1932

Abstract

This is a memoir of circumstances that have shaped my life as a scientist, some of the questions that have excited my interest, and some of the people with whom I have shared that pursuit. I was introduced to transcription soon after the discovery of RNA polymerase and have been fascinated by questions relating to gene regulation since that time. My account touches on early experiments dealing with the ability of RNA polymerase to selectively transcribe its DNA template. Temporal programs of transcription that control the multiplication cycles of viruses (phages) and the precise mechanisms generating this regulation have been a continuing source of fascination and new challenges. A longtime interest in eukaryotic RNA polymerase III has centered on yeast and on the enumeration and properties of its transcription initiation factors, the architecture of its promoter complexes, and the mechanism of transcriptional initiation. These areas of research are widely regarded as separate, but to my thinking they have posed similar questions, and I have been unwilling or unable to abandon either one for the other. An additional interest in archaeal transcription can be seen as stemming naturally from this point of view.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.biochem.77.051906.142055
2009-07-07
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/biochem/78/1/annurev.biochem.77.051906.142055.html?itemId=/content/journals/10.1146/annurev.biochem.77.051906.142055&mimeType=html&fmt=ahah

Literature Cited

  1. Geiduschek EP, Gray I. 1.  1956. Non-aqueous solutions of sodium desoxyribose-nucleate. J. Am. Chem. Soc. 78:879–80 [Google Scholar]
  2. Hamaguchi K, Geiduschek EP. 2.  1962. The effect of electrolytes on the stability of the deoxyribonucleate helix. J. Am. Chem. Soc. 84:1329–38 [Google Scholar]
  3. Sturtevant JM, Geiduschek EP. 3.  1958. The heat of denaturation of DNA. J. Am. Chem. Soc. 89:2911 [Google Scholar]
  4. Marmur J, Lane D. 4.  1960. Strand separation and specific recombination in deoxyribonucleic acids: biological studies. Proc. Natl. Acad. Sci. USA 46:453–61 [Google Scholar]
  5. Doty P, Marmur J, Eigner J, Schildkraut C. 5.  1960. Strand separation and specific recombination in deoxyribonucleic acids: physical chemical studies. Proc. Natl. Acad. Sci. USA 46:461–76 [Google Scholar]
  6. Geiduschek EP. 6.  1961. “Reversible” DNA. Proc. Natl. Acad. Sci. USA 47:950–55 [Google Scholar]
  7. Brookes P, Lawley PD. 7.  1961. The reaction of mono- and di-functional alkylating agents with nucleic acids. Biochem. J. 80:496–503 [Google Scholar]
  8. Marmur J, Grossman L. 8.  1961. Ultraviolet light induced linking of deoxyribonucleic acid strands and its reversal by photoreactivating enzyme. Proc. Natl. Acad. Sci. USA 47:778–87 [Google Scholar]
  9. Becker EF Jr, Zimmerman BK, Geiduschek EP. 9.  1964. Structure and function of cross-linked DNA. I. Reversible denaturation and Bacillus subtilis transformation. J. Mol. Biol. 8:377–91 [Google Scholar]
  10. Kirchner JJ, Sigurdsson ST, Hopkins PB. 10.  1992. Interstrand cross-linking of duplex DNA by nitrous acid: covalent structure of the dG-to-dG cross-link at the sequence 5′-CG. J. Am. Chem. Soc. 114:4021–27 [Google Scholar]
  11. Becker EF Jr. 11.  1967. Structure and function of cross-linked DNA. II. Loss of reversibility of HNO2-cross-linked DNA during transformation of Bacillus subtilis. Biochim. Biophys. Acta 142:238–44 [Google Scholar]
  12. Weiss SB, Gladstone. 12.  1959. A mammalian system for the incorporation of cytidine triphosphate into ribonucleic acid. J. Am. Chem. Soc. 81:4118–19 [Google Scholar]
  13. Weiss SB. 13.  1960. Enzymatic incorporation of ribonucleoside triphosphates into the interpolynucleotide linkages of ribonucleic acid. Proc. Natl. Acad. Sci. USA 46:1020–30 [Google Scholar]
