1932

Abstract

Multifaceted and divergent manifestations across tissues and cell types have curtailed advances in deciphering the cellular events that accompany advanced age and contribute to morbidities and mortalities. Increase in human lifespan during the past century has heightened awareness of the need to prevent age-associated frailty of neuronal and sensory systems to allow a healthy and productive life. In this review, we discuss molecular and physiological attributes of aging of the retina, with a goal of understanding age-related impairment of visual function. We highlight the epigenome–metabolism nexus and proteostasis as key contributors to retinal aging and discuss lifestyle changes as potential modulators of retinal function. Finally, we deliberate promising intervention strategies for promoting healthy aging of the retina for improved vision.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-100419-114940
2021-09-15
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/vision/7/1/annurev-vision-100419-114940.html?itemId=/content/journals/10.1146/annurev-vision-100419-114940&mimeType=html&fmt=ahah

Literature Cited

  1. Age-Relat. Eye Dis. Study Res. Group 2001. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch. Ophthalmol. 119:1417–36
    [Google Scholar]
  2. Aggarwal P, Nag TC, Wadhwa S. 2007. Age-related decrease in rod bipolar cell density of the human retina: an immunohistochemical study. J. Biosci. 32:293–98
    [Google Scholar]
  3. Aldiri I, Xu B, Wang L, Chen X, Hiler D et al. 2017. The dynamic epigenetic landscape of the retina during development, reprogramming, and tumorigenesis. Neuron 94:550–68.e10
    [Google Scholar]
  4. Anisimova AS, Alexandrov AI, Makarova NE, Gladyshev VN, Dmitriev SE. 2018. Protein synthesis and quality control in aging. Aging 10:4269–88
    [Google Scholar]
  5. AREDS2 Res. Group Chew EY, Clemons T, SanGiovanni JP, Danis R et al. 2012. The Age-Related Eye Disease Study 2 (AREDS2): study design and baseline characteristics (AREDS2 report number 1). Ophthalmology 119:2282–89
    [Google Scholar]
  6. Arend N, Wertheimer C, Laubichler P, Wolf A, Kampik A, Kernt M. 2015. Idebenone prevents oxidative stress, cell death and senescence of retinal pigment epithelium cells by stabilizing BAX/Bcl-2 ratio. Ophthalmologica 234:73–82
    [Google Scholar]
  7. Arroba AI, Campos-Caro A, Aguilar-Diosdado M, Valverde AM. 2018. IGF-1, inflammation and retinal degeneration: a close network. Front. Aging Neurosci. 10:203
    [Google Scholar]
  8. Asare-Bediako B, Noothi SK, Li Calzi S, Athmanathan B, Vieira CP et al. 2020. Characterizing the retinal phenotype in the high-fat diet and Western diet mouse models of prediabetes. Cells 9:464
    [Google Scholar]
  9. Balaban RS, Nemoto S, Finkel T 2005. Mitochondria, oxidants, and aging. Cell 120:483–95
    [Google Scholar]
  10. Bannister AJ, Kouzarides T. 2011. Regulation of chromatin by histone modifications. Cell Res 21:381–95
    [Google Scholar]
  11. Barreau E, Brossas JY, Courtois Y, Treton JA. 1996. Accumulation of mitochondrial DNA deletions in human retina during aging. Investig. Ophthalmol. Vis. Sci. 37:384–91
    [Google Scholar]
  12. Bell CG, Lowe R, Adams PD, Baccarelli AA, Beck S et al. 2019. DNA methylation aging clocks: challenges and recommendations. Genome Biol 20:249
    [Google Scholar]
  13. Berrio E, Tabernero J, Artal P. 2010. Optical aberrations and alignment of the eye with age. J. Vis. 10:34
    [Google Scholar]
  14. Bohm MR, Mertsch S, Konig S, Spieker T, Thanos S. 2013. Macula-less rat and macula-bearing monkey retinas exhibit common lifelong proteomic changes. Neurobiol. Aging 34:2659–75
    [Google Scholar]
  15. Bonilha VL. 2008. Age and disease-related structural changes in the retinal pigment epithelium. Clin. Ophthalmol. 2:413–24
    [Google Scholar]
  16. Bonnel S, Mohand-Said S, Sahel JA. 2003. The aging of the retina. Exp. Gerontol. 38:825–31
    [Google Scholar]
  17. Booth LN, Brunet A. 2016. The aging epigenome. Mol. Cell 62:728–44
    [Google Scholar]
  18. Boulton M, Dayhaw-Barker P. 2001. The role of the retinal pigment epithelium: topographical variation and ageing changes. Eye 15:384–89
    [Google Scholar]
  19. Brown EE, Ball JD, Chen Z, Khurshid GS, Prosperi M, Ash JD. 2019. The common antidiabetic drug metformin reduces odds of developing age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 60:1470–77
    [Google Scholar]
  20. Burla R, La Torre M, Merigliano C, Verni F, Saggio I 2018. Genomic instability and DNA replication defects in progeroid syndromes. Nucleus 9:368–79
    [Google Scholar]
  21. Cai D. 2013. Neuroinflammation and neurodegeneration in overnutrition-induced diseases. Trends Endocrinol. Metab. 24:40–47
    [Google Scholar]
  22. Cai H, Fields MA, Hoshino R, Priore LV. 2012. Effects of aging and anatomic location on gene expression in human retina. Front. Aging Neurosci. 4:8
    [Google Scholar]
  23. Calkins DJ. 2013. Age-related changes in the visual pathways: blame it on the axon. Investig. Ophthalmol. Vis. Sci. 54:ORSF37–41
    [Google Scholar]
  24. Campello L, Esteve-Rudd J, Cuenca N, Martin-Nieto J. 2013. The ubiquitin-proteasome system in retinal health and disease. Mol. Neurobiol. 47:790–810
    [Google Scholar]
  25. Chae SY, Park SY, Park G. 2018. Lutein protects human retinal pigment epithelial cells from oxidative stress-induced cellular senescence. Mol. Med. Rep. 18:5182–90
