1932

Abstract

Advances in retinal imaging are enabling researchers and clinicians to make precise noninvasive measurements of the retinal vasculature in vivo. This includes measurements of capillary blood flow, the regulation of blood flow, and the delivery of oxygen, as well as mapping of perfused blood vessels. These advances promise to revolutionize our understanding of vascular regulation, as well as the management of retinal vascular diseases. This review provides an overview of imaging and optical measurements of the function and structure of the ocular vasculature. We include general characteristics of vascular systems with an emphasis on the eye and its unique status. The functions of vascular systems are discussed, along with physical principles governing flow and its regulation. Vascular measurement techniques based on reflectance and absorption are briefly introduced, emphasizing ways of generating contrast. One of the prime ways to enhance contrast within vessels is to use techniques sensitive to the motion of cells, allowing precise measurements of perfusion and blood velocity. Finally, we provide a brief introduction to retinal vascular diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-093019-113719
2021-09-15
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/vision/7/1/annurev-vision-093019-113719.html?itemId=/content/journals/10.1146/annurev-vision-093019-113719&mimeType=html&fmt=ahah

Literature Cited

  1. Aiello LP, Northrup JM, Keyt BA, Takagi H, Iwamoto MA. 1995. Hypoxic regulation of vascular endothelial growth factor in retinal cells. Arch. Ophthalmol. 113:1538–44
    [Google Scholar]
  2. Arthur E, Elsner AE, Sapoznik KA, Papay JA, Muller MS, Burns SA. 2019a. Distances from capillaries to arterioles or venules measured using OCTA and AOSLO. Investig. Ophthalmol. Vis. Sci. 60:1833–44
    [Google Scholar]
  3. Arthur E, Papay JA, Haggerty BP, Clark CA, Elsner AE. 2018. Subtle changes in diabetic retinas localised in 3D using OCT. Ophthalmic Physiol. Opt. 38:477–91
    [Google Scholar]
  4. Arthur E, Young SB, Elsner AE, Baskaran K, Papay JA et al. 2019b. Central macular thickness in diabetic patients: a sex-based analysis. Optom. Vis. Sci. 96:266–75
    [Google Scholar]
  5. Attwell D. 2019. The role of capillary pericytes in regulating cerebral blood flow in health, ischaemia and Alzheimer's disease. Acta Physiol 227:45
    [Google Scholar]
  6. Beach J. 2014. Pathway to retinal oximetry. Transl. Vis. Sci. Technol. 3:2
    [Google Scholar]
  7. Beausencourt E, Remky A, Elsner AE, Hartnett ME, Trempe CL. 2000. Infrared scanning laser tomography of macular cysts. Ophthalmology 107:375–85
    [Google Scholar]
  8. Bedggood P, Metha A. 2012. Direct visualization and characterization of erythrocyte flow in human retinal capillaries. Biomed. Opt. Express 3:3264–77
    [Google Scholar]
  9. Bharadwaj AS, Appukuttan B, Wilmarth PA, Pan Y, Stempel AJ et al. 2013. Role of the retinal vascular endothelial cell in ocular disease. Prog. Retin. Eye Res. 32:102–80
    [Google Scholar]
  10. Blair NP, Wanek J, Felder AE, Brewer KC, Joslin CE, Shahidi M. 2016. Inner retinal oxygen delivery, metabolism, and extraction fraction in Ins2Akita diabetic mice. Investig. Ophthalmol. Vis. Sci. 57:5903–9
    [Google Scholar]
  11. Branchini LA, Adhi M, Regatieri CV, Nandakumar N, Liu JJ et al. 2013. Analysis of choroidal morphologic features and vasculature in healthy eyes using spectral-domain optical coherence tomography. Ophthalmology 120:1901–8
    [Google Scholar]
  12. Braun RD, Linsenmeier RA, Goldstick TK. 1995. Oxygen consumption in the inner and outer retina of the cat. Investig. Ophthalmol. Vis. Sci. 36:542–54