  14. Stevens A. 14.  1960. Incorporation of the adenine ribonucleotide into RNA by cell fractions from E. coli B. Biochem. Biophys. Res. Commun. 3:92–95 [Google Scholar]
  15. Hurwitz J, Bresler A, Diringer R. 15.  1960. The enzymic incorporation of ribonucleotides into polyribonucleotides and the effect of DNA. Biochem. Biophys. Res. Commun. 3:15–18 [Google Scholar]
  16. Furth JJ, Hurwitz J, Goldmann M. 16.  1961. The directing role of DNA in RNA synthesis. Biochem. Biophys. Res. Commun. 4:362–67 [Google Scholar]
  17. Weiss SB, Nakamoto T. 17.  1961. On the participation of DNA in RNA biosynthesis. Proc. Natl. Acad. Sci. USA 47:694–97 [Google Scholar]
  18. Josse J, Kaiser AD, Kornberg A. 18.  1961. Enzymatic synthesis of deoxyribonucleic acid. VIII. Frequencies of nearest neighbor base sequences in deoxyribonucleic acid. J. Biol. Chem. 236:864–75 [Google Scholar]
  19. Weiss SB, Nakamoto T. 19.  1961. The enzymatic synthesis of RNA: nearest-neighbor base frequencies. Proc. Natl. Acad. Sci. USA 47:1400–5 [Google Scholar]
  20. Furth JJ, Hurwitz J, Goldmann M. 20.  1961. The directing role of DNA in RNA synthesis. Specificity of the deoxyadenylate deoxythymidylate copolymer as a primer. Biochem. Biophys. Res. Commun. 4:431–35 [Google Scholar]
  21. Hall BD, Spiegelman S. 21.  1961. Sequence complementarity of T2-DNA and T2-specific RNA. Proc. Natl. Acad. Sci. USA 47:137–63 [Google Scholar]
  22. Geiduschek EP, Nakamoto T, Weiss SB. 22.  1961. The enzymatic synthesis of RNA: complementary interaction with DNA. Proc. Natl. Acad. Sci. USA 47:1405–15 [Google Scholar]
  23. Geiduschek EP, Moohr JW, Weiss SB. 23.  1962. The secondary structure of complementary RNA. Proc. Natl. Acad. Sci. USA 48:1078–86 [Google Scholar]
  24. Chamberlin M, Berg P. 24.  1962. Deoxyribonucleic acid-directed synthesis of ribonucleic acid by an enzyme from Escherichia coli. Proc. Natl. Acad. Sci. USA 48:81–94 [Google Scholar]
  25. Hayashi M, Hayashi MN, Spiegelman S. 25.  1963. Restriction of in vivo genetic transcription to one of the complementary strands of DNA. Proc. Natl. Acad. Sci. USA 50:664–72 [Google Scholar]
  26. Champe SP, Benzer S. 26.  1962. Reversal of mutant phenotypes by 5-fluorouracil: an approach to nucleotide sequences in messenger-RNA. Proc. Natl. Acad. Sci. USA 48:532–46 [Google Scholar]
  27. Cordes S, Epstein HT, Marmur J. 27.  1961. Some properties of the deoxyribonucleic acid of phage alpha. Nature 191:1097–98 [Google Scholar]
  28. Marmur J, Greenspan CM, Palecek E, Kahan FM, Levine J, Mandel M. 28.  1963. Specificity of the complementary RNA formed by Bacillus subtilis infected with bacteriophage SP8. Cold Spring Harb. Symp. Quant. Biol. 28:191–99 [Google Scholar]
  29. Tocchini-Valentini GP, Stodolsky M, Aurisicchio A, Sarnat M, Graziosi F. 29.  et al. 1963. On the asymmetry of RNA synthesis in vivo. Proc. Natl. Acad. Sci. USA 50:935–42 [Google Scholar]
  30. Marmur J, Greenspan CM. 30.  1963. Transcription in vivo of DNA from bacteriophage SP8. Science 142:387–89 [Google Scholar]
  31. Tocchini-Valentini GP. 31.  1963. No title. Cold Spring Harb. Symp. Quant. Biol. 28:203–4 [Google Scholar]
  32. Hayashi M, Hayashi MN, Spiegelman S. 32.  1964. DNA circularity and the mechanism of strand selection in the generation of genetic messages. Proc. Natl. Acad. Sci. USA 51:351–59 [Google Scholar]
  33. Geiduschek EP, Tocchini-Valentini GP, Sarnat MT. 33.  1964. Asymmetric synthesis of RNA in vitro: dependence of DNA continuity and conformation. Proc. Natl. Acad. Sci. USA 52:486–93 [Google Scholar]
  34. Colvill AJ, Kanner LC, Tocchini-Valentini GP, Sarnat MT, Geiduschek EP. 34.  1965. Asymmetric RNA synthesis in vitro: heterologous DNA-enzyme systems; E. coli RNA polymerase. Proc. Natl. Acad. Sci. USA 53:1140–47 [Google Scholar]