    [Google Scholar]
  26. Chaudhuri J, Bains Y, Guha S, Kahn A, Hall D et al. 2018. The role of advanced glycation end products in aging and metabolic diseases: bridging association and causality. Cell Metab 28:337–52
    [Google Scholar]
  27. Chen D, Chao DL, Rocha L, Kolar M, Nguyen Huu VA et al. 2020. The lipid elongation enzyme ELOVL2 is a molecular regulator of aging in the retina. Aging Cell 19:e13100
    [Google Scholar]
  28. Chen H, Liu B, Lukas TJ, Neufeld AH. 2008. The aged retinal pigment epithelium/choroid: a potential substratum for the pathogenesis of age-related macular degeneration. PLOS ONE 3:e2339
    [Google Scholar]
  29. Chen M, Luo C, Zhao J, Devarajan G, Xu H. 2019. Immune regulation in the aging retina. Prog. Retin. Eye Res. 69:159–72
    [Google Scholar]
  30. Chen M, Muckersie E, Forrester JV, Xu H. 2010. Immune activation in retinal aging: a gene expression study. Investig. Ophthalmol. Vis. Sci. 51:5888–96
    [Google Scholar]
  31. Cheng SY, Cipi J, Ma S, Hafler BP, Kanadia RN et al. 2020. Altered photoreceptor metabolism in mouse causes late stage age-related macular degeneration-like pathologies. PNAS 117:13094–104
    [Google Scholar]
  32. Chinchore Y, Begaj T, Wu D, Drokhlyansky E, Cepko CL 2017. Glycolytic reliance promotes anabolism in photoreceptors. eLife 6:e25946
    [Google Scholar]
  33. Chiu CJ, Milton RC, Gensler G, Taylor A. 2007. Association between dietary glycemic index and age-related macular degeneration in nondiabetic participants in the Age-Related Eye Disease Study. Am. J. Clin. Nutr. 86:180–88
    [Google Scholar]
  34. Chrysostomou V, Galic S, van Wijngaarden P, Trounce IA, Steinberg GR, Crowston JG. 2016. Exercise reverses age-related vulnerability of the retina to injury by preventing complement-mediated synapse elimination via a BDNF-dependent pathway. Aging Cell 15:1082–91
    [Google Scholar]
  35. Chu XK, Meyerle CB, Liang X, Chew EY, Chan CC, Tuo J. 2014. In-depth analyses unveil the association and possible functional involvement of novel RAD51B polymorphisms in age-related macular degeneration. Age 36:9627
    [Google Scholar]
  36. Cole JJ, Robertson NA, Rather MI, Thomson JP, McBryan T et al. 2017. Diverse interventions that extend mouse lifespan suppress shared age-associated epigenetic changes at critical gene regulatory regions. Genome Biol 18:58
    [Google Scholar]
  37. Corso-Diaz X, Gentry J, Rebernick R, Jaeger C, Brooks MJ et al. 2020. Genome-wide profiling identifies DNA methylation signatures of aging in rod photoreceptors associated with alterations in energy metabolism. Cell Rep 31:107525
    [Google Scholar]
  38. Corso-Diaz X, Jaeger C, Chaitankar V, Swaroop A. 2018. Epigenetic control of gene regulation during development and disease: a view from the retina. Prog. Retin. Eye Res. 65:1–27
    [Google Scholar]
  39. Crabb JW, Miyagi M, Gu X, Shadrach K, West KA et al. 2002. Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. PNAS 99:14682–87
    [Google Scholar]
  40. Crider KS, Yang TP, Berry RJ, Bailey LB. 2012. Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate's role. Adv. Nutr. 3:21–38
    [Google Scholar]
  41. Criscione SW, Teo YV, Neretti N. 2016. The chromatin landscape of cellular senescence. Trends Genet 32:751–61
    [Google Scholar]
  42. Curcio CA, Drucker DN. 1993. Retinal ganglion cells in Alzheimer's disease and aging. Ann. Neurol. 33:248–57
    [Google Scholar]
  43. Curcio CA, Millican CL, Allen KA, Kalina RE. 1993. Aging of the human photoreceptor mosaic: evidence for selective vulnerability of rods in central retina. Investig. Ophthalmol. Vis. Sci. 34:3278–96
    [Google Scholar]
  44. Damani MR, Zhao L, Fontainhas AM, Amaral J, Fariss RN, Wong WT. 2011. Age-related alterations in the dynamic behavior of microglia. Aging Cell 10:263–76
    [Google Scholar]
  45. Datta S, Cano M, Ebrahimi K, Wang L, Handa JT. 2017. The impact of oxidative stress and inflammation on RPE degeneration in non-neovascular AMD. Prog. Retin. Eye Res. 60:201–18
    [Google Scholar]
  46. De Cecco M, Ito T, Petrashen AP, Elias AE, Skvir NJ et al. 2019. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566:73–78
    [Google Scholar]
  47. Delaney JR, Murakami CJ, Olsen B, Kennedy BK, Kaeberlein M. 2011. Quantitative evidence for early life fitness defects from 32 longevity-associated alleles in yeast. Cell Cycle 10:156–65
    [Google Scholar]
  48. Dinant C, Houtsmuller AB, Vermeulen W. 2008. Chromatin structure and DNA damage repair. Epigenetics Chromatin 1:9
    [Google Scholar]
  49. Do MTH. 2019. Melanopsin and the intrinsically photosensitive retinal ganglion cells: biophysics to behavior. Neuron 104:205–26
    [Google Scholar]
  50. Domènech EB, Marfany G. 2020. The relevance of oxidative stress in the pathogenesis and therapy of retinal dystrophies. Antioxidants 9:347
    [Google Scholar]
  51. Durazzo TC, Mattsson N, Weiner MWAlzheimer's Dis. Neuroimaging Initat 2014. Smoking and increased Alzheimer's disease risk: a review of potential mechanisms. Alzheimers Dement 10:S122–45
    [Google Scholar]
  52. Eliasieh K, Liets LC, Chalupa LM. 2007. Cellular reorganization in the human retina during normal aging. Investig. Ophthalmol. Vis. Sci. 48:2824–30
    [Google Scholar]