    [Google Scholar]
  13. Bron AJ, Tripathi RC, Tripathi BJ. 2001. Wolff's Anatomy of the Eye and Orbit Oxford, UK: Oxford Univ. Press
  14. Brown WR. 2010. A review of string vessels or collapsed, empty basement membrane tubes. J. Alzheimers Dis. 21:725–39
    [Google Scholar]
  15. Burns SA, Elsner AE, Chui TY, VanNasdale DA, Clark CA et al. 2014. In vivo adaptive optics microvascular imaging in diabetic patients without clinically severe diabetic retinopathy. Biomed. Opt. Express 5:961–74
    [Google Scholar]
  16. Burns SA, Elsner AE, Sapoznik KA, Warner RL, Gast TJ. 2019. Adaptive optics imaging of the human retina. Prog. Retin. Eye Res. 68:1–30
    [Google Scholar]
  17. Campbell JP, Zhang M, Hwang TS, Bailey ST, Wilson DJ et al. 2017. Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography. Sci. Rep. 7:42201
    [Google Scholar]
  18. Caro CG, Pedley TJ, Schroter RC, Seed WA. 2012. The Mechanics of the Circulation Cambridge, UK: Cambridge Univ. Press
  19. Chamot SR, Cranstoun SD, Petrig BL, Pournaras CJ, Riva CE. 2003. Blood pO2 and blood flow at the optic disc. J. Biomed. Opt. 8:63–69
    [Google Scholar]
  20. Chan G, Balaratnasingam C, Yu PK, Morgan WH, McAllister IL et al. 2012. Quantitative morphometry of perifoveal capillary networks in the human retina. Investig. Ophthalmol. Vis. Sci. 53:5502–14
    [Google Scholar]
  21. Chan-Ling T, Gole GA, Quinn GE, Adamson SJ, Darlow BA. 2018. Pathophysiology, screening and treatment of ROP: a multi-disciplinary perspective. Prog. Retin. Eye Res. 62:77–119
    [Google Scholar]
  22. Cheung CYL, Zheng YF, Hsu W, Lee ML, Lau QP et al. 2011. Retinal vascular tortuosity, blood pressure, and cardiovascular risk factors. Ophthalmology 118:812–18
    [Google Scholar]
  23. Christoffersen NL, Larsen M. 1999. Pathophysiology and hemodynamics of branch retinal vein occlusion. Ophthalmology 106:2054–62
    [Google Scholar]
  24. Chui TYP, VanNasdale DA, Burns SA. 2012a. The use of forward scatter to improve retinal vascular imaging with an adaptive optics scanning laser ophthalmoscope. Biomed. Opt. Express 3:2537–49
    [Google Scholar]
  25. Chui TYP, VanNasdale DA, Elsner AE, Burns SA. 2014. The association between the foveal avascular zone and retinal thickness. Investig. Ophthalmol. Vis. Sci. 55:6870–77
    [Google Scholar]
  26. Chui TYP, Zhong ZY, Song HX, Burns SA. 2012b. Foveal avascular zone and its relationship to foveal pit shape. Optom. Vis. Sci. 89:602–10
    [Google Scholar]
  27. Cuenca N, Ortuno-Lizaran I, Sanchez-Saez X, Kutsyr O, Albertos-Arranz H et al. 2020. Interpretation of OCT and OCTA images from a histological approach: clinical and experimental implications. Prog. Retin. Eye Res. 77:100828
    [Google Scholar]
  28. de Castro A, Huang G, Sawides L, Luo T, Burns SA. 2016. Rapid high resolution imaging with a dual-channel scanning technique. Opt. Lett. 41:1881–84
    [Google Scholar]
  29. Delori FC. 1988. Noninvasive technique for oximetry of blood in retinal vessels. Appl. Opt. 27:1113–25
    [Google Scholar]
  30. Delori FC, Pflibsen KP. 1989. Spectral reflectance of the human ocular fundus. Appl. Opt. 28:1061–77
    [Google Scholar]
  31. Drummond, Heather A, Grifoni SC, Jernigan NL. 2008. A new trick for an old dogma: ENaC proteins as mechanotransducers in vascular smooth muscle. Physiology 23:23–31
    [Google Scholar]
  32. Duan A, Bedggood PA, Metha AB, Bui BV. 2017. Reactivity in the human retinal microvasculature measured during acute gas breathing provocations. Sci. Rep. 7:2113
    [Google Scholar]
  33. Elsner AE, Burns SA, Webb R, W, Hughes GW 1992. Reflectometry with a scanning laser ophthalmoscope. Appl. Opt. 31:3697–710
    [Google Scholar]
