1932

Abstract

Retinal circuits transform the pixel representation of photoreceptors into the feature representations of ganglion cells, whose axons transmit these representations to the brain. Functional, morphological, and transcriptomic surveys have identified more than 40 retinal ganglion cell (RGC) types in mice. RGCs extract features of varying complexity; some simply signal local differences in brightness (i.e., luminance contrast), whereas others detect specific motion trajectories. To understand the retina, we need to know how retinal circuits give rise to the diverse RGC feature representations. A catalog of the RGC feature set, in turn, is fundamental to understanding visual processing in the brain. Anterograde tracing indicates that RGCs innervate more than 50 areas in the mouse brain. Current maps connecting RGC types to brain areas are rudimentary, as is our understanding of how retinal signals are transformed downstream to guide behavior. In this article, I review the feature selectivities of mouse RGCs, how they arise, and how they are utilized downstream. Not only is knowledge of the behavioral purpose of RGC signals critical for understanding the retinal contributions to vision; it can also guide us to the most relevant areas of visual feature space.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-100419-112009
2022-09-15
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/vision/8/1/annurev-vision-100419-112009.html?itemId=/content/journals/10.1146/annurev-vision-100419-112009&mimeType=html&fmt=ahah

Literature Cited

  1. Ahmadlou M, Heimel JA. 2015. Preference for concentric orientations in the mouse superior colliculus. Nat. Commun. 6:6773
    [Google Scholar]
  2. Antinucci P, Hindges R. 2018. Orientation-selective retinal circuits in vertebrates. Front. Neural Circuits 12:11
    [Google Scholar]
  3. Applebury ML, Antoch MP, Baxter LC, Chun LL, Falk JD et al. 2000. The murine cone photoreceptor: a single cone type expresses both S and M opsins with retinal spatial patterning. Neuron 27:3513–23
    [Google Scholar]
  4. Aranda ML, Schmidt TM. 2020. Diversity of intrinsically photosensitive retinal ganglion cells: circuits and functions. Cell. Mol. Life Sci. 78:3889–907
    [Google Scholar]
  5. Baccus SA, Olveczky BP, Manu M, Meister M. 2008. A retinal circuit that computes object motion. J. Neurosci. 28:276807–17
    [Google Scholar]
  6. Baden T, Berens P, Franke K, Román Rosón M, Bethge M, Euler T 2016. The functional diversity of retinal ganglion cells in the mouse. Nature 529:7586345–50
    [Google Scholar]
  7. Baden T, Euler T, Berens P. 2020. Understanding the retinal basis of vision across species. Nat. Rev. Neurosci. 21:15–20
    [Google Scholar]
  8. Baden T, Schubert T, Chang L, Wei T, Zaichuk M et al. 2013. A tale of two retinal domains: near-optimal sampling of achromatic contrasts in natural scenes through asymmetric photoreceptor distribution. Neuron 80:51206–17
    [Google Scholar]
  9. Bae JA, Mu S, Kim JS, Turner NL, Tartavull I et al. 2018. Digital museum of retinal ganglion cells with dense anatomy and physiology. Cell 173:51293–306.e19
    [Google Scholar]
  10. Barlow HB, Hill RM. 1963. Selective sensitivity to direction of movement in ganglion cells of the rabbit retina. Science 139:3553412–14
    [Google Scholar]
  11. Barlow HB, Hill RM, Levick WR. 1964. Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit. J. Physiol. 173:377–407
    [Google Scholar]
  12. Barlow HB, Levick WR. 1965. The mechanism of directionally selective units in rabbit's retina. J. Physiol. 178:3477–504
    [Google Scholar]
  13. Beaulé C, Mitchell JW, Lindberg PT, Damadzic R, Eiden LE, Gillette MU. 2009. Temporally restricted role of retinal PACAP: integration of the phase-advancing light signal to the SCN. J. Biol. Rhythms 24:2126–34
    [Google Scholar]
  14. Berson DM, Dunn FA, Takao M. 2002. Phototransduction by retinal ganglion cells that set the circadian clock. Science 295:55571070–73
    [Google Scholar]
  15. Blanchard DC, Williams G, Lee EMC, Blanchard RJ. 1981. Taming of wild Rattus norvegicus by lesions of the mesencephalic central gray. Physiol. Psychol. 9:2157–63
    [Google Scholar]
  16. Bleckert A, Schwartz GW, Turner MH, Rieke F, Wong ROL. 2014. Visual space is represented by nonmatching topographies of distinct mouse retinal ganglion cell types. Curr. Biol. 24:3310–15
    [Google Scholar]
  17. Bloomfield SA. 1994. Orientation-sensitive amacrine and ganglion cells in the rabbit retina. J. Neurophysiol. 71:51672–91
    [Google Scholar]
  18. Borbély AA. 1978. Effects of light on sleep and activity rhythms. Prog. Neurobiol. 10:11–31
    [Google Scholar]
  19. Borghuis BG, Marvin JS, Looger LL, Demb JB. 2013. Two-photon imaging of nonlinear glutamate release dynamics at bipolar cell synapses in the mouse retina. J. Neurosci. 33:2710972–85
    [Google Scholar]
  20. Boycott BB, Wässle H. 1974. The morphological types of ganglion cells of the domestic cat's retina. J. Physiol. 240:2397–419
    [Google Scholar]
  21. Breuninger T, Puller C, Haverkamp S, Euler T. 2011. Chromatic bipolar cell pathways in the mouse retina. J. Neurosci. 31:176504–17
    [Google Scholar]
  22. Briggman KL, Helmstaedter M, Denk W. 2011. Wiring specificity in the direction-selectivity circuit of the retina. Nature 471:7337183–88
    [Google Scholar]
  23. Brüggen B, Meyer A, Boven F, Weiler R, Dedek K. 2015. Type 2 wide-field amacrine cells in TH::GFP mice show a homogenous synapse distribution and contact small ganglion cells. Eur. J. Neurosci. 41:6734–47
    [Google Scholar]
  24. Brzezinski JA, Brown NL, Tanikawa A, Bush RA, Sieving PA et al. 2005. Loss of circadian photoentrainment and abnormal retinal electrophysiology in Math5 mutant mice. Investig. Ophthalmol. Vis. Sci. 46:72540–51
    [Google Scholar]
  25. Cang J, Savier E, Barchini J, Liu X. 2018. Visual function, organization, and development of the mouse superior colliculus. Annu. Rev. Vis. Sci. 4:239–62
    [Google Scholar]
  26. Cartmill M. 1974. Rethinking primate origins. Science 184:4135436–43
    [Google Scholar]
  27. Chandrasekaran AR, Shah RD, Crair MC. 2007. Developmental homeostasis of mouse retinocollicular synapses. J. Neurosci. 27:71746–55
    [Google Scholar]
  28. Chang L, Breuninger T, Euler T. 2013. Chromatic coding from cone-type unselective circuits in the mouse retina. Neuron 77:3559–71
    [Google Scholar]
  29. Chen M, Lee S, Park SJH, Looger LL, Zhou ZJ. 2014. Receptive field properties of bipolar cell axon terminals in direction-selective sublaminas of the mouse retina. J. Neurophysiol. 112:81950–62
    [Google Scholar]
  30. Chen M, Lee S, Zhou ZJ. 2017. Local synaptic integration enables ON-OFF asymmetric and layer-specific visual information processing in vGluT3 amacrine cell dendrites. PNAS 114:4311518–23
    [Google Scholar]
  31. Chen S-K, Badea TC, Hattar S. 2011. Photoentrainment and pupillary light reflex are mediated by distinct populations of ipRGCs. Nature 476:735892–95
    [Google Scholar]
  32. Chichilnisky EJ, Baylor DA. 1999. Receptive-field microstructure of blue-yellow ganglion cells in primate retina. Nat. Neurosci. 2:10889–93