  53. Esquiva G, Lax P, Perez-Santonja JJ, Garcia-Fernandez JM, Cuenca N. 2017. Loss of melanopsin-expressing ganglion cell subtypes and dendritic degeneration in the aging human retina. Front. Aging Neurosci. 9:79
    [Google Scholar]
  54. Feng Y, Liang J, Zhai Y, Sun J, Wang J et al. 2018. Autophagy activated by SIRT6 regulates Aβ induced inflammatory response in RPEs. Biochem. Biophys. Res. Commun. 496:1148–54
    [Google Scholar]
  55. Ferrington DA, Sinha D, Kaarniranta K. 2016. Defects in retinal pigment epithelial cell proteolysis and the pathology associated with age-related macular degeneration. Prog. Retin. Eye Res. 51:69–89
    [Google Scholar]
  56. Flanagan EW, Most J, Mey JT, Redman LM. 2020. Calorie restriction and aging in humans. Annu. Rev. Nutr. 40:105–33
    [Google Scholar]
  57. Fortune B, Johnson CA. 2002. Decline of photopic multifocal electroretinogram responses with age is due primarily to preretinal optical factors. J. Opt. Soc. Am. A 19:173–84
    [Google Scholar]
  58. Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. 2018. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 14:576–90
    [Google Scholar]
  59. Frenk S, Houseley J. 2018. Gene expression hallmarks of cellular ageing. Biogerontology 19:547–66
    [Google Scholar]
  60. Friedman DB, Johnson TE. 1988. A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 118:75–86
    [Google Scholar]
  61. Fritsche LG, Fariss RN, Stambolian D, Abecasis GR, Curcio CA, Swaroop A. 2014. Age-related macular degeneration: genetics and biology coming together. Annu. Rev. Genom. Hum. Genet. 15:151–71
    [Google Scholar]
  62. Fritsche LG, Igl W, Bailey JN, Grassmann F, Sengupta S et al. 2016. A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat. Genet. 48:134–43
    [Google Scholar]
  63. Frohns A, Frohns F, Naumann SC, Layer PG, Lobrich M. 2014. Inefficient double-strand break repair in murine rod photoreceptors with inverted heterochromatin organization. Curr. Biol. 24:1080–90
    [Google Scholar]
  64. Frohns F, Frohns A, Kramer J, Meurer K, Rohrer-Bley C et al. 2020. Differences in the response to DNA double-strand breaks between rod photoreceptors of rodents, pigs, and humans. Cells 9:947
    [Google Scholar]
  65. Frost LS, Mitchell CH, Boesze-Battaglia K. 2014. Autophagy in the eye: implications for ocular cell health. Exp. Eye Res. 124:56–66
    [Google Scholar]
  66. Gabel HW, Kinde B, Stroud H, Gilbert CS, Harmin DA et al. 2015. Disruption of DNA-methylation-dependent long gene repression in Rett syndrome. Nature 522:89–93
    [Google Scholar]
  67. Gao H, Hollyfield JG. 1992. Aging of the human retina: differential loss of neurons and retinal pigment epithelial cells. Investig. Ophthalmol. Vis. Sci. 33:1–17
    [Google Scholar]
  68. Garrett-Bakelman FE, Darshi M, Green SJ, Gur RC, Lin L et al. 2019. The NASA Twins Study: a multidimensional analysis of a year-long human spaceflight. Science 364:eaau8650
    [Google Scholar]
  69. Gemenetzi M, Lotery AJ. 2020. Epigenetics in age-related macular degeneration: new discoveries and future perspectives. Cell Mol. Life Sci. 77:807–18
    [Google Scholar]
  70. Gerth C, Garcia SM, Ma L, Keltner JL, Werner JS. 2002. Multifocal electroretinogram: age-related changes for different luminance levels. Graefes Arch. Clin. Exp. Ophthalmol. 240:202–8
    [Google Scholar]
  71. Gilbert R, Peto T, Lengyel I, Emri E. 2019. Zinc nutrition and inflammation in the aging retina. Mol. Nutr. Food Res. 63:e1801049
    [Google Scholar]
  72. Gillet LC, Scharer OD. 2006. Molecular mechanisms of mammalian global genome nucleotide excision repair. Chem. Rev. 106:253–76
    [Google Scholar]
  73. Gorgun E, Guven M, Unal M, Batar B, Guven GS et al. 2010. Polymorphisms of the DNA repair genes XPD and XRCC1 and the risk of age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 51:4732–37
    [Google Scholar]
  74. Goronzy JJ, Weyand CM. 2013. Understanding immunosenescence to improve responses to vaccines. Nat. Immunol. 14:428–36
    [Google Scholar]
  75. Hall H, Medina P, Cooper DA, Escobedo SE, Rounds J et al. 2017. Transcriptome profiling of aging Drosophila photoreceptors reveals gene expression trends that correlate with visual senescence. BMC Genom 18:894
    [Google Scholar]
  76. Hammes HP, Martin S, Federlin K, Geisen K, Brownlee M. 1991. Aminoguanidine treatment inhibits the development of experimental diabetic retinopathy. PNAS 88:11555–58
    [Google Scholar]
  77. Hargrove-Grimes P, Mondal AK, Gumerson J, Nellissery J, Aponte A et al. 2020. Loss of endocytosis-associated RABGEF1 causes aberrant morphogenesis and altered autophagy in photoreceptors leading to retinal degeneration. PLOS Genet 16:e1009259
    [Google Scholar]
  78. Harman D. 1981. The aging process. PNAS 78:7124–28
    [Google Scholar]
  79. Harun-Or-Rashid M, Pappenhagen N, Palmer PG, Smith MA, Gevorgyan V et al. 2018. Structural and functional rescue of chronic metabolically stressed optic nerves through respiration. J. Neurosci. 38:5122–39
    [Google Scholar]
  80. Hawley JA, Hargreaves M, Joyner MJ, Zierath JR. 2014. Integrative biology of exercise. Cell 159:738–49
    [Google Scholar]
  81. Hernandez-Segura A, de Jong TV, Melov S, Guryev V, Campisi J, Demaria M. 2017. Unmasking transcriptional heterogeneity in senescent cells. Curr. Biol. 27:2652–60.e4
    [Google Scholar]