  34. Elsner AE, Burns SA, Weiter JJ, Delori FC. 1996. Infrared imaging of sub-retinal structures in the human ocular fundus. Vis. Res. 36:191–205
    [Google Scholar]
  35. Elsner AE, Dreher A, Beausencourt E, Burns S, Zhou Q, Webb RH. 1998. Multiply scattered light tomography: vertical cavity surface emitting laser array used for imaging subretinal structures. Lasers Light Ophthalmol 8:193–202
    [Google Scholar]
  36. Elsner AE, King BJ. 2015. Screening for macular disorders: the optometrist's perspective. Clin. Optom. 7:15–38
    [Google Scholar]
  37. Elsner AE, Miura M, Burns SA, Beausencourt E, Kunze C et al. 2000. Multiply scattered light tomography and confocal imaging: detecting neovascularization in age-related macular degeneration. Opt. Express 7:95–106
    [Google Scholar]
  38. Elsner AE, Papay JA, Johnston KD, Sawides L, de Castro A et al. 2020. Cones in ageing and harsh environments: the neural economy hypothesis. Ophthalmic Physiol. Opt. 40:88–116
    [Google Scholar]
  39. Elsner AE, Zhou Q, Beck F, Tornambe PE, Burns SA et al. 2001. Detecting AMD with multiply scattered light tomography. Int. Ophthalmol. 23:245–50
    [Google Scholar]
  40. Felder AE, Wanek J, Blair NP, Shahidi M. 2015. Inner retinal oxygen extraction fraction in response to light flicker stimulation in humans. Investig. Ophthalmol. Vis. Sci. 56:6633–37
    [Google Scholar]
  41. Fercher AF, Briers JD. 1981. Flow visualization by means of single-exposure speckle photography. Opt. Commun. 37:326–30
    [Google Scholar]
  42. Ferguson RD, Hammer DX, Elsner AE, Burns SA, Webb RH, Weiter JJ 2004. Wide-field stabilized Doppler flowmetry with the tracking scanning laser ophthalmoscope (TSLO). SPIE 5314: Ophthalmic Technologies XIV F Manns, PG Soderberg, A Ho 170–78 Bellingham, WA: SPIE
    [Google Scholar]
  43. Flower RW. 1973. Injection technique for indocyanine green dye and sodium fluorescein dye angiography of the eye. Investig. Ophthalmol. 12:881–95
    [Google Scholar]
  44. Frost S, Kanagasingam Y, Sohrabi H, Vignarajan J, Bourgeat P et al. 2013. Retinal vascular biomarkers for early detection and monitoring of Alzheimer's disease. Transl. Psychiatry 3:e233
    [Google Scholar]
  45. Fu X, Gens JS, Glazier JA, Burns SA, Gast TJ. 2016. Progression of diabetic capillary occlusion: a model. PLOS Comput. Biol. 12:e1004932
    [Google Scholar]
  46. Garhofer G, Zawinka C, Resch H, Kothy P, Schmetterer L, Dorner GT. 2004. Reduced response of retinal vessel diameters to flicker stimulation in patients with diabetes. Br. J. Ophthalmol. 88:887–90
    [Google Scholar]
  47. Grieve K, Tiruveedhula P, Zhang YH, Roorda A. 2006. Multi-wavelength imaging with the adaptive optics scanning laser ophthalmoscope. Opt. Express 14:12230–42
    [Google Scholar]
  48. Grunwald JE, Riva CE, Baine J, Brucker AJ. 1992. Total retinal volumetric blood-flow rate in diabetic patients with poor glycemic control. Investig. Ophthalmol. Vis. Sci. 33:356–63
    [Google Scholar]
  49. Gu BY, Wang XL, Twa MD, Tam J, Girkin CA, Zhang YH. 2018. Noninvasive in vivo characterization of erythrocyte motion in human retinal capillaries using high-speed adaptive optics near-confocal imaging. Biomed. Opt. Express 9:3653–77
    [Google Scholar]
  50. Gugleta K, Waldmann N, Polunina A, Kochkorov A, Katamay R et al. 2013. Retinal neurovascular coupling in patients with glaucoma and ocular hypertension and its association with the level of glaucomatous damage. Graefes Arch. Clin. Exp. Ophthalmol. 251:1577–85
    [Google Scholar]
  51. Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A et al. 2014. Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508:55–60
    [Google Scholar]