    [Google Scholar]
  33. Colwell CS, Michel S, Itri J, Rodriguez W, Tam J et al. 2004. Selective deficits in the circadian light response in mice lacking PACAP. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287:5R1194–201
    [Google Scholar]
  34. Cooler S, Schwartz GW. 2020. An offset ON-OFF receptive field is created by gap junctions between distinct types of retinal ganglion cells. Nat. Neurosci. 24:105–15
    [Google Scholar]
  35. Cruz-Martín A, El-Danaf RN, Osakada F, Sriram B, Dhande OS et al. 2014. A dedicated circuit links direction-selective retinal ganglion cells to the primary visual cortex. Nature 507:7492358–61
    [Google Scholar]
  36. Czeisler CA, Shanahan TL, Klerman EB, Martens H, Brotman DJ et al. 1995. Suppression of melatonin secretion in some blind patients by exposure to bright light. N. Engl. J. Med. 332:16–11
    [Google Scholar]
  37. Dacey DM, Lee BB. 1994. The “blue-on” opponent pathway in primate retina originates from a distinct bistratified ganglion cell type. Nature 367:6465731–35
    [Google Scholar]
  38. Dacey DM, Petersen MR. 1992. Dendritic field size and morphology of midget and parasol ganglion cells of the human retina. PNAS 89:209666–70
    [Google Scholar]
  39. De Franceschi G, Vivattanasarn T, Saleem AB, Solomon SG. 2016. Vision guides selection of freeze or flight defense strategies in mice. Curr. Biol. 26:162150–54
    [Google Scholar]
  40. de Malmazet D, Kühn NK, Farrow K. 2018. Retinotopic separation of nasal and temporal motion selectivity in the mouse superior colliculus. Curr. Biol. 28:182961–69.e4
    [Google Scholar]
  41. de Monasterio FM. 1978. Properties of ganglion cells with atypical receptive-field organization in retina of macaques. J. Neurophysiol. 41:61435–49
    [Google Scholar]
  42. Dean P, Redgrave P, Westby GW. 1989. Event or emergency? Two response systems in the mammalian superior colliculus. Trends Neurosci 12:4137–47
    [Google Scholar]
  43. Della Santina L, Kuo SP, Yoshimatsu T, Okawa H, Suzuki SC et al. 2016. Glutamatergic monopolar interneurons provide a novel pathway of excitation in the mouse retina. Curr. Biol. 26:152070–77
    [Google Scholar]
  44. Delorme A, Richard G, Fabre-Thorpe M. 2000. Ultra-rapid categorisation of natural scenes does not rely on colour cues: a study in monkeys and humans. Vis. Res. 40:162187–200
    [Google Scholar]
  45. Demb JB, Singer JH. 2015. Functional circuitry of the retina. Annu. Rev. Vis. Sci. 1:263–89
    [Google Scholar]
  46. Denman DJ, Luviano JA, Ollerenshaw DR, Cross S, Williams D et al. 2018. Mouse color and wavelength-specific luminance contrast sensitivity are non-uniform across visual space. eLife 7:e31209
    [Google Scholar]
  47. Denman DJ, Siegle JH, Koch C, Reid RC, Blanche TJ. 2017. Spatial organization of chromatic pathways in the mouse dorsal lateral geniculate nucleus. J. Neurosci. 37:51102–16
    [Google Scholar]
  48. Dhande OS, Estevez ME, Quattrochi LE, El-Danaf RN, Nguyen PL et al. 2013. Genetic dissection of retinal inputs to brainstem nuclei controlling image stabilization. J. Neurosci. 33:4517797–813
    [Google Scholar]
  49. Diamond JS. 2017. Inhibitory interneurons in the retina: types, circuitry, and function. Annu. Rev. Vis. Sci. 3:1–24
    [Google Scholar]
  50. Ding H, Smith RG, Poleg-Polsky A, Diamond JS, Briggman KL. 2016. Species-specific wiring for direction selectivity in the mammalian retina. Nature 535:7610105–10
    [Google Scholar]
  51. Do MTH. 2019. Melanopsin and the intrinsically photosensitive retinal ganglion cells: biophysics to behavior. Neuron 104:2205–26
    [Google Scholar]
  52. Do MTH, Yau K-W. 2010. Intrinsically photosensitive retinal ganglion cells. Physiol. Rev. 90:41547–81
    [Google Scholar]
  53. Dräger UC, Olsen JF. 1981. Ganglion cell distribution in the retina of the mouse. Investig. Ophthalmol. Vis. Sci. 20:3285–93
    [Google Scholar]
  54. Dumitrescu ON, Pucci FG, Wong KY, Berson DM. 2009. Ectopic retinal ON bipolar cell synapses in the OFF inner plexiform layer: contacts with dopaminergic amacrine cells and melanopsin ganglion cells. J. Comp. Neurol. 517:2226–44
    [Google Scholar]
  55. Ebihara S, Tsuji K. 1980. Entrainment of the circadian activity rhythm to the light cycle: effective light intensity for a Zeitgeber in the retinal degenerate C3H mouse and the normal C57BL mouse. Physiol. Behav. 24:3523–27
    [Google Scholar]
  56. Ecker JL, Dumitrescu ON, Wong KY, Alam NM, Chen S-K et al. 2010. Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision. Neuron 67:149–60
    [Google Scholar]
  57. El-Danaf RN, Huberman AD 2019. Sub-topographic maps for regionally enhanced analysis of visual space in the mouse retina. J. Comp. Neurol. 527:1259–69
    [Google Scholar]
  58. Ellis EM, Gauvain G, Sivyer B, Murphy GJ. 2016. Shared and distinct retinal input to the mouse superior colliculus and dorsal lateral geniculate nucleus. J. Neurophysiol. 116:2602–10
    [Google Scholar]
  59. Elstrott J, Anishchenko A, Greschner M, Sher A, Litke AM et al. 2008. Direction selectivity in the retina is established independent of visual experience and cholinergic retinal waves. Neuron 58:4499–506
    [Google Scholar]
  60. Emanuel AJ, Kapur K, Do MTH. 2017. Biophysical variation within the M1 type of ganglion cell photoreceptor. Cell Rep 21:41048–62
    [Google Scholar]
  61. Engelund A, Fahrenkrug J, Harrison A, Hannibal J 2010. Vesicular glutamate transporter 2 (VGLUT2) is co-stored with PACAP in projections from the rat melanopsin-containing retinal ganglion cells. Cell Tissue Res 340:2243–55
    [Google Scholar]
  62. Euler T, Detwiler PB, Denk W. 2002. Directionally selective calcium signals in dendrites of starburst amacrine cells. Nature 418:6900845–52
    [Google Scholar]
  63. Euler T, Haverkamp S, Schubert T, Baden T. 2014. Retinal bipolar cells: elementary building blocks of vision. Nat. Rev. Neurosci. 15:8507–19
    [Google Scholar]
  64. Evans DA, Stempel AV, Vale R, Branco T 2019. Cognitive control of escape behaviour. Trends Cogn. Sci. 23:4334–48
    [Google Scholar]
  65. Evans DA, Stempel AV, Vale R, Ruehle S, Lefler Y, Branco T. 2018. A synaptic threshold mechanism for computing escape decisions. Nature 558:7711590–94
    [Google Scholar]
  66. Famiglietti EV. 1991. Synaptic organization of starburst amacrine cells in rabbit retina: analysis of serial thin sections by electron microscopy and graphic reconstruction. J. Comp. Neurol. 309:140–70
    [Google Scholar]
  67. Faulstich BM, Onori KA, du Lac S. 2004. Comparison of plasticity and development of mouse optokinetic and vestibulo-ocular reflexes suggests differential gain control mechanisms. Vis. Res. 44:283419–27
    [Google Scholar]
  68. Feinberg EH, Meister M. 2015. Orientation columns in the mouse superior colliculus. Nature 519:7542229–32
    [Google Scholar]
  69. Fernandez DC, Fogerson PM, Lazzerini Ospri L, Thomsen MB, Layne RM et al. 2018. Light affects mood and learning through distinct retina-brain pathways. Cell 175:171–84.e18
    [Google Scholar]