  82. Herzig S, Shaw RJ. 2018. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 19:121–35
    [Google Scholar]
  83. Hipp MS, Kasturi P, Hartl FU. 2019. The proteostasis network and its decline in ageing. Nat. Rev. Mol. Cell Biol. 20:421–35
    [Google Scholar]
  84. Hoeijmakers JH. 2009. DNA damage, aging, and cancer. N. Engl. J. Med. 361:1475–85
    [Google Scholar]
  85. Hollyfield JG, Salomon RG, Crabb JW. 2003. Proteomic approaches to understanding age-related macular degeneration. Adv. Exp. Med. Biol. 533:83–89
    [Google Scholar]
  86. Hoon M, Okawa H, Della Santina L, Wong RO 2014. Functional architecture of the retina: development and disease. Prog. Retin. Eye Res. 42:44–84
    [Google Scholar]
  87. Hoshino A, Horvath S, Sridhar A, Chitsazan A, Reh TA. 2019. Synchrony and asynchrony between an epigenetic clock and developmental timing. Sci. Rep. 9:3770
    [Google Scholar]
  88. Hunter A, Spechler PA, Cwanger A, Song Y, Zhang Z et al. 2012. DNA methylation is associated with altered gene expression in AMD. Investig. Ophthalmol. Vis. Sci. 53:2089–105
    [Google Scholar]
  89. Ida H, Boylan SA, Weigel AL, Hjelmeland LM. 2003. Age-related changes in the transcriptional profile of mouse RPE/choroid. Physiol. Genom. 15:258–62
    [Google Scholar]
  90. Jackson GR, Ortega J, Girkin C, Rosenstiel CE, Owsley C. 2002. Aging-related changes in the multifocal electroretinogram. J. Opt. Soc. Am. A 19:185–89
    [Google Scholar]
  91. Jackson GR, Owsley C. 2000. Scotopic sensitivity during adulthood. Vis. Res. 40:2467–73
    [Google Scholar]
  92. Jadeja RN, Powell FL, Jones MA, Fuller J, Joseph E et al. 2018. Loss of NAMPT in aging retinal pigment epithelium reduces NAD+ availability and promotes cellular senescence. Aging 10:1306–23
    [Google Scholar]
  93. Jadeja RN, Thounaojam MC, Bartoli M, Martin PM. 2020. Implications of NAD+ metabolism in the aging retina and retinal degeneration. Oxid. Med. Cell Longev. 2020:2692794
    [Google Scholar]
  94. Johnson AA, Shokhirev MN, Shoshitaishvili B. 2019. Revamping the evolutionary theories of aging. Ageing Res. Rev. 55:100947
    [Google Scholar]
  95. Jonsson ME, Garza R, Johansson PA, Jakobsson J. 2020. Transposable elements: a common feature of neurodevelopmental and neurodegenerative disorders. Trends Genet 36:610–23
    [Google Scholar]
  96. Kaarniranta K, Uusitalo H, Blasiak J, Felszeghy S, Kannan R et al. 2020. Mechanisms of mitochondrial dysfunction and their impact on age-related macular degeneration. Prog. Retin. Eye Res. 79:100858
    [Google Scholar]
  97. Kaeberlein M, McVey M, Guarente L. 1999. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13:2570–80
    [Google Scholar]
  98. Kam JH, Jeffery G. 2015. To unite or divide: mitochondrial dynamics in the murine outer retina that preceded age related photoreceptor loss. Oncotarget 6:26690–701
    [Google Scholar]
  99. Kam JH, Weinrich TW, Shinhmar H, Powner MB, Roberts NW et al. 2019. Fundamental differences in patterns of retinal ageing between primates and mice. Sci. Rep. 9:12574
    [Google Scholar]
  100. Kapphahn RJ, Bigelow EJ, Ferrington DA. 2007. Age-dependent inhibition of proteasome chymotrypsin-like activity in the retina. Exp. Eye Res. 84:646–54
    [Google Scholar]
  101. Karunadharma PP, Nordgaard CL, Olsen TW, Ferrington DA. 2010. Mitochondrial DNA damage as a potential mechanism for age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 51:5470–79
    [Google Scholar]
  102. Keenan TD, Agron E, Mares J, Clemons TE, van Asten F et al. 2020. Adherence to the Mediterranean diet and progression to late age-related macular degeneration in the Age-Related Eye Disease Studies 1 and 2. Ophthalmology 127:1515–28
    [Google Scholar]
  103. Kim Y, Tarallo V, Kerur N, Yasuma T, Gelfand BD et al. 2014. DICER1/Alu RNA dysmetabolism induces Caspase-8-mediated cell death in age-related macular degeneration. PNAS 111:16082–87
    [Google Scholar]
  104. Klass MR. 1983. A method for the isolation of longevity mutants in the nematode Caenorhabditis elegans and initial results. Mech. Ageing Dev. 22:279–86
    [Google Scholar]
  105. Kowluru RA, Mishra M. 2015. Contribution of epigenetics in diabetic retinopathy. Sci. China Life Sci. 58:556–63
    [Google Scholar]
  106. Kozhevnikova OS, Telegina DV, Devyatkin VA, Kolosova NG. 2018. Involvement of the autophagic pathway in the progression of AMD-like retinopathy in senescence-accelerated OXYS rats. Biogerontology 19:223–35
    [Google Scholar]
  107. Kurtenbach A, Weiss M. 2002. Effect of aging on multifocal oscillatory potentials. J. Opt. Soc. Am. A 19:190–96
    [Google Scholar]
  108. Labat-Robert J, Robert L 2015. Longevity and aging: mechanisms and perspectives. Pathol. Biol. 63:272–76
    [Google Scholar]
  109. Labbadia J, Morimoto RI. 2015. The biology of proteostasis in aging and disease. Annu. Rev. Biochem. 84:435–64
    [Google Scholar]
  110. Lamoke F, Shaw S, Yuan J, Ananth S, Duncan M et al. 2015. Increased oxidative and nitrative stress accelerates aging of the retinal vasculature in the diabetic retina. PLOS ONE 10:e0139664
    [Google Scholar]
  111. LaRocca TJ, Cavalier AN, Wahl D. 2020. Repetitive elements as a transcriptomic marker of aging: evidence in multiple datasets and models. Aging Cell 19:e13167
    [Google Scholar]
  112. Lee V, Rekhi E, Hoh Kam J, Jeffery G 2012. Vitamin D rejuvenates aging eyes by reducing inflammation, clearing amyloid beta and improving visual function. Neurobiol. Aging 33:2382–89