  52. Hammes HP, Lin JH, Renner O, Shani M, Lundqvist A et al. 2002. Pericytes and the pathogenesis of diabetic retinopathy. Diabetes 51:3107–12
    [Google Scholar]
  53. Hartnett ME, Weiter JJ, Staurenghi G, Elsner AE. 1996. Deep retinal vascular anomalous complexes in advanced age-related macular degeneration. Ophthalmology 103:2042–53
    [Google Scholar]
  54. Hermann B, Fernandez EJ, Unterhuber A, Sattmann H, Fercher AF et al. 2004. Adaptive-optics ultrahigh-resolution optical coherence tomography. Opt. Lett. 29:2142–44
    [Google Scholar]
  55. Hill RA, Tong L, Yuan P, Murikinati S, Gupta S, Grutzendler J. 2015. Regional blood flow in the normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary pericytes. Neuron 87:95–110
    [Google Scholar]
  56. Hillard JG, Gast TJ, Chui TY, Sapir D, Burns SA. 2016. Retinal arterioles in hypo-, normo-, and hypertensive subjects measured using adaptive optics. Transl. Vis. Sci. Technol. 5:16
    [Google Scholar]
  57. Hodge JV, Clemett RS. 1966. Improved method for fluorescence angiography of retina. Am. J. Ophthalmol. 61:1400–4
    [Google Scholar]
  58. Hormel TT, Jia Y, Jian Y, Hwang TS, Bailey ST et al. 2020. Plexus-specific retinal vascular anatomy and pathologies as seen by projection-resolved optical coherence tomographic angiography. Prog. Retin. Eye Res. 80:100878
    [Google Scholar]
  59. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG et al. 1991. Optical coherence tomography for micron-resolution imaging. Science 254:1178–81
    [Google Scholar]
  60. Huang F, Dashtbozorg B, Zhang J, Bekkers E, Abbasi-Sureshjani S et al. 2016. Reliability of using retinal vascular fractal dimension as a biomarker in the diabetic retinopathy detection. J. Ophthalmol. 2016:6259047
    [Google Scholar]
  61. Hughes AD, Martinez-Perez E, Jabbar AS, Hassan A, Witt NW et al. 2006. Quantification of topological changes in retinal vascular architecture in essential and malignant hypertension. J. Hypertens. 24:889–94
    [Google Scholar]
  62. Jiao SL, Jiang MS, Hu JM, Fawzi A, Zhou QF et al. 2010. Photoacoustic ophthalmoscopy for in vivo retinal imaging. Opt. Express 18:3967–72
    [Google Scholar]
  63. Jonnal RS, Kocaoglu OP, Zawadzki RJ, Liu ZL, Miller DT, Werner JS. 2016. A review of adaptive optics optical coherence tomography: technical advances, scientific applications, and the future. Investig. Ophthalmol. Vis. Sci. 57:OCT51–68
    [Google Scholar]
  64. Joseph A, Chu CJ, Feng G, Dholakia K, Schallek J 2020. Label-free imaging of immune cell dynamics in the living retina using adaptive optics. eLife 9:e60547
    [Google Scholar]
  65. Kashani AH, Chen CL, Gahm JK, Zheng F, Richter GM et al. 2017. Optical coherence tomography angiography: a comprehensive review of current methods and clinical applications. Prog. Retin. Eye Res. 60:66–100
    [Google Scholar]
  66. Koch E, Rosenbaum D, Brolly A, Sahel JA, Chaumet-Riffaud P et al. 2014. Morphometric analysis of small arteries in the human retina using adaptive optics imaging: relationship with blood pressure and focal vascular changes. J. Hypertens. 32:890–98
    [Google Scholar]
  67. Kur J, Newman EA, Chan-Ling T. 2012. Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease. Prog. Retin. Eye Res. 31:377–406
    [Google Scholar]
  68. Kurokawa K, Liu Z, Miller DT. 2017. Adaptive optics optical coherence tomography angiography for morphometric analysis of choriocapillaris [Invited]. Biomed. Opt. Express 8:1803–22
    [Google Scholar]
  69. Leitgeb RA, Schmetterer L, Hitzenberger CK, Fercher AF, Berisha F et al. 2004. Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography. Opt. Lett. 29:171–73
    [Google Scholar]