  70. Fiscella M, Franke F, Farrow K, Müller J, Roska B et al. 2015. Visual coding with a population of direction-selective neurons. J. Neurophysiol. 114:42485–99
    [Google Scholar]
  71. Fotowat H, Gabbiani F. 2011. Collision detection as a model for sensory-motor integration. Annu. Rev. Neurosci. 34:1–19
    [Google Scholar]
  72. Franke K, Berens P, Schubert T, Bethge M, Euler T, Baden T. 2017. Inhibition decorrelates visual feature representations in the inner retina. Nature 542:7642439–44
    [Google Scholar]
  73. Fransen JW, Borghuis BG. 2017. Temporally diverse excitation generates direction-selective responses in ON- and OFF-type retinal starburst amacrine cells. Cell Rep 18:61356–65
    [Google Scholar]
  74. Freedman MS, Lucas RJ, Soni B, von Schantz M, Muñoz M et al. 1999. Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science 284:5413502–4
    [Google Scholar]
  75. Fried SI, Münch TA, Werblin FS. 2002. Mechanisms and circuitry underlying directional selectivity in the retina. Nature 420:6914411–14
    [Google Scholar]
  76. Frost BJ. 2010. A taxonomy of different forms of visual motion detection and their underlying neural mechanisms. Brain Behav. Evol. 75:3218–35
    [Google Scholar]
  77. Gale SD, Murphy GJ. 2014. Distinct representation and distribution of visual information by specific cell types in mouse superficial superior colliculus. J. Neurosci. 34:4013458–71
    [Google Scholar]
  78. Gale SD, Murphy GJ. 2016. Active dendritic properties and local inhibitory input enable selectivity for object motion in mouse superior colliculus neurons. J. Neurosci. 36:359111–23
    [Google Scholar]
  79. Gauvain G, Murphy GJ. 2015. Projection-specific characteristics of retinal input to the brain. J. Neurosci. 35:166575–83
    [Google Scholar]
  80. Göz D, Studholme K, Lappi DA, Rollag MD, Provencio I, Morin LP. 2008. Targeted destruction of photosensitive retinal ganglion cells with a saporin conjugate alters the effects of light on mouse circadian rhythms. PLOS ONE 3:9e3153
    [Google Scholar]
  81. Greene MJ, Kim JS, Seung HS, EyeWirers. 2016. Analogous convergence of sustained and transient inputs in parallel On and Off pathways for retinal motion computation. Cell Rep 14:81892–900
    [Google Scholar]
  82. Grimes WN, Schwartz GW, Rieke F. 2014. The synaptic and circuit mechanisms underlying a change in spatial encoding in the retina. Neuron 82:2460–73
    [Google Scholar]
  83. Grubb MS, Thompson ID. 2003. Quantitative characterization of visual response properties in the mouse dorsal lateral geniculate nucleus. J. Neurophysiol. 90:63594–607
    [Google Scholar]
  84. Güler AD, Ecker JL, Lall GS, Haq S, Altimus CM et al. 2008. Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. Nature 453:7191102–5
    [Google Scholar]
  85. Hammer S, Monavarfeshani A, Lemon T, Su J, Fox MA. 2015. Multiple retinal axons converge onto relay cells in the adult mouse thalamus. Cell Rep 12:101575–83
    [Google Scholar]
  86. Hannibal J, Hindersson P, Knudsen SM, Georg B, Fahrenkrug J 2002. The photopigment melanopsin is exclusively present in pituitary adenylate cyclase-activating polypeptide-containing retinal ganglion cells of the retinohypothalamic tract. J. Neurosci. 22:1RC191
    [Google Scholar]
  87. Hatori M, Le H, Vollmers C, Keding SR, Tanaka N et al. 2008. Inducible ablation of melanopsin-expressing retinal ganglion cells reveals their central role in non-image forming visual responses. PLOS ONE 3:6e2451
    [Google Scholar]
  88. Hattar S, Kumar M, Park A, Tong P, Tung J et al. 2006. Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J. Comp. Neurol. 497:3326–49
    [Google Scholar]
  89. Hattar S, Liao HW, Takao M, Berson DM, Yau KW. 2002. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295:55571065–70
    [Google Scholar]
  90. Hausselt SE, Euler T, Detwiler PB, Denk W. 2007. A dendrite-autonomous mechanism for direction selectivity in retinal starburst amacrine cells. PLOS Biol 5:7e185
    [Google Scholar]
  91. Haverkamp S, Wässle H, Duebel J, Kuner T, Augustine GJ et al. 2005. The primordial, blue-cone color system of the mouse retina. J. Neurosci. 25:225438–45
    [Google Scholar]
  92. Helmstaedter M, Briggman KL, Turaga SC, Jain V, Seung HS, Denk W. 2013. Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature 500:7461168–74
    [Google Scholar]
  93. Hillier D, Fiscella M, Drinnenberg A, Trenholm S, Rompani SB et al. 2017. Causal evidence for retina-dependent and -independent visual motion computations in mouse cortex. Nat. Neurosci. 20:960–68
    [Google Scholar]
  94. Hofbauer A, Dräger UC. 1985. Depth segregation of retinal ganglion cells projecting to mouse superior colliculus. J. Comp. Neurol. 234:4465–74
    [Google Scholar]
  95. Hoggarth A, McLaughlin AJ, Ronellenfitch K, Trenholm S, Vasandani R et al. 2015. Specific wiring of distinct amacrine cells in the directionally selective retinal circuit permits independent coding of direction and size. Neuron 86:1276–91
    [Google Scholar]
  96. Hong YK, Burr EF, Sanes JR, Chen C. 2018. Heterogeneity of retinogeniculate axon arbors. Eur. J. Neurosci. 49:7948–56
    [Google Scholar]
  97. Hong YK, Kim I-J, Sanes JR. 2011. Stereotyped axonal arbors of retinal ganglion cell subsets in the mouse superior colliculus. J. Comp. Neurol. 519:91691–711
    [Google Scholar]
  98. Hoshi H, Liu W-L, Massey SC, Mills SL. 2009. ON inputs to the OFF layer: bipolar cells that break the stratification rules of the retina. J. Neurosci. 29:288875–83
    [Google Scholar]
  99. Hoy JL, Bishop HI, Niell CM. 2019. Defined cell types in superior colliculus make distinct contributions to prey capture behavior in the mouse. Curr. Biol. 29:234130–38.e5
    [Google Scholar]
  100. Hsiang J-C, Johnson KP, Madisen L, Zeng H, Kerschensteiner D 2017. Local processing in neurites of VGluT3-expressing amacrine cells differentially organizes visual information. eLife 6:e31307
    [Google Scholar]
  101. Huang L, Xi Y, Peng Y, Yang Y, Huang X et al. 2019. A visual circuit related to habenula underlies the antidepressive effects of light therapy. Neuron 102:1128–42.e8
    [Google Scholar]
  102. Huang L, Yuan T, Tan M, Xi Y, Hu Y et al. 2017. A retinoraphe projection regulates serotonergic activity and looming-evoked defensive behaviour. Nat. Commun. 8:14908
    [Google Scholar]
  103. Huang X, Huang P, Huang L, Hu Z, Liu X et al. 2021. A visual circuit related to the nucleus reuniens for the spatial-memory-promoting effects of light treatment. Neuron 109:2347–62.e7
    [Google Scholar]
  104. Hubel DH, Wiesel TN. 1962. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. 160:106–54
    [Google Scholar]
  105. Huberman AD, Manu M, Koch SM, Susman MW, Lutz AB et al. 2008. Architecture and activity-mediated refinement of axonal projections from a mosaic of genetically identified retinal ganglion cells. Neuron 59:3425–38
    [Google Scholar]
  106. Huberman AD, Wei W, Elstrott J, Stafford BK, Feller MB, Barres BA. 2009. Genetic identification of an On-Off direction-selective retinal ganglion cell subtype reveals a layer-specific subcortical map of posterior motion. Neuron 62:3327–34