    [Google Scholar]
  113. Leger F, Fernagut PO, Canron MH, Leoni S, Vital C et al. 2011. Protein aggregation in the aging retina. J. Neuropathol. Exp. Neurol. 70:63–68
    [Google Scholar]
  114. Lenox AR, Bhootada Y, Gorbatyuk O, Fullard R, Gorbatyuk M. 2015. Unfolded protein response is activated in aged retinas. Neurosci. Lett. 609:30–35
    [Google Scholar]
  115. Li D, Sun F, Wang K. 2003. Caloric restriction retards age-related changes in rat retina. Biochem. Biophys. Res. Commun. 309:457–63
    [Google Scholar]
  116. Li Y, Wang YS, Shen XF, Hui YN, Han J et al. 2008. Alterations of activity and intracellular distribution of the 20S proteasome in ageing retinal pigment epithelial cells. Exp. Gerontol. 43:1114–22
    [Google Scholar]
  117. Lin S, Guo J, Chen S 2019. Transcriptome and DNA methylome signatures associated with retinal Müller glia development, injury response, and aging. Investig. Ophthalmol. Vis. Sci. 60:4436–50
    [Google Scholar]
  118. Lin W, Xu G. 2019. Autophagy: a role in the apoptosis, survival, inflammation, and development of the retina. Ophthalmic Res 61:65–72
    [Google Scholar]
  119. Linton JD, Holzhausen LC, Babai N, Song H, Miyagishima KJ et al. 2010. Flow of energy in the outer retina in darkness and in light. PNAS 107:8599–604
    [Google Scholar]
  120. Liu C, Cao L, Yang S, Xu L, Liu P et al. 2015. Subretinal injection of amyloid-beta peptide accelerates RPE cell senescence and retinal degeneration. Int. J. Mol. Med. 35:169–76
    [Google Scholar]
  121. Lodato MA, Rodin RE, Bohrson CL, Coulter ME, Barton AR et al. 2018. Aging and neurodegeneration are associated with increased mutations in single human neurons. Science 359:555–59
    [Google Scholar]
  122. Longo VD, Fabrizio P. 2012. Chronological aging in Saccharomyces cerevisiae. Subcell. Biochem. 57:101–21
    [Google Scholar]
  123. Lopez-Luppo M, Catita J, Ramos D, Navarro M, Carretero A et al. 2017. Cellular senescence is associated with human retinal microaneurysm formation during aging. Investig. Ophthalmol. Vis. Sci. 58:2832–42
    [Google Scholar]
  124. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. 2013. The hallmarks of aging. Cell 153:1194–217
    [Google Scholar]
  125. Louie JL, Kapphahn RJ, Ferrington DA. 2002. Proteasome function and protein oxidation in the aged retina. Exp. Eye Res. 75:271–84
    [Google Scholar]
  126. Lu M, Kuroki M, Amano S, Tolentino M, Keough K et al. 1998. Advanced glycation end products increase retinal vascular endothelial growth factor expression. J. Clin. Investig. 101:1219–24
    [Google Scholar]
  127. Lu Y, Brommer B, Tian X, Krishnan A, Meer M et al. 2020. Reprogramming to recover youthful epigenetic information and restore vision. Nature 588:124–29
    [Google Scholar]
  128. Luu J, Kallestad L, Hoang T, Lewandowski D, Dong Z et al. 2020. Epigenetic hallmarks of age-related macular degeneration are recapitulated in a photosensitive mouse model. Hum. Mol. Genet. 29:2611–24
    [Google Scholar]
  129. Ma W, Wong WT. 2016. Aging changes in retinal microglia and their relevance to age-related retinal disease. Adv. Exp. Med. Biol. 854:73–78
    [Google Scholar]
  130. MacRae SL, Croken MM, Calder RB, Aliper A, Milholland B et al. 2015. DNA repair in species with extreme lifespan differences. Aging 7:1171–84
    [Google Scholar]
  131. Madabhushi R, Pan L, Tsai LH. 2014. DNA damage and its links to neurodegeneration. Neuron 83:266–82
    [Google Scholar]
  132. Maeda A, Crabb JW, Palczewski K. 2005. Microsomal glutathione S-transferase 1 in the retinal pigment epithelium: protection against oxidative stress and a potential role in aging. Biochemistry 44:480–89
    [Google Scholar]
  133. Maegawa S, Hinkal G, Kim HS, Shen L, Zhang L et al. 2010. Widespread and tissue specific age-related DNA methylation changes in mice. Genome Res 20:332–40
    [Google Scholar]
  134. Maghbooli Z, Hossein-nezhad A, Larijani B, Amini M, Keshtkar A. 2015. Global DNA methylation as a possible biomarker for diabetic retinopathy. Diabetes Metab. Res. Rev. 31:183–89
    [Google Scholar]
  135. Makin RD, Argyle D, Hirahara S, Nagasaka Y, Zhang M et al. 2020. Voluntary exercise suppresses choroidal neovascularization in mice. Investig. Ophthalmol. Vis. Sci. 61:52
    [Google Scholar]
  136. Mansour H, Chamberlain CG, Weible MW 2nd, Hughes S, Chu Y, Chan-Ling T 2008. Aging-related changes in astrocytes in the rat retina: imbalance between cell proliferation and cell death reduces astrocyte availability. Aging Cell 7:526–40
    [Google Scholar]
  137. Martinez-Lopez N, Athonvarangkul D, Singh R. 2015. Autophagy and aging. Adv. Exp. Med. Biol. 847:73–87
    [Google Scholar]
  138. Masland RH. 2001. The fundamental plan of the retina. Nat. Neurosci. 4:877–86
    [Google Scholar]
  139. Mattison JA, Colman RJ, Beasley TM, Allison DB, Kemnitz JW et al. 2017. Caloric restriction improves health and survival of rhesus monkeys. Nat. Commun. 8:14063
    [Google Scholar]
  140. McLaughlin T, Falkowski M, Park JW, Keegan S, Elliott M et al. 2018. Loss of XBP1 accelerates age-related decline in retinal function and neurodegeneration. Mol. Neurodegener. 13:16
    [Google Scholar]
  141. Meira LB, Moroski-Erkul CA, Green SL, Calvo JA, Bronson RT et al. 2009. Aag-initiated base excision repair drives alkylation-induced retinal degeneration in mice. PNAS 106:888–93
