumayag S, Kovacs B, Valle D 2007. MicroRNA (miRNA) transcriptome of mouse retina and identification of a sensory organ-specific miRNA cluster. J. Biol. Chem. 282:25053–66
    [Google Scholar]
  87. Yates PA, Roskies AL, McLaughlin T, O'Leary DD 2001. Topographic-specific axon branching controlled by ephrin-As is the critical event in retinotectal map development. J. Neurosci. 21:8548–63
    [Google Scholar]
  88. Zhu Q, Sun W, Okano K, Chen Y, Zhang N et al. 2011. Sponge transgenic mouse model reveals important roles for the microRNA-183 (miR-183)/96/182 cluster in postmitotic photoreceptors of the retina. J. Biol. Chem. 286:31749–60
    [Google Scholar]
/content/journals/10.1146/annurev-vision-091517-034357
Loading
/content/journals/10.1146/annurev-vision-091517-034357
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error