    [Google Scholar]
  107. Inayat S, Barchini J, Chen H, Feng L, Liu X, Cang J. 2015. Neurons in the most superficial lamina of the mouse superior colliculus are highly selective for stimulus direction. J. Neurosci. 35:207992–8003
    [Google Scholar]
  108. Ito S, Feldheim DA. 2018. The mouse superior colliculus: an emerging model for studying circuit formation and function. Front. Neural Circuits 12:10
    [Google Scholar]
  109. Ito S, Feldheim DA, Litke AM. 2017. Segregation of visual response properties in the mouse superior colliculus and their modulation during locomotion. J. Neurosci. 37:358428–43
    [Google Scholar]
  110. Ivanova E, Lee P, Pan Z-H. 2013. Characterization of multiple bistratified retinal ganglion cells in a Purkinje cell protein 2-Cre transgenic mouse line. J. Comp. Neurol. 521:92165–80
    [Google Scholar]
  111. Jacoby J, Schwartz GW. 2017. Three small-receptive-field ganglion cells in the mouse retina are distinctly tuned to size, speed, and object motion. J. Neurosci. 37:3610–25
    [Google Scholar]
  112. Jacoby J, Schwartz GW. 2018. Typology and circuitry of suppressed-by-contrast retinal ganglion cells. Front. Cell. Neurosci. 12:269
    [Google Scholar]
  113. Jacoby J, Zhu Y, DeVries SH, Schwartz GW. 2015. An amacrine cell circuit for signaling steady illumination in the retina. Cell Rep 13:122663–70
    [Google Scholar]
  114. Jeon CJ, Strettoi E, Masland RH. 1998. The major cell populations of the mouse retina. J. Neurosci. 18:218936–46
    [Google Scholar]
  115. Jiang Z, Yue WWS, Chen L, Sheng Y, Yau K-W. 2018. Cyclic-nucleotide- and HCN-channel-mediated phototransduction in intrinsically photosensitive retinal ganglion cells. Cell 175:3652–64.e12
    [Google Scholar]
  116. Joesch M, Meister M. 2016. A neuronal circuit for colour vision based on rod-cone opponency. Nature 532:7598236–39
    [Google Scholar]
  117. Johnson KP, Zhao L, Kerschensteiner D. 2018. A pixel-encoder retinal ganglion cell with spatially offset excitatory and inhibitory receptive fields. Cell Rep 22:61462–72
    [Google Scholar]
  118. Johnston J, Seibel S-H, Darnet LSA, Renninger S, Orger M, Lagnado L. 2019. A retinal circuit generating a dynamic predictive code for oriented features. Neuron 102:61211–22.e3
    [Google Scholar]
  119. Kaplan E 2008. Luminance sensitivity and contrast detection. The Senses: A Comprehensive Reference, Vol. 2 RH Masland, TD Albright, P Dallos, D Oertel, S Firestein et al.29–43 Amsterdam: Elsevier
    [Google Scholar]
  120. Kawaguchi C, Isojima Y, Shintani N, Hatanaka M, Guo X et al. 2010. PACAP-deficient mice exhibit light parameter-dependent abnormalities on nonvisual photoreception and early activity onset. PLOS ONE 5:2e9286
    [Google Scholar]
  121. Kawaguchi C, Tanaka K, Isojima Y, Shintani N, Hashimoto H et al. 2003. Changes in light-induced phase shift of circadian rhythm in mice lacking PACAP. Biochem. Biophys. Res. Commun. 310:1169–75
    [Google Scholar]
  122. Kay JN, De la Huerta I, Kim I-J, Zhang Y, Yamagata M et al. 2011. Retinal ganglion cells with distinct directional preferences differ in molecular identity, structure, and central projections. J. Neurosci. 31:217753–62
    [Google Scholar]
  123. Keenan WT, Rupp AC, Ross RA, Somasundaram P, Hiriyanna S et al. 2016. A visual circuit uses complementary mechanisms to support transient and sustained pupil constriction. eLife 5:e15392
    [Google Scholar]
  124. Kerschensteiner D, Guido W. 2017. Organization of the dorsal lateral geniculate nucleus in the mouse. Vis. Neurosci. 34:E008
    [Google Scholar]
  125. Kim I-J, Zhang Y, Meister M, Sanes JR. 2010. Laminar restriction of retinal ganglion cell dendrites and axons: subtype-specific developmental patterns revealed with transgenic markers. J. Neurosci. 30:41452–62
    [Google Scholar]
  126. Kim I-J, Zhang Y, Yamagata M, Meister M, Sanes JR. 2008. Molecular identification of a retinal cell type that responds to upward motion. Nature 452:7186478–82
    [Google Scholar]
  127. Kim JS, Greene MJ, Zlateski A, Lee K, Richardson M et al. 2014. Space-time wiring specificity supports direction selectivity in the retina. Nature 509:7500331–36
    [Google Scholar]
  128. Kim T, Kerschensteiner D. 2017. Inhibitory control of feature selectivity in an object motion sensitive circuit of the retina. Cell Rep 19:71343–50
    [Google Scholar]
  129. Kim T, Shen N, Hsiang J-C, Johnson KP, Kerschensteiner D. 2020. Dendritic and parallel processing of visual threats in the retina control defensive responses. Sci. Adv. 6:47eabc9920
    [Google Scholar]
  130. Kim T, Soto F, Kerschensteiner D 2015. An excitatory amacrine cell detects object motion and provides feature-selective input to ganglion cells in the mouse retina. eLife 4:e08025
    [Google Scholar]
  131. Kingdom FAA, Prins N. 2016. Psychophysics: A Practical Introduction Cambridge, MA: Academic
  132. Knop GC, Feigenspan A, Weiler R, Dedek K. 2011. Inputs underlying the ON-OFF light responses of type 2 wide-field amacrine cells in TH::GFP mice. J. Neurosci. 31:134780–91
    [Google Scholar]
  133. Koren D, Grove JCR, Wei W. 2017. Cross-compartmental modulation of dendritic signals for retinal direction selectivity. Neuron 95:4914–27.e4
    [Google Scholar]
  134. Krauzlis RJ, Lovejoy LP, Zénon A. 2013. Superior colliculus and visual spatial attention. Annu. Rev. Neurosci. 36:165–82
    [Google Scholar]
  135. Krieger B, Qiao M, Rousso DL, Sanes JR, Meister M. 2017. Four alpha ganglion cell types in mouse retina: function, structure, and molecular signatures. PLOS ONE 12:7e0180091
    [Google Scholar]
  136. Krishnaswamy A, Yamagata M, Duan X, Hong YK, Sanes JR. 2015. Sidekick 2 directs formation of a retinal circuit that detects differential motion. Nature 524:7566466–70
    [Google Scholar]
  137. Kuffler SW. 1953. Discharge patterns and functional organization of mammalian retina. J. Neurophysiol. 16:137–68
    [Google Scholar]
  138. Kuo SP, Schwartz GW, Rieke F. 2016. Nonlinear spatiotemporal integration by electrical and chemical synapses in the retina. Neuron 90:2320–32
    [Google Scholar]
  139. Lazzerini Ospri L, Prusky G, Hattar S 2017. Mood, the circadian system, and melanopsin retinal ganglion cells. Annu. Rev. Neurosci. 40:539–56
    [Google Scholar]
  140. Lee KH, Tran A, Turan Z, Meister M 2020. The sifting of visual information in the superior colliculus. eLife 9:e50678
    [Google Scholar]
  141. Lee S, Chen L, Chen M, Ye M, Seal RP, Zhou ZJ. 2014. An unconventional glutamatergic circuit in the retina formed by vGluT3 amacrine cells. Neuron 84:4708–15
    [Google Scholar]
  142. Lee S, Kim K, Zhou ZJ. 2010. Role of ACh-GABA cotransmission in detecting image motion and motion direction. Neuron 68:61159–72
    [Google Scholar]
  143. Lee S, Zhang Y, Chen M, Zhou ZJ 2016. Segregated glycine-glutamate co-transmission from vGluT3 amacrine cells to contrast-suppressed and contrast-enhanced retinal circuits. Neuron 90:127–34
    [Google Scholar]
  144. Lee S, Zhou ZJ. 2006. The synaptic mechanism of direction selectivity in distal processes of starburst amacrine cells. Neuron 51:6787–99