  70. Leitgeb RA, Werkmeister RM, Blatter C, Schmetterer L. 2014. Doppler optical coherence tomography. Prog. Retin. Eye Res. 41:26–43
    [Google Scholar]
  71. Liang J, Williams DR, Miller DT. 1997. Supernormal vision and high-resolution retinal imaging through adaptive optics. J. Opt. Soc. Am. A 14:2884–92
    [Google Scholar]
  72. Linsenmeier RA, Zhang HF. 2017. Retinal oxygen: from animals to humans. Prog. Retin. Eye Res. 58:115–51
    [Google Scholar]
  73. Liu T, Li H, Song W, Jiao SL, Zhang HF. 2013. Fundus camera guided photoacoustic ophthalmoscopy. Curr. Eye Res. 38:1229–34
    [Google Scholar]
  74. Lorthois S, Cassot F. 2010. Fractal analysis of vascular networks: insights from morphogenesis. J. Theor. Biol. 262:614–33
    [Google Scholar]
  75. Loscher W, Potschka H. 2005. Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Prog. Neurobiol. 76:22–76
    [Google Scholar]
  76. Luksch A, Garhöfer G, Imhof A, Polak K, Polska E et al. 2002. Effect of inhalation of different mixtures of O2 and CO2 on retinal blood flow. Br. J. Ophthalmol. 86:1143–47
    [Google Scholar]
  77. Luo T, Gast TJ, Vermeer TJ, Burns SA. 2017. Retinal vascular branching in healthy and diabetic subjects. Investig. Ophthalmol. Vis. Sci. 58:2685–94
    [Google Scholar]
  78. Lutty GA, McLeod DS, Bhutto IA, Edwards MM, Seddon JM. 2020. Choriocapillaris dropout in early age-related macular degeneration. Exp. Eye Res. 192:107939
    [Google Scholar]
  79. Makita S, Hong Y, Yamanari M, Yatagai T, Yasuno Y. 2006. Optical coherence angiography. Opt. Express 14:7821–40
    [Google Scholar]
  80. Malek J, Azar AT, Tourki R. 2015. Impact of retinal vascular tortuosity on retinal circulation. Neural Comput. Appl. 26:25–40
    [Google Scholar]
  81. Marcos S, Werner JS, Burns SA, Merigan WH, Artal P et al. 2017. Vision science and adaptive optics, the state of the field. Vis. Res. 132:3–33
    [Google Scholar]
  82. Martin JA, Roorda A. 2005. Direct and noninvasive assessment of parafoveal capillary leukocyte velocity. Ophthalmology 112:2219–24
    [Google Scholar]
  83. McDougal DH, Gamlin PD. 2014. Autonomic control of the eye. Compr. Physiol. 5:439–73
    [Google Scholar]
  84. Michelson G, Langhans MJ, Groh MJ. 1995. Clinical investigation of the combination of a scanning laser ophthalmoscope and laser Doppler flowmeter. J. Ophthalmol. 4:342–49
    [Google Scholar]
  85. Mujat M, Lu Y, Maguluri G, Zhao YB, Iftimia N, Ferguson RD. 2019. Visualizing the vasculature of the entire human eye posterior hemisphere without a contrast agent. Biomed. Opt. Express 10:167–80
    [Google Scholar]
  86. Muller MS, Elsner AE, Ozawa GY. 2015. Non-mydriatic confocal retinal imaging using a digital light projector. Proc. SPIE VII F Manns, PG Soderberg, A Ho, art. 93760E Bellingham, WA: SPIE
    [Google Scholar]
  87. Newman EA. 2013. Functional hyperemia and mechanisms of neurovascular coupling in the retinal vasculature. J. Cereb. Blood Flow Metab. 33:1685–95
    [Google Scholar]
  88. Novotny HR, Alvis DL. 1961. A method of photographing fluorescence in circulating blood in human retina. Circulation 24:82–86
    [Google Scholar]
  89. Olver JM. 1990. Functional anatomy of the choroidal circulation: methyl methacrylate casting of human choroid. Eye 4:262–72
    [Google Scholar]
  90. Orgul S. 2007. Blood flow in glaucoma. Br. J. Ophthalmol. 91:3–5
    [Google Scholar]
  91. Painter PR, Edén P, Bengtsson H-U. 2006. Pulsatile blood flow, shear force, energy dissipation and Murray's Law. Theor. Biol. Med. Model 3:31
    [Google Scholar]
  92. Palochak CMA, Lee HE, Song J, Geng A, Linsenmeier RA et al. 2019. Retinal blood velocity and flow in early diabetes and diabetic retinopathy using adaptive optics scanning laser ophthalmoscopy. J. Clin. Med. 8:1165