    [Google Scholar]
  142. Melzer D, Pilling LC, Ferrucci L. 2020. The genetics of human ageing. Nat. Rev. Genet. 21:88–101
    [Google Scholar]
  143. Mimura T, Kaji Y, Noma H, Funatsu H, Okamoto S. 2013. The role of SIRT1 in ocular aging. Exp. Eye Res. 116:17–26
    [Google Scholar]
  144. Mitter SK, Song C, Qi X, Mao H, Rao H et al. 2014. Dysregulated autophagy in the RPE is associated with increased susceptibility to oxidative stress and AMD. Autophagy 10:1989–2005
    [Google Scholar]
  145. Moeller SM, Parekh N, Tinker L, Ritenbaugh C, Blodi B et al. 2006. Associations between intermediate age-related macular degeneration and lutein and zeaxanthin in the Carotenoids in Age-Related Eye Disease Study (CAREDS): ancillary study of the Women's Health Initiative. Arch. Ophthalmol. 124:1151–62
    [Google Scholar]
  146. Nag TC, Wadhwa S. 2012. Ultrastructure of the human retina in aging and various pathological states. Micron 43:759–81
    [Google Scholar]
  147. Nag TC, Wadhwa S. 2016. Immunolocalisation pattern of complex I-V in ageing human retina: correlation with mitochondrial ultrastructure. Mitochondrion 31:20–32
    [Google Scholar]
  148. Nagaraj RH, Linetsky M, Stitt AW. 2012. The pathogenic role of Maillard reaction in the aging eye. Amino Acids 42:1205–20
    [Google Scholar]
  149. Nettesheim A, Dixon A, Shim MS, Coyne A, Walsh M, Liton PB. 2020. Autophagy in the aging and experimental ocular hypertensive mouse model. Investig. Ophthalmol. Vis. Sci. 61:31
    [Google Scholar]
  150. Noro T, Namekata K, Kimura A, Guo X, Azuchi Y et al. 2015. Spermidine promotes retinal ganglion cell survival and optic nerve regeneration in adult mice following optic nerve injury. Cell Death Dis 6:e1720
    [Google Scholar]
  151. Norrie JL, Lupo MS, Xu B, Al Diri I, Valentine M et al. 2019. Nucleome dynamics during retinal development. Neuron 104:512–28.e11
    [Google Scholar]
  152. Okawa H, Sampath AP, Laughlin SB, Fain GL. 2008. ATP consumption by mammalian rod photoreceptors in darkness and in light. Curr. Biol. 18:1917–21
    [Google Scholar]
  153. Oliver VF, Franchina M, Jaffe AE, Branham KE, Othman M et al. 2013. Hypomethylation of the IL17RC promoter in peripheral blood leukocytes is not a hallmark of age-related macular degeneration. Cell Rep 5:1527–35
    [Google Scholar]
  154. Oliver VF, Jaffe AE, Song J, Wang G, Zhang P et al. 2015. Differential DNA methylation identified in the blood and retina of AMD patients. Epigenetics 10:698–707
    [Google Scholar]
  155. Osborne NN, Alvarez CN, del Olmo Aguado S. 2014. Targeting mitochondrial dysfunction as in aging and glaucoma. Drug Discov. Today 19:1613–22
    [Google Scholar]
  156. Oubaha M, Miloudi K, Dejda A, Guber V, Mawambo G et al. 2016. Senescence-associated secretory phenotype contributes to pathological angiogenesis in retinopathy. Sci. Transl. Med. 8:362ra144
    [Google Scholar]
  157. Owsley C. 2011. Aging and vision. Vis. Res. 51:1610–22
    [Google Scholar]
  158. Ozawa Y. 2020. Oxidative stress in the light-exposed retina and its implication in age-related macular degeneration. Redox Biol 37:101779
    [Google Scholar]
  159. Parapuram SK, Cojocaru RI, Chang JR, Khanna R, Brooks M et al. 2010. Distinct signature of altered homeostasis in aging rod photoreceptors: implications for retinal diseases. PLOS ONE 5:e13885
    [Google Scholar]
  160. Parikh RS, Parikh SR, Sekhar GC, Prabakaran S, Babu JG, Thomas R. 2007. Normal age-related decay of retinal nerve fiber layer thickness. Ophthalmology 114:921–26
    [Google Scholar]
  161. Pauly D, Agarwal D, Dana N, Schafer N, Biber J et al. 2019. Cell-type-specific complement expression in the healthy and diseased retina. Cell Rep 29:2835–48.e4
    [Google Scholar]
  162. Peng CH, Chang YL, Kao CL, Tseng LM, Wu CC et al. 2010. SirT1: a sensor for monitoring self-renewal and aging process in retinal stem cells. Sensors 10:6172–94
    [Google Scholar]
  163. Petrash JM. 2013. Aging and age-related diseases of the ocular lens and vitreous body. Investig. Ophthalmol. Vis. Sci. 54:ORSF54–9
    [Google Scholar]
  164. Porter LF, Saptarshi N, Fang Y, Rathi S, den Hollander AI et al. 2019. Whole-genome methylation profiling of the retinal pigment epithelium of individuals with age-related macular degeneration reveals differential methylation of the SKI, GTF2H4, and TNXB genes. Clin. Epigenetics 11:6
    [Google Scholar]
  165. Punzo C, Kornacker K, Cepko CL. 2009. Stimulation of the insulin/mTOR pathway delays cone death in a mouse model of retinitis pigmentosa. Nat. Neurosci. 12:44–52
    [Google Scholar]
  166. Querques G, Forte R, Souied EH. 2011. Retina and omega-3. J. Nutr. Metab. 2011:748361
    [Google Scholar]
  167. Raghavan CT, Smuda M, Smith AJO, Howell S, Smith DG et al. 2016. AGEs in human lens capsule promote the TGFβ2-mediated EMT of lens epithelial cells: implications for age-associated fibrosis. Aging Cell 15:465–76
    [Google Scholar]
  168. Ramirez JM, Ramirez AI, Salazar JJ, de Hoz R, Trivino A. 2001. Changes of astrocytes in retinal ageing and age-related macular degeneration. Exp. Eye Res. 73:601–15
    [Google Scholar]
  169. Ramón y Cajal S. 1892. 1972. The Structure of the Retina, transl SA Thorpe, M Glickstein Springfield, IL: Charles C Thomas Publ.