    [Google Scholar]
  145. Lee SK, Sonoda T, Schmidt TM. 2019. M1 intrinsically photosensitive retinal ganglion cells integrate rod and melanopsin inputs to signal in low light. Cell Rep 29:113349–55.e2
    [Google Scholar]
  146. LeGates TA, Altimus CM, Wang H, Lee H-K, Yang S et al. 2012. Aberrant light directly impairs mood and learning through melanopsin-expressing neurons. Nature 491:7425594–98
    [Google Scholar]
  147. Levick WR. 1967. Receptive fields and trigger features of ganglion cells in the visual streak of the rabbit's retina. J. Physiol. 188:3285–307
    [Google Scholar]
  148. Levine JN, Schwartz GW. 2020. The olivary pretectal nucleus receives visual input of high spatial resolution. bioRxiv 2020.06.23.168054. https://doi.org/10.1101/2020.06.23.168054
    [Crossref]
  149. Liang F, Xiong XR, Zingg B, Ji X-Y, Zhang LI, Tao HW 2015. Sensory cortical control of a visually induced arrest behavior via corticotectal projections. Neuron 86:3755–67
    [Google Scholar]
  150. Liang L, Chen C. 2020. Organization, function, and development of the mouse retinogeniculate synapse. Annu. Rev. Vis. Sci. 6:261–85
    [Google Scholar]
  151. Liang L, Fratzl A, Goldey G, Ramesh RN, Sugden AU et al. 2018. A fine-scale functional logic to convergence from retina to thalamus. Cell 173:61343–55.e24
    [Google Scholar]
  152. Lien AD, Scanziani M. 2013. Tuned thalamic excitation is amplified by visual cortical circuits. Nat. Neurosci. 16:91315–23
    [Google Scholar]
  153. Lien AD, Scanziani M. 2018. Cortical direction selectivity emerges at convergence of thalamic synapses. Nature 558:770880–86
    [Google Scholar]
  154. Lilley BN, Sabbah S, Hunyara JL, Gribble KD, Al-Khindi T et al. 2019. Genetic access to neurons in the accessory optic system reveals a role for Sema6A in midbrain circuitry mediating motion perception. J. Comp. Neurol. 527:1282–96
    [Google Scholar]
  155. Litvina EY, Chen C. 2017. Functional convergence at the retinogeniculate synapse. Neuron 96:2330–38.e5
    [Google Scholar]
  156. Liu B-H, Li P, Sun YJ, Li Y-T, Zhang LI, Tao HW. 2010. Intervening inhibition underlies simple-cell receptive field structure in visual cortex. Nat. Neurosci. 13:189–96
    [Google Scholar]
  157. Lucas RJ, Freedman MS, Muñoz M, Garcia-Fernández JM, Foster RG. 1999. Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors. Science 284:5413505–7
    [Google Scholar]
  158. Lupi D, Oster H, Thompson S, Foster RG. 2008. The acute light-induction of sleep is mediated by OPN4-based photoreception. Nat. Neurosci. 11:91068–73
    [Google Scholar]
  159. Mani A, Schwartz GW. 2017. Circuit mechanisms of a retinal ganglion cell with stimulus-dependent response latency and activation beyond its dendrites. Curr. Biol. 27:4471–82
    [Google Scholar]
  160. Margolis DJ, Detwiler PB. 2007. Different mechanisms generate maintained activity in ON and OFF retinal ganglion cells. J. Neurosci. 27:225994–6005
    [Google Scholar]
  161. Marshel JH, Kaye AP, Nauhaus I, Callaway EM. 2012. Anterior-posterior direction opponency in the superficial mouse lateral geniculate nucleus. Neuron 76:4713–20
    [Google Scholar]
  162. Martersteck EM, Hirokawa KE, Evarts M, Bernard A, Duan X et al. 2017. Diverse central projection patterns of retinal ganglion cells. Cell Rep 18:82058–72
    [Google Scholar]
  163. Masland RH. 2001. The fundamental plan of the retina. Nat. Neurosci. 4:9877–86
    [Google Scholar]
  164. Masland RH, Martin PR. 2007. The unsolved mystery of vision. Curr. Biol. 17:15R577–82
    [Google Scholar]
  165. Matsumoto A, Agbariah W, Nolte SS, Andrawos R, Levi H et al. 2020. Synapse-specific direction selectivity in retinal bipolar cell axon terminals. bioRxiv 2020.10.12.335810. https://doi.org/10.1101/2020.10.12.335810
    [Crossref]
  166. Matsumoto A, Briggman KL, Yonehara K. 2019. Spatiotemporally asymmetric excitation supports mammalian retinal motion sensitivity. Curr. Biol. 29:193277–88.e5
    [Google Scholar]
  167. Maturana HR, Frenk S. 1963. Directional movement and horizontal edge detectors in the pigeon retina. Science 142:3594977–79
    [Google Scholar]
  168. Mauss AS, Vlasits A, Borst A, Feller M. 2017. Visual circuits for direction selectivity. Annu. Rev. Neurosci. 40:211–30
    [Google Scholar]
  169. Meyer AF, O'Keefe J, Poort J 2020. Two distinct types of eye-head coupling in freely moving mice. Curr. Biol. 30:112116–30.e6
    [Google Scholar]
  170. Meyer AF, Poort J, O'Keefe J, Sahani M, Linden JF 2018. A head-mounted camera system integrates detailed behavioral monitoring with multichannel electrophysiology in freely moving mice. Neuron 100:146–60.e7
    [Google Scholar]
  171. Michaiel AM, Abe ETT, Niell CM 2020. Dynamics of gaze control during prey capture in freely moving mice. eLife 9:e57458
    [Google Scholar]
  172. Milner ES, Do MTH. 2017. A population representation of absolute light intensity in the mammalian retina. Cell 171:4865–76.e16
    [Google Scholar]
  173. Monavarfeshani A, Sabbagh U, Fox MA. 2017. Not a one-trick pony: diverse connectivity and functions of the rodent lateral geniculate complex. Vis. Neurosci. 34:E012
    [Google Scholar]
  174. Morgan JL, Berger DR, Wetzel AW, Lichtman JW. 2016. The fuzzy logic of network connectivity in mouse visual thalamus. Cell 165:1192–206
    [Google Scholar]
  175. Morgan JL, Soto F, Wong ROL, Kerschensteiner D. 2011. Development of cell type-specific connectivity patterns of converging excitatory axons in the retina. Neuron 71:61014–21
    [Google Scholar]
  176. Morin LP, Studholme KM. 2014. Retinofugal projections in the mouse. J. Comp. Neurol. 522:163733–53
    [Google Scholar]
  177. Morrie RD, Feller MB. 2018. A dense starburst plexus is critical for generating direction selectivity. Curr. Biol. 28:81204–12.e5
    [Google Scholar]
  178. Münch TA, da Silveira RA, Siegert S, Viney TJ, Awatramani GB, Roska B. 2009. Approach sensitivity in the retina processed by a multifunctional neural circuit. Nat. Neurosci. 12:101308–16
    [Google Scholar]
  179. Murphy GJ, Rieke F. 2006. Network variability limits stimulus-evoked spike timing precision in retinal ganglion cells. Neuron 52:3511–24
    [Google Scholar]
  180. Murphy GJ, Rieke F. 2011. Electrical synaptic input to ganglion cells underlies differences in the output and absolute sensitivity of parallel retinal circuits. J. Neurosci. 31:3412218–28
    [Google Scholar]
  181. Murphy-Baum BL, Taylor WR 2015. The synaptic and morphological basis of orientation selectivity in a polyaxonal amacrine cell of the rabbit retina. J. Neurosci. 35:3913336–50
    [Google Scholar]
  182. Nadal-Nicolás FM, Kunze VP, Ball JM, Peng BT, Krishnan A et al. 2020. True S-cones are concentrated in the ventral mouse retina and wired for color detection in the upper visual field. eLife 9:e56840
    [Google Scholar]
  183. Nath A, Schwartz GW. 2016. Cardinal orientation selectivity is represented by two distinct ganglion cell types in mouse retina. J. Neurosci. 36:113208–21
    [Google Scholar]
  184. Nath A, Schwartz GW. 2017. Electrical synapses convey orientation selectivity in the mouse retina. Nat. Commun. 8:2025