    [Google Scholar]
  93. Panico J, Sterling P. 1995. Retinal neurons and vessels are not fractal but space-filling. J. Comp. Neurol. 361:479–90
    [Google Scholar]
  94. Paques M, Meimon S, Rossant F, Rosenbaum D, Mrejen S et al. 2018. Adaptive optics ophthalmoscopy: application to age-related macular degeneration and vascular diseases. Prog. Retin. Eye Res. 66:1–16
    [Google Scholar]
  95. Park SS, Moisseiev E, Bauer G, Anderson JD, Grant MB et al. 2017. Advances in bone marrow stem cell therapy for retinal dysfunction. Prog. Retin. Eye Res. 56:148–65
    [Google Scholar]
  96. Petrig BL, Riva CE. 1988. Retinal laser Doppler velocimetry—toward its computer-assisted clinical use. Appl. Opt. 27:1126–34
    [Google Scholar]
  97. Pi SH, Hormel TT, Wei X, Cepurna W, Wang BJ et al. 2020. Retinal capillary oximetry with visible light optical coherence tomography. PNAS 117:11658–66
    [Google Scholar]
  98. Pinhas A, Dubow M, Shah N, Chui TY, Scoles D et al. 2013. In vivo imaging of human retinal microvasculature using adaptive optics scanning light ophthalmoscope fluorescein angiography. Biomed. Opt. Express 4:1305–17
    [Google Scholar]
  99. Pournaras CJ, Riva CE. 2013. Retinal blood flow evaluation. Ophthalmologica 229:61–74
    [Google Scholar]
  100. Pournaras CJ, Rungger-Brandle E, Riva CE, Hardarson H, Stefansson E. 2008. Regulation of retinal blood flow in health and disease. Prog. Retin. Eye Res. 37:284–330
    [Google Scholar]
  101. Pries AR, Neuhaus D, Gaehtgens P. 1992. Blood viscosity in tube flow—dependence on diameter and hematocrit. Am. J. Physiol. 263:H1770–78
    [Google Scholar]
  102. Pries AR, Secomb TW. 2014. Making microvascular networks work: angiogenesis, remodeling, and pruning. Physiology 29:446–55
    [Google Scholar]
  103. Quinn N, Csincsik L, Flynn E, Curcio CA, Kiss S et al. 2019. The clinical relevance of visualising the peripheral retina. Prog. Retin. Eye Res. 68:83–109
    [Google Scholar]
  104. Rha J, Jonnal RS, Thorn KE, Qu JL, Zhang Y, Miller DT. 2006. Adaptive optics flood-illumination camera for high speed retinal imaging. Opt. Express 14:4552–69
    [Google Scholar]
  105. Riva C, Benedek GB, Ross B 1972. Laser Doppler measurements of blood flow in capillary tubes and retinal arteries. Investig. Ophthalmol. 11:936–44
    [Google Scholar]
  106. Riva CE, Falsini B, Logean E. 2001. Flicker-evoked responses of human optic nerve head blood flow: luminance versus chromatic modulation. Investig. Ophthalmol. Vis. Sci. 42:756–62
    [Google Scholar]
  107. Riva CE, Feke GT, Eberli B, Benary V. 1979. Bidirectional LDV system for absolute measurement of blood speed in retinal vessels. Appl. Opt. 18:2301–6
    [Google Scholar]
  108. Riva CE, Grunwald JE, Sinclair SH, Petrig BL. 1985. Blood velocity and volumetric flow-rate in human retinal vessels. Investig. Ophthalmol. Vis. Sci. 26:1124–32
    [Google Scholar]
  109. Riva CE, Harino S, Petrig BL, Shonat RD. 1992. Laser Doppler flowmetry in the optic nerve. Exp. Eye Res. 55:499–506
    [Google Scholar]
  110. Riva CE, Logean E, Falsini B. 2005. Visually evoked hemodynamical response and assessment of neurovascular coupling in the optic nerve and retina. Prog. Retin. Eye Res. 24:183–215
    [Google Scholar]
  111. Rosenbaum D, Mattina A, Koch E, Rossant F, Gallo A et al. 2016. Effects of age, blood pressure and antihypertensive treatments on retinal arterioles remodeling assessed by adaptive optics. J. Hypertens. 34:1115–22
    [Google Scholar]
  112. Sapoznik KA, Luo T, De Castro A, Sawides L, Warner RL, Burns SA. 2018. Enhanced retinal vasculature imaging with a rapidly configurable aperture. Biomed. Opt. Express 9:1323–33