  35. Adams MH. 34a.  1959. Bacteriophages New York: Interscience592 pp.
  36. Epstein RH, Bolle A, Steinberg CM, Kellenberger E, Boy de la Tour E. 35.  et al. 1963. Physiological studies of conditional lethal mutants of bacteriophage T4D. Cold Spring Harb. Symp. Quant. Biol. 28:375–94 [Google Scholar]
  37. Kano-Sueoka T, Spiegelman S. 36.  1962. Evidence for a nonrandom reading of the genome. Proc. Natl. Acad. Sci. USA 48:1942–49 [Google Scholar]
  38. Khesin RB, Shemyakin MF. 37.  1962. Some properties of messenger ribonucleic acids and their complexes with desoxyribonucleic acids. Biokhimiia 27:761–79 [Google Scholar]
  39. Khesin RB, Gorlenko ZM, Shemyakin MF, Bass IA, Prozorov AA. 38.  1963. The connection between protein synthesis and regulation of messenger RNA formation in E. coli B cells during T2 phage development. Biokhimiia 28:1070–86 [Google Scholar]
  40. Hall BD, Nygaard AP, Green MH. 39.  1964. Control of T2-specific RNA synthesis. J. Mol. Biol. 9:143–53 [Google Scholar]
  41. Nygaard AP, Hall BD. 40.  1964. Formation and properties of RNA-DNA complexes. J. Mol. Biol. 9:125–42 [Google Scholar]
  42. Salser W, Bolle A, Epstein R. 41.  1970. Transcription during bacteriophage T4 development: a demonstration that distinct subclasses of the “early” RNA appear at different times and that some are “turned off” at late times. J. Mol. Biol. 49:271–95 [Google Scholar]
  43. Wiberg JS, Dirksen ML, Epstein RH, Luria SE, Buchanan JM. 42.  1962. Early enzyme synthesis and its control in E. coli infected with some amber mutants of bacteriophage T4. Proc. Natl. Acad. Sci. USA 48:293–302 [Google Scholar]
  44. Bolle A, Epstein RH, Salser W, Geiduschek EP. 43.  1968. Transcription during bacteriophage T4 development: requirements for late messenger synthesis. J. Mol. Biol. 33:339–62 [Google Scholar]
  45. Bolle A, Epstein RH, Salser W, Geiduschek EP. 44.  1968. Transcription during bacteriophage T4 development: synthesis and relative stability of early and late RNA. J. Mol. Biol. 31:325–48 [Google Scholar]
  46. Geiduschek EP. 45.  1965. Some aspects of RNA synthesis on a DNA template. Bull. Soc. Chim. Biol. 47:1571–77 [Google Scholar]
  47. Khesin RB, Shemiakin MF, Gorlenko ZM, Bogdanova SL, Afanasyeva TP. 46.  1962. RNA polymerase in E. coli cells infected with T2 phage. Biokhimiia 27:1092–105 [Google Scholar]
  48. Luria SE. 47.  1965. Asymmetric transcription of the T4 phage DNA by purified RNA polymerase. Biochem. Biophys. Res. Commun. 18:735–42 [Google Scholar]
  49. Green MH. 48.  1964. Strand selective transcription of T4 DNA in vitro. Proc. Natl. Acad. Sci. USA 52:1388–95 [Google Scholar]
  50. Bass IA, Zograff YN, Khesin RB. 49.  1967. Derepression of nucleic acid synthesis following the disruption of bacteria. Mol. Biol. 1:436–48 [Google Scholar]
  51. Khesin RB. 50.  1970. Studies on the RNA synthesis and RNA-polymerase in normal and phage infected E. coli cells. Lepetit Colloquia on Biology and