    [Google Scholar]
  185. Ng L, Hurley JB, Dierks B, Srinivas M, Saltó C et al. 2001. A thyroid hormone receptor that is required for the development of green cone photoreceptors. Nat. Genet. 27:194–98
    [Google Scholar]
  186. Niell CM. 2013. Vision: more than expected in the early visual system. Curr. Biol. 23:16R681–84
    [Google Scholar]
  187. Niell CM, Stryker MP. 2010. Modulation of visual responses by behavioral state in mouse visual cortex. Neuron 65:4472–79
    [Google Scholar]
  188. Olveczky BP, Baccus SA, Meister M. 2003. Segregation of object and background motion in the retina. Nature 423:6938401–8
    [Google Scholar]
  189. Osterhout JA, Stafford BK, Nguyen PL, Yoshihara Y, Huberman AD. 2015. Contactin-4 mediates axon-target specificity and functional development of the accessory optic system. Neuron 86:4985–99
    [Google Scholar]
  190. Pang J-J, Gao F, Wu SM. 2003. Light-evoked excitatory and inhibitory synaptic inputs to ON and OFF α ganglion cells in the mouse retina. J. Neurosci. 23:146063–73
    [Google Scholar]
  191. Park SJH, Kim I-J, Looger LL, Demb JB, Borghuis BG. 2014. Excitatory synaptic inputs to mouse on-off direction-selective retinal ganglion cells lack direction tuning. J. Neurosci. 34:113976–81
    [Google Scholar]
  192. Park SJH, Pottackal J, Ke J-B, Jun NY, Rahmani P et al. 2018. Convergence and divergence of CRH amacrine cells in mouse retinal circuitry. J. Neurosci. 38:153753–66
    [Google Scholar]
  193. Pearson JT, Kerschensteiner D. 2015. Ambient illumination switches contrast preference of specific retinal processing streams. J. Neurophysiol. 114:1540–50
    [Google Scholar]
  194. Peek MY, Card GM. 2016. Comparative approaches to escape. Curr. Opin. Neurobiol. 41:167–73
    [Google Scholar]
  195. Pei Z, Chen Q, Koren D, Giammarinaro B, Acaron Ledesma H, Wei W 2015. Conditional knock-out of vesicular GABA transporter gene from starburst amacrine cells reveals the contributions of multiple synaptic mechanisms underlying direction selectivity in the retina. J. Neurosci. 35:3813219–32
    [Google Scholar]
  196. Peichl L, Buhl EH, Boycott BB. 1987. Alpha ganglion cells in the rabbit retina. J. Comp. Neurol. 263:125–41
    [Google Scholar]
  197. Pettigrew JD 1986. Evolution of binocular vision. Visual Neuroscience JD Pettigrew, KJ Sanderson, WR Levick 208–22 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  198. Piscopo DM, El-Danaf RN, Huberman AD, Niell CM. 2013. Diverse visual features encoded in mouse lateral geniculate nucleus. J. Neurosci. 33:114642–56
    [Google Scholar]
  199. Poleg-Polsky A, Ding H, Diamond JS. 2018. Functional compartmentalization within starburst amacrine cell dendrites in the retina. Cell Rep 22:112898–908
    [Google Scholar]
  200. Provencio I, Jiang G, De Grip WJ, Hayes WP, Rollag MD. 1998. Melanopsin: an opsin in melanophores, brain, and eye. PNAS 95:1340–45
    [Google Scholar]
  201. Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD. 2000. A novel human opsin in the inner retina. J. Neurosci. 20:2600–5
    [Google Scholar]
  202. Quattrochi LE, Stabio ME, Kim I, Ilardi MC, Fogerson PM et al. 2018. The M6 cell: a small-field bistratified photosensitive retinal ganglion cell. J. Comp. Neurol. 527:1297–311
    [Google Scholar]
  203. Rasmussen R, Matsumoto A, Dahlstrup Sietam M, Yonehara K 2020. A segregated cortical stream for retinal direction selectivity. Nat. Commun. 11:831
    [Google Scholar]
  204. Rasmussen R, Yonehara K. 2020. Contributions of retinal direction selectivity to central visual processing. Curr. Biol. 30:15R897–903
    [Google Scholar]
  205. Reinhard K, Kühn NK, Farrow K 2020. Direction selectivity in the retina and beyond. The Senses: A Comprehensive Reference B Fritzsch 423–46 Amsterdam: Elsevier. , 2nd ed..
    [Google Scholar]
  206. Reinhard K, Li C, Do Q, Burke EG, Heynderickx S, Farrow K 2019. A projection specific logic to sampling visual inputs in mouse superior colliculus. eLife 8:e50697
    [Google Scholar]
  207. Rheaume BA, Jereen A, Bolisetty M, Sajid MS, Yang Y et al. 2018. Single cell transcriptome profiling of retinal ganglion cells identifies cellular subtypes. Nat. Commun. 9:2759
    [Google Scholar]
  208. Rieke F, Rudd ME. 2009. The challenges natural images pose for visual adaptation. Neuron 64:5605–16
    [Google Scholar]
  209. Rivlin-Etzion M, Zhou K, Wei W, Elstrott J, Nguyen PL et al. 2011. Transgenic mice reveal unexpected diversity of on-off direction-selective retinal ganglion cell subtypes and brain structures involved in motion processing. J. Neurosci. 31:248760–69
    [Google Scholar]
  210. Rodieck RW. 1967. Receptive fields in the cat retina: a new type. Science 157:378490–92
    [Google Scholar]
  211. Román Rosón M, Bauer Y, Kotkat AH, Berens P, Euler T, Busse L. 2019. Mouse dLGN receives functional input from a diverse population of retinal ganglion cells with limited convergence. Neuron 102:2462–76.e8
    [Google Scholar]
  212. Rompani SB, Müllner FE, Wanner A, Zhang C, Roth CN et al. 2017. Different modes of visual integration in the lateral geniculate nucleus revealed by single-cell-initiated transsynaptic tracing. Neuron 93:4767–76.e6
    [Google Scholar]
  213. Rousso DL, Qiao M, Kagan RD, Yamagata M, Palmiter RD, Sanes JR. 2016. Two pairs of ON and OFF retinal ganglion cells are defined by intersectional patterns of transcription factor expression. Cell Rep 15:91930–44
    [Google Scholar]
  214. Rupp AC, Ren M, Altimus CM, Fernandez DC, Richardson M et al. 2019. Distinct ipRGC subpopulations mediate light's acute and circadian effects on body temperature and sleep. eLife 8:e44358
    [Google Scholar]
  215. Sabbah S, Gemmer JA, Bhatia-Lin A, Manoff G, Castro G et al. 2017. A retinal code for motion along the gravitational and body axes. Nature 546:7659492–97
    [Google Scholar]
  216. Sabbah S, Papendorp C, Koplas E, Beltoja M. 2018. Synaptic circuits for irradiance coding by intrinsically photosensitive retinal ganglion cells. bioRxiv 442954. https://doi.org/10.1101/442954
    [Crossref]
  217. Sahibzada N, Dean P, Redgrave P. 1986. Movements resembling orientation or avoidance elicited by electrical stimulation of the superior colliculus in rats. J. Neurosci. 6:3723–33
    [Google Scholar]
  218. Sanes JR, Zipursky SL. 2010. Design principles of insect and vertebrate visual systems. Neuron 66:115–36
    [Google Scholar]
  219. Schmidt TM, Alam NM, Chen S, Kofuji P, Li W et al. 2014. A role for melanopsin in alpha retinal ganglion cells and contrast detection. Neuron 82:4781–88
    [Google Scholar]
  220. Scholl B, Tan AYY, Corey J, Priebe NJ 2013. Emergence of orientation selectivity in the mammalian visual pathway. J. Neurosci. 33:2610616–24
    [Google Scholar]
  221. Schwartz GW, Okawa H, Dunn FA, Morgan JL, Kerschensteiner D et al. 2012. The spatial structure of a nonlinear receptive field. Nat. Neurosci. 15:111572–80
    [Google Scholar]
  222. Schwartz GW, Swygart D 2020. Circuits for feature selectivity in the inner retina. The Senses: A Comprehensive Reference B Fritzsch 275–92 Amsterdam: Elsevier. , 2nd ed..