    [Google Scholar]
  113. Scarinci F, Nesper PL, Fawzi AA. 2016. Deep retinal capillary nonperfusion is associated with photoreceptor disruption in diabetic macular ischemia. Am. J. Ophthalmol. 168:129–38
    [Google Scholar]
  114. Shahidi M, Wanek J, Blair NP, Little DM, Wu TT. 2010. Retinal tissue oxygen tension imaging in the rat. Investig. Ophthalmol. Vis. Sci. 51:4766–70
    [Google Scholar]
  115. Shu X, Beckmann L, Zhang HF. 2017. Visible-light optical coherence tomography: a review. J. Biomed. Opt. 22:1–14
    [Google Scholar]
  116. Simonavicius N, Ashenden M, van Weverwijk A, Lax S, Huso DL et al. 2012. Pericytes promote selective vessel regression to regulate vascular patterning. Blood 120:1516–27
    [Google Scholar]
  117. Snodderly DM, Weinhaus RS. 1990. Retinal vasculature of the fovea of the squirrel monkey, Saimiri sciureus: three-dimensional architecture, visual screening, and relationships to the neuronal layers. J. Comp. Neurol. 297:145–63
    [Google Scholar]
  118. Snodderly DM, Weinhaus RS, Choi JC. 1992. Neural-vascular relationships in central retina of macaque monkeys (Macaca fascicularis). J. Neurosci. 12:1169–93
    [Google Scholar]
  119. Song W, Wei Q, Liu W, Liu T, Yi J et al. 2014. A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography. Sci. Rep. 4:6525
    [Google Scholar]
  120. Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G. 2018. Optical coherence tomography angiography. Prog. Retin. Eye Res. 64:1–55
    [Google Scholar]
  121. Stanton AV, Wasan B, Cerutti A, Ford S, Marsh R et al. 1995. Vascular network changes in the retina with age and hypertension. J. Hypertens. 13:1724–28
    [Google Scholar]
  122. Stefansson E, Olafsdottir OB, Eliasdottir TS, Vehmeijer W, Einarsdottir AB et al. 2019. Retinal oximetry: metabolic imaging for diseases of the retina and brain. Prog. Retin. Eye Res. 70:1–22
    [Google Scholar]
  123. Stone J, Itin A, Alon T, Peer J, Gnessin H et al. 1995. Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth-factor (VEGF) expression by neuroglia. J. Neurosci. 15:4738–47
    [Google Scholar]
  124. Stosic T, Stosic BD. 2006. Multifractal analysis of human retinal vessels. IEEE Trans. Med. Imaging 25:1101–7
    [Google Scholar]
  125. Tam J, Dhamdhere KP, Tiruveedhula P, Manzanera S, Barez S et al. 2011. Disruption of the retinal parafoveal capillary network in type 2 diabetes before the onset of diabetic retinopathy. Investig. Ophthalmol. Vis. Sci. 52:9257–66
    [Google Scholar]
  126. Tam J, Roorda A. 2011. Speed quantification and tracking of moving objects in adaptive optics scanning laser ophthalmoscopy. J. Biomed. Opt. 16:036002
    [Google Scholar]
  127. Van Norren D, Tiemeijer LF. 1986. Spectral reflectance of the human eye. Vis. Res. 26:313–20
    [Google Scholar]
  128. Venkataraman ST, Hudson C, Fisher JA, Rodrigues L, Mardimae A, Flanagan JG. 2008. Retinal arteriolar and capillary vascular reactivity in response to isoxic hypercapnia. Exp. Eye Res. 87:535–42
    [Google Scholar]
  129. Wang Q, Kocaoglu OP, Cense B, Bruestle J, Jonnal RS et al. 2011. Imaging retinal capillaries using ultrahigh-resolution optical coherence tomography and adaptive optics. Investig. Ophthalmol. Vis. Sci. 52:6292–99
    [Google Scholar]
  130. Wang YM, Bower BA, Izatt JA, Tan O, Huang D. 2008. Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography. J. Biomed. Opt. 13:064003
    [Google Scholar]
  131. Wangsa-Wirawan ND, Linsenmeier RA 2003. Retinal oxygen—fundamental and clinical aspects. Arch. Ophthalmol. 121:547–57
    [Google Scholar]
  132. Warner RL, de Castro A, Sawides L, Gast T, Sapoznik K et al. 2020. Full-field flicker evoked changes in parafoveal retinal blood flow. Sci. Rep. 10:16051