    [Google Scholar]
  170. Ratnapriya R, Sosina OA, Starostik MR, Kwicklis M, Kapphahn RJ et al. 2019. Retinal transcriptome and eQTL analyses identify genes associated with age-related macular degeneration. Nat. Genet. 51:606–10
    [Google Scholar]
  171. Rhinn H, Abeliovich A. 2017. Differential aging analysis in human cerebral cortex identifies variants in TMEM106B and GRN that regulate aging phenotypes. Cell Syst 4:404–15.e5
    [Google Scholar]
  172. Rocha LR, Nguyen Huu VA, Palomino La Torre C, Xu Q, Jabari M et al. 2020. Early removal of senescent cells protects retinal ganglion cells loss in experimental ocular hypertension. Aging Cell 19:e13089
    [Google Scholar]
  173. Rodriguez-de la Rosa L, Fernandez-Sanchez L, Germain F, Murillo-Cuesta S, Varela-Nieto I et al. 2012. Age-related functional and structural retinal modifications in the Igf1−/− null mouse. Neurobiol. Dis. 46:476–85
    [Google Scholar]
  174. Rodriguez-Muela N, Koga H, Garcia-Ledo L, de la Villa P, de la Rosa EJ et al. 2013. Balance between autophagic pathways preserves retinal homeostasis. Aging Cell 12:478–88
    [Google Scholar]
  175. Roginska D, Kawa MP, Pius-Sadowska E, Lejkowska R, Luczkowska K et al. 2017. Depletion of the third complement component ameliorates age-dependent oxidative stress and positively modulates autophagic activity in aged retinas in a mouse model. Oxid. Med. Cell Longev. 2017:5306790
    [Google Scholar]
  176. Rohrer B, Frazer-Abel A, Leonard A, Ratnapriya R, Ward T et al. 2019. Association of age-related macular degeneration with complement activation products, smoking, and single nucleotide polymorphisms in South Carolinians of European and African descent. Mol. Vis. 25:79–92
    [Google Scholar]
  177. Roufail E, Rees S 1997. Ageing has a differential effect on nitric oxide synthase-containing and catecholaminergic amacrine cells in the human and rat retina. J. Comp. Neurol. 389:329–47
    [Google Scholar]
  178. Rowan S, Jiang S, Korem T, Szymanski J, Chang ML et al. 2017. Involvement of a gut-retina axis in protection against dietary glycemia-induced age-related macular degeneration. PNAS 114:E4472–81
    [Google Scholar]
  179. Sampaio-Marques B, Burhans WC, Ludovico P. 2019. Yeast at the forefront of research on ageing and age-related diseases. Prog. Mol. Subcell. Biol. 58:217–42
    [Google Scholar]
  180. Samuel MA, Voinescu PE, Lilley BN, de Cabo R, Foretz M et al. 2014. LKB1 and AMPK regulate synaptic remodeling in old age. Nat. Neurosci. 17:1190–97
    [Google Scholar]
  181. Sapieha P, Mallette FA. 2018. Cellular senescence in postmitotic cells: beyond growth arrest. Trends Cell Biol 28:595–607
    [Google Scholar]
  182. Schiller PH, Tehovnik EJ. 2015. Vision and the Visual System Oxford, UK: Oxford Univ. Press
  183. Schrier SA, Falk MJ. 2011. Mitochondrial disorders and the eye. Curr. Opin. Ophthalmol. 22:325–31
    [Google Scholar]
  184. Seddon JM, Widjajahakim R, Rosner B. 2020. Rare and common genetic variants, smoking, and body mass index: progression and earlier age of developing advanced age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 61:32
    [Google Scholar]
  185. Seddon JM, Willett WC, Speizer FE, Hankinson SE. 1996. A prospective study of cigarette smoking and age-related macular degeneration in women. JAMA 276:1141–46
    [Google Scholar]
  186. Sen P, Shah PP, Nativio R, Berger SL. 2016. Epigenetic mechanisms of longevity and aging. Cell 166:822–39
    [Google Scholar]
  187. Singh PP, Demmitt BA, Nath RD, Brunet A. 2019. The genetics of aging: a vertebrate perspective. Cell 177:200–20
    [Google Scholar]
  188. Sinha D, Valapala M, Shang P, Hose S, Grebe R et al. 2016. Lysosomes: regulators of autophagy in the retinal pigmented epithelium. Exp. Eye Res. 144:46–53
    [Google Scholar]
  189. Skowronska-Krawczyk D, Zhao L, Zhu J, Weinreb RN, Cao G et al. 2015. P16INK4a upregulation mediated by SIX6 defines retinal ganglion cell pathogenesis in glaucoma. Mol. Cell 59:931–40
    [Google Scholar]
  190. Strauss O. 2005. The retinal pigment epithelium in visual function. Physiol. Rev. 85:845–81
    [Google Scholar]
  191. Subhi Y, Forshaw T, Sorensen TL. 2016. Macular thickness and volume in the elderly: a systematic review. Ageing Res. Rev. 29:42–49
    [Google Scholar]
  192. Swaroop A, Chew EY, Rickman CB, Abecasis GR. 2009. Unraveling a multifactorial late-onset disease: from genetic susceptibility to disease mechanisms for age-related macular degeneration. Annu. Rev. Genom. Hum. Genet. 10:19–43
    [Google Scholar]
  193. Tan BL, Norhaizan ME, Liew WP, Sulaiman Rahman H 2018. Antioxidant and oxidative stress: a mutual interplay in age-related diseases. Front. Pharmacol. 9:1162
    [Google Scholar]
  194. Tao JX, Zhou WC, Zhu XG. 2019. Mitochondria as potential targets and initiators of the blue light hazard to the retina. Oxid. Med. Cell Longev. 2019:6435364
    [Google Scholar]
  195. Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL. 2013. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J. Clin. Investig. 123:966–72
    [Google Scholar]
  196. Tian J, Ishibashi K, Ishibashi K, Reiser K, Grebe R et al. 2005. Advanced glycation endproduct-induced aging of the retinal pigment epithelium and choroid: a comprehensive transcriptional response. PNAS 102:11846–51
    [Google Scholar]
  197. Tissenbaum HA. 2015. Using C. elegans for aging research. Invertebr. Reprod. Dev. 59:59–63
    [Google Scholar]