    [Google Scholar]
  223. Sethuramanujam S, McLaughlin AJ, deRosenroll G, Hoggarth A, Schwab DJ, Awatramani GB 2016. A central role for mixed acetylcholine/GABA transmission in direction coding in the retina. Neuron 90:61243–56
    [Google Scholar]
  224. Shang C, Chen Z, Liu A, Li Y, Zhang J et al. 2018. Divergent midbrain circuits orchestrate escape and freezing responses to looming stimuli in mice. Nat. Commun. 9:1232
    [Google Scholar]
  225. Shang C, Liu Z, Chen Z, Shi Y, Wang Q et al. 2015. A parvalbumin-positive excitatory visual pathway to trigger fear responses in mice. Science 348:62421472–77
    [Google Scholar]
  226. Shekhar K, Lapan SW, Whitney IE, Tran NM, Macosko EZ et al. 2016. Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell 166:51308–23.e30
    [Google Scholar]
  227. Shen N, Wang B, Soto F, Kerschensteiner D. 2020. Homeostatic plasticity shapes the retinal response to photoreceptor degeneration. Curr. Biol. 30:101916–26.e3
    [Google Scholar]
  228. Sher A, DeVries SH. 2012. A non-canonical pathway for mammalian blue-green color vision. Nat. Neurosci. 15:7952–53
    [Google Scholar]
  229. Shi X, Barchini J, Ledesma HA, Koren D, Jin Y et al. 2017. Retinal origin of direction selectivity in the superior colliculus. Nat. Neurosci. 20:4550–58
    [Google Scholar]
  230. Sillar KT, Picton LD, Heitler WJ. 2016. The Neuroethology of Predation and Escape Hoboken, NJ: Wiley
  231. Simpson JI. 1984. The accessory optic system. Annu. Rev. Neurosci. 7:13–41
    [Google Scholar]
  232. Sinha R, Hoon M, Baudin J, Okawa H, Wong ROL, Rieke F. 2017. Cellular and circuit mechanisms shaping the perceptual properties of the primate fovea. Cell 168:3413–26.e12
    [Google Scholar]
  233. Sivyer B, Taylor WR, Vaney DI. 2010. Uniformity detector retinal ganglion cells fire complex spikes and receive only light-evoked inhibition. PNAS 107:125628–33
    [Google Scholar]
  234. Sivyer B, Vaney DI. 2010. Dendritic morphology and tracer-coupling pattern of physiologically identified transient uniformity detector ganglion cells in rabbit retina. Vis. Neurosci. 27:5–6159–70
    [Google Scholar]
  235. Smeds L, Takeshita D, Turunen T, Tihonen J, Westö J et al. 2019. Paradoxical rules of spike train decoding revealed at the sensitivity limit of vision. Neuron 104:3576–87
    [Google Scholar]
  236. Sonoda T, Lee SK, Birnbaumer L, Schmidt TM. 2018. Melanopsin phototransduction is repurposed by ipRGC subtypes to shape the function of distinct visual circuits. Neuron 99:4754–67.e4
    [Google Scholar]
  237. Sonoda T, Li JY, Hayes NW, Chan JC, Okabe Y et al. 2020. A noncanonical inhibitory circuit dampens behavioral sensitivity to light. Science 368:6490527–31
    [Google Scholar]
  238. Soto F, Hsiang J-C, Rajagopal R, Piggott K, Harocopos GJ et al. 2020. Efficient coding by midget and parasol ganglion cells in the human retina. Neuron 107:4656–66.e5
    [Google Scholar]
  239. Soto F, Tien N-W, Goel A, Zhao L, Ruzycki PA, Kerschensteiner D. 2019. AMIGO2 scales dendrite arbors in the retina. Cell Rep 29:61568–78.e4
    [Google Scholar]
  240. Stabio ME, Sabbah S, Quattrochi LE, Ilardi MC, Fogerson PM et al. 2017. The M5 cell: a color-opponent intrinsically photosensitive retinal ganglion cell. Neuron 97:1150–63.e4
    [Google Scholar]
  241. Stone LS, Watson AB, Mulligan JB. 1990. Effect of contrast on the perceived direction of a moving plaid. Vis. Res. 30:71049–67
    [Google Scholar]
  242. Sun H, Frost BJ. 1998. Computation of different optical variables of looming objects in pigeon nucleus rotundus neurons. Nat. Neurosci. 1:4296–303
    [Google Scholar]
  243. Sun LO, Brady CM, Cahill H, Al-Khindi T, Sakuta H et al. 2015. Functional assembly of accessory optic system circuitry critical for compensatory eye movements. Neuron 86:4971–84
    [Google Scholar]
  244. Sun W, Li N, He S. 2002. Large-scale morphological survey of mouse retinal ganglion cells. J. Comp. Neurol. 451:2115–26
    [Google Scholar]
  245. Suresh V, Çiftçioğlu UM, Wang X, Lala BM, Ding KR et al. 2016. Synaptic contributions to receptive field structure and response properties in the rodent lateral geniculate nucleus of the thalamus. J. Neurosci. 36:4310949–63
    [Google Scholar]
  246. Szatko KP, Korympidou MM, Ran Y, Berens P, Dalkara D et al. 2020. Neural circuits in the mouse retina support color vision in the upper visual field. Nat. Commun. 11:3481
    [Google Scholar]
  247. Tailby C, Solomon SG, Dhruv NT, Majaj NJ, Sokol SH, Lennie P 2007. A new code for contrast in the primate visual pathway. J. Neurosci. 27:143904–9
    [Google Scholar]
  248. Tarpey P, Thomas S, Sarvananthan N, Mallya U, Lisgo S et al. 2006. Mutations in FRMD7, a newly identified member of the FERM family, cause X-linked idiopathic congenital nystagmus. Nat. Genet. 38:111242–44
    [Google Scholar]
  249. Tien N-W, Kim T, Kerschensteiner D 2016. Target-specific glycinergic transmission from VGluT3-expressing amacrine cells shapes suppressive contrast responses in the retina. Cell Rep 15:71369–75
    [Google Scholar]
  250. Tien N-W, Pearson JT, Heller CR, Demas J, Kerschensteiner D. 2015. Genetically identified suppressed-by-contrast retinal ganglion cells reliably signal self-generated visual stimuli. J. Neurosci. 35:3010815–20
    [Google Scholar]
  251. Tien N-W, Soto F, Kerschensteiner D. 2017. Homeostatic plasticity shapes cell-type-specific wiring in the retina. Neuron 94:3656–65.e4
    [Google Scholar]
  252. Tran NM, Shekhar K, Whitney IE, Jacobi A, Benhar I et al. 2019. Single-cell profiles of retinal ganglion cells differing in resilience to injury reveal neuroprotective genes. Neuron 104:61039–55.e12
    [Google Scholar]
  253. Trenholm S, McLaughlin AJ, Schwab DJ, Turner MH, Smith RG et al. 2014. Nonlinear dendritic integration of electrical and chemical synaptic inputs drives fine-scale correlations. Nat. Neurosci. 17:121759–66
    [Google Scholar]
  254. Trenholm S, Schwab DJ, Balasubramanian V, Awatramani GB. 2013. Lag normalization in an electrically coupled neural network. Nat. Neurosci. 16:2154–56
    [Google Scholar]
  255. Turner MH, Sanchez Giraldo LG, Schwartz O, Rieke F. 2019. Stimulus- and goal-oriented frameworks for understanding natural vision. Nat. Neurosci. 22:115–24
    [Google Scholar]
  256. Vale R, Campagner D, Iordanidou P, Arocas OP, Tan YL et al. 2020. A cortico-collicular circuit for accurate orientation to shelter during escape. bioRxiv 2020.05.26.117598. https://doi.org/10.1101/2020.05.26.117598
    [Crossref]
  257. Vale R, Evans DA, Branco T. 2017. Rapid spatial learning controls instinctive defensive behavior in mice. Curr. Biol. 27:91342–49
    [Google Scholar]