    [Google Scholar]
  133. Webb RH, Hughes GW, Delori FC. 1987. Confocal scanning laser ophthalmoscope. Appl. Opt. 26:1492–99
    [Google Scholar]
  134. Webb RH, Hughes GW, Pomerantzeff O. 1980. Flying spot TV ophthalmoscope. Appl. Opt. 19:2991–97
    [Google Scholar]
  135. Wei X, Hormel TT, Guo Y, Hwang TS, Jia Y. 2020. High-resolution wide-field OCT angiography with a self-navigation method to correct microsaccades and blinks. Biomed. Opt. Express 11:3234–45
    [Google Scholar]
  136. Werkmeister RM, Dragostinoff N, Pircher M, Gotzinger E, Hitzenberger CK et al. 2008. Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels. Opt. Lett. 33:2967–69
    [Google Scholar]
  137. Werkmeister RM, Schmidl D, Aschinger G, Doblhoff-Dier V, Palkovits S et al. 2015. Retinal oxygen extraction in humans. Sci. Rep. 5:15763
    [Google Scholar]
  138. Witmer MT, Kiss S. 2013. Wide-field imaging of the retina. Surv. Ophthalmol. 58:143–54
    [Google Scholar]
  139. Witt N, Wong TY, Hughes AD, Chaturvedi N, Klein BE et al. 2006. Abnormalities of retinal microvascular structure and risk of mortality from ischemic heart disease and stroke. Hypertension 47:975–81
    [Google Scholar]
  140. Wolf S, Arend O, Tonnen H, Bertram B, Jung F, Reim M 1991. Retinal capillary blood flow measurements by means of scanning laser ophthalmoscope preliminary results. Ophthalmology 98:996–1000
    [Google Scholar]
  141. Wolf S, Wald KJ, Elsner AE, Staurenghi G. 1993. Indocyanine green choroidal videoangiography: a comparison of imaging analysis with the scanning laser ophthalmoscope and the fundus camera. Retina 13:266–69
    [Google Scholar]
  142. Wong T, Mitchell P. 2007. The eye in hypertension. Lancet 369:425–35
    [Google Scholar]
  143. Xu HZ, Le YZ. 2011. Significance of outer blood-retina barrier breakdown in diabetes and ischemia. Investig. Ophthalmol. Vis. Sci. 52:2160–64
    [Google Scholar]
  144. Xu W, Grunwald JE, Metelitsina TI, Dupont JC, Ying GS et al. 2010. Association of risk factors for choroidal neovascularization in age-related macular degeneration with decreased foveolar choroidal circulation. Am. J. Ophthalmol. 150:40–47
    [Google Scholar]
  145. Yi J, Li X 2010. Estimation of oxygen saturation from erythrocytes by high-resolution spectroscopic optical coherence tomography. Opt. Lett. 35:2094–96
    [Google Scholar]
  146. Yu DY, Cringle SJ. 2001. Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease. Prog. Retin. Eye Res. 20:175–208
    [Google Scholar]
  147. Zamir M. 1999. On fractal properties of arterial trees. J. Theor. Biol. 197:517–26
    [Google Scholar]
  148. Zhang QQ, Huang YP, Zhang T, Kubach S, An L et al. 2015. Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking. J. Biomed. Opt. 20:066008
    [Google Scholar]
  149. Zhang QQ, Zheng F, Motulsky EH, Gregori G, Chu ZD et al. 2018. A novel strategy for quantifying choriocapillaris flow voids using swept-source OCT angiography. Investig. Ophthalmol. Vis. Sci 59:203–11
    [Google Scholar]
  150. Zhong ZY, Petrig BL, Qi XF, Burns SA. 2008. In vivo measurement of erythrocyte velocity and retinal blood flow using adaptive optics scanning laser ophthalmoscopy. Opt. Express 16:12746–56
    [Google Scholar]
  151. Zhong ZY, Song HX, Chui TYP, Petrig BL, Burns SA. 2011. Noninvasive measurements and analysis of blood velocity profiles in human retinal vessels. Investig. Ophthalmol. Vis. Sci. 52:4151–57
    [Google Scholar]
/content/journals/10.1146/annurev-vision-093019-113719
Loading
/content/journals/10.1146/annurev-vision-093019-113719
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error