  198. Uchiki T, Weikel KA, Jiao W, Shang F, Caceres A et al. 2012. Glycation-altered proteolysis as a pathobiologic mechanism that links dietary glycemic index, aging, and age-related disease (in nondiabetics). Aging Cell 11:1–13
    [Google Scholar]
  199. Uehara F, Ohba N, Ozawa M. 2001. Isolation and characterization of galectins in the mammalian retina. Investig. Ophthalmol. Vis. Sci. 42:2164–72
    [Google Scholar]
  200. Unnikrishnan A, Hadad N, Masser DR, Jackson J, Freeman WM, Richardson A. 2018. Revisiting the genomic hypomethylation hypothesis of aging. Ann. N. Y. Acad. Sci. 1418:69–79
    [Google Scholar]
  201. van Deursen JM. 2019. Senolytic therapies for healthy longevity. Science 364:636–37
    [Google Scholar]
  202. Velez G, Machlab DA, Tang PH, Sun Y, Tsang SH et al. 2018. Proteomic analysis of the human retina reveals region-specific susceptibilities to metabolic- and oxidative stress-related diseases. PLOS ONE 13:e0193250
    [Google Scholar]
  203. Velilla S, Garcia-Medina JJ, Garcia-Layana A, Dolz-Marco R, Pons-Vazquez S et al. 2013. Smoking and age-related macular degeneration: review and update. J. Ophthalmol. 2013:895147
    [Google Scholar]
  204. Wang AL, Lukas TJ, Yuan M, Du N, Tso MO, Neufeld AH. 2009a. Autophagy and exosomes in the aged retinal pigment epithelium: possible relevance to drusen formation and age-related macular degeneration. PLOS ONE 4:e4160
    [Google Scholar]
  205. Wang AL, Lukas TJ, Yuan M, Neufeld AH. 2010. Age-related increase in mitochondrial DNA damage and loss of DNA repair capacity in the neural retina. Neurobiol. Aging 31:2002–10
    [Google Scholar]
  206. Wang J, Ohno-Matsui K, Yoshida T, Shimada N, Ichinose S et al. 2009b. Amyloid-beta up-regulates complement factor B in retinal pigment epithelial cells through cytokines released from recruited macrophages/microglia: another mechanism of complement activation in age-related macular degeneration. J. Cell Physiol. 220:119–28
    [Google Scholar]
  207. Wang J, Zibetti C, Shang P, Sripathi SR, Zhang P et al. 2018. ATAC-Seq analysis reveals a widespread decrease of chromatin accessibility in age-related macular degeneration. Nat. Commun. 9:1364
    [Google Scholar]
  208. Wang M, Kaufman RJ. 2016. Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature 529:326–35
    [Google Scholar]
  209. Wang N, Luo Z, Jin M, Sheng W, Wang HT et al. 2019. Exploration of age-related mitochondrial dysfunction and the anti-aging effects of resveratrol in zebrafish retina. Aging 11:3117–37
    [Google Scholar]
  210. Wei L, Liu B, Tuo J, Shen D, Chen P et al. 2012. Hypomethylation of the IL17RC promoter associates with age-related macular degeneration. Cell Rep 2:1151–58
    [Google Scholar]
  211. Wei PC, Chang AN, Kao J, Du Z, Meyers RM et al. 2016. Long neural genes harbor recurrent DNA break clusters in neural stem/progenitor cells. Cell 164:644–55
    [Google Scholar]
  212. Wellen KE, Thompson CB. 2010. Cellular metabolic stress: considering how cells respond to nutrient excess. Mol. Cell 40:323–32
    [Google Scholar]
  213. Wolffenbuttel BH, Boulanger CM, Crijns FR, Huijberts MS, Poitevin P et al. 1998. Breakers of advanced glycation end products restore large artery properties in experimental diabetes. PNAS 95:4630–34
    [Google Scholar]
  214. Xu H, Chen M, Manivannan A, Lois N, Forrester JV 2008. Age-dependent accumulation of lipofuscin in perivascular and subretinal microglia in experimental mice. Aging Cell 7:58–68
    [Google Scholar]
  215. Yao J, Jia L, Khan N, Lin C, Mitter SK et al. 2015. Deletion of autophagy inducer RB1CC1 results in degeneration of the retinal pigment epithelium. Autophagy 11:939–53
    [Google Scholar]
  216. Yoshida S, Yashar BM, Hiriyanna S, Swaroop A. 2002. Microarray analysis of gene expression in the aging human retina. Investig. Ophthalmol. Vis. Sci. 43:2554–60
    [Google Scholar]
  217. Young JI, Zuchner S, Wang G. 2015. Regulation of the epigenome by vitamin C. Annu. Rev. Nutr. 35:545–64
    [Google Scholar]
  218. Yu B, Xu P, Zhao Z, Cai J, Sternberg P, Chen Y. 2014. Subcellular distribution and activity of mechanistic target of rapamycin in aged retinal pigment epithelium. Investig. Ophthalmol. Vis. Sci. 55:8638–50
    [Google Scholar]
  219. Zecic A, Braeckman BP. 2020. DAF-16/FoxO in Caenorhabditis elegans and its role in metabolic remodeling. Cells 9:109
    [Google Scholar]
  220. Zeng Y, Yang K 2015. Sirtuin 1 participates in the process of age-related retinal degeneration. Biochem. Biophys. Res. Commun. 468:167–72
    [Google Scholar]
  221. Zhang M, Jiang N, Chu Y, Postnikova O, Varghese R et al. 2020. Dysregulated metabolic pathways in age-related macular degeneration. Sci. Rep. 10:2464
    [Google Scholar]
  222. Zhong J, Karlsson O, Wang G, Li J, Guo Y et al. 2017. B vitamins attenuate the epigenetic effects of ambient fine particles in a pilot human intervention trial. PNAS 114:3503–8
    [Google Scholar]
  223. Zhong Y, Li J, Wang JJ, Chen C, Tran JT et al. 2012. X-box binding protein 1 is essential for the anti-oxidant defense and cell survival in the retinal pigment epithelium. PLOS ONE 7:e38616
    [Google Scholar]
  224. Zhu D, Wu J, Spee C, Ryan SJ, Hinton DR. 2009. BMP4 mediates oxidative stress-induced retinal pigment epithelial cell senescence and is overexpressed in age-related macular degeneration. J. Biol. Chem. 284:9529–39
    [Google Scholar]
/content/journals/10.1146/annurev-vision-100419-114940
Loading
/content/journals/10.1146/annurev-vision-100419-114940
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error