  258. Van Gelder RN, Buhr ED. 2016. Ocular photoreception for circadian rhythm entrainment in mammals. Annu. Rev. Vis. Sci. 2:153–69
    [Google Scholar]
  259. van Wyk M, Rowland Taylor W, Vaney DI 2006. Local edge detectors: a substrate for fine spatial vision at low temporal frequencies in rabbit retina. J. Neurosci. 26:5113250–63
    [Google Scholar]
  260. Vitek DJ, Schall JD, Leventhal AG. 1985. Morphology, central projections, and dendritic field orientation of retinal ganglion cells in the ferret. J. Comp. Neurol. 241:11–11
    [Google Scholar]
  261. Vlasits AL, Bos R, Morrie RD, Fortuny C, Flannery JG et al. 2014. Visual stimulation switches the polarity of excitatory input to starburst amacrine cells. Neuron 83:51172–84
    [Google Scholar]
  262. Vlasits AL, Morrie RD, Tran-Van-Minh A, Bleckert A, Gainer CF et al. 2016. A role for synaptic input distribution in a dendritic computation of motion direction in the retina. Neuron 89:61317–30
    [Google Scholar]
  263. Wang L, Sarnaik R, Rangarajan K, Liu X, Cang J. 2010. Visual receptive field properties of neurons in the superficial superior colliculus of the mouse. J. Neurosci. 30:4916573–84
    [Google Scholar]
  264. Wang Q, Burkhalter A. 2013. Stream-related preferences of inputs to the superior colliculus from areas of dorsal and ventral streams of mouse visual cortex. J. Neurosci. 33:41696–705
    [Google Scholar]
  265. Wang YV, Weick M, Demb JB. 2011. Spectral and temporal sensitivity of cone-mediated responses in mouse retinal ganglion cells. J. Neurosci. 31:217670–81
    [Google Scholar]
  266. Wässle H. 2004. Parallel processing in the mammalian retina. Nat. Rev. Neurosci. 5:10747–57
    [Google Scholar]
  267. Wee R, Castrucci AM, Provencio I, Gan L, Van Gelder RN. 2002. Loss of photic entrainment and altered free-running circadian rhythms in math5−/− mice. J. Neurosci. 22:2310427–33
    [Google Scholar]
  268. Wei P, Liu N, Zhang Z, Liu X, Tang Y et al. 2015. Processing of visually evoked innate fear by a non-canonical thalamic pathway. Nat. Commun. 6:6756
    [Google Scholar]
  269. Wei W. 2018. Neural mechanisms of motion processing in the mammalian retina. Annu. Rev. Vis. Sci. 4:165–92
    [Google Scholar]
  270. Wei W, Hamby AM, Zhou K, Feller MB. 2011. Development of asymmetric inhibition underlying direction selectivity in the retina. Nature 469:7330402–6
    [Google Scholar]
  271. Weng S, Sun W, He S. 2005. Identification of ON–OFF direction-selective ganglion cells in the mouse retina. J. Physiol. 562:3915–23
    [Google Scholar]
  272. Yan W, Laboulaye MA, Tran NM, Whitney IE, Benhar I, Sanes JR. 2020. Mouse retinal cell atlas: molecular identification of over sixty amacrine cell types. J. Neurosci. 40:275177–95
    [Google Scholar]
  273. Yao X, Cafaro J, McLaughlin AJ, Postma FR, Paul DL et al. 2018. Gap junctions contribute to differential light adaptation across direction-selective retinal ganglion cells. Neuron 100:1216–28.e6
    [Google Scholar]
  274. Yilmaz M, Meister M. 2013. Rapid innate defensive responses of mice to looming visual stimuli. Curr. Biol. 23:202011–15
    [Google Scholar]
  275. Yonehara K, Balint K, Noda M, Nagel G, Bamberg E, Roska B. 2011. Spatially asymmetric reorganization of inhibition establishes a motion-sensitive circuit. Nature 469:7330407–10
    [Google Scholar]
  276. Yonehara K, Farrow K, Ghanem A, Hillier D, Balint K et al. 2013. The first stage of cardinal direction selectivity is localized to the dendrites of retinal ganglion cells. Neuron 79:61078–85
    [Google Scholar]
  277. Yonehara K, Fiscella M, Drinnenberg A, Esposti F, Trenholm S et al. 2016. Congenital nystagmus gene FRMD7 is necessary for establishing a neuronal circuit asymmetry for direction selectivity. Neuron 89:1177–93
    [Google Scholar]
  278. Yonehara K, Ishikane H, Sakuta H, Shintani T, Nakamura-Yonehara K et al. 2009. Identification of retinal ganglion cells and their projections involved in central transmission of information about upward and downward image motion. PLOS ONE 4:1e4320
    [Google Scholar]
  279. Yonehara K, Shintani T, Suzuki R, Sakuta H, Takeuchi Y et al. 2008. Expression of SPIG1 reveals development of a retinal ganglion cell subtype projecting to the medial terminal nucleus in the mouse. PLOS ONE 3:2e1533
    [Google Scholar]
  280. Yoshida K, Watanabe D, Ishikane H, Tachibana M, Pastan I, Nakanishi S. 2001. A key role of starburst amacrine cells in originating retinal directional selectivity and optokinetic eye movement. Neuron 30:3771–80
    [Google Scholar]
  281. Zaghloul KA, Boahen K, Demb JB. 2003. Different circuits for ON and OFF retinal ganglion cells cause different contrast sensitivities. J. Neurosci. 23:72645–54
    [Google Scholar]
  282. Zaidi FH, Hull JT, Peirson SN, Wulff K, Aeschbach D et al. 2007. Short-wavelength light sensitivity of circadian, pupillary, and visual awareness in humans lacking an outer retina. Curr. Biol. 17:242122–28
    [Google Scholar]
  283. Zeater N, Cheong SK, Solomon SG, Dreher B, Martin PR. 2015. Binocular visual responses in the primate lateral geniculate nucleus. Curr. Biol. 25:243190–95
    [Google Scholar]
  284. Zhang Y, Kim I-J, Sanes JR, Meister M. 2012. The most numerous ganglion cell type of the mouse retina is a selective feature detector. PNAS 109:36E2391–98
    [Google Scholar]
  285. Zhao X, Chen H, Liu X, Cang J. 2013. Orientation-selective responses in the mouse lateral geniculate nucleus. J. Neurosci. 33:3112751–63
    [Google Scholar]
  286. Zhao X, Liu M, Cang J. 2014a. Visual cortex modulates the magnitude but not the selectivity of looming-evoked responses in the superior colliculus of awake mice. Neuron 84:1202–13
    [Google Scholar]
  287. Zhao X, Stafford BK, Godin AL, King WM, Wong KY. 2014b. Photoresponse diversity among the five types of intrinsically photosensitive retinal ganglion cells. J. Physiol. 592:71619–36
    [Google Scholar]
  288. Zhou Z, Liu X, Chen S, Zhang Z, Liu Y et al. 2019. A VTA GABAergic neural circuit mediates visually evoked innate defensive responses. Neuron 103:3473–88.e6
    [Google Scholar]
  289. Zhu Y, Xu J, Hauswirth WW, DeVries SH. 2014. Genetically targeted binary labeling of retinal neurons. J. Neurosci. 34:237845–61
    [Google Scholar]
  290. Zingg B, Chou X-L, Zhang Z-G, Mesik L, Liang F et al. 2017. AAV-mediated anterograde transsynaptic tagging: mapping corticocollicular input-defined neural pathways for defense behaviors. Neuron 93:133–47
    [Google Scholar]
/content/journals/10.1146/annurev-vision-100419-112009
Loading
/content/journals/10.1146/annurev-vision-100419-112009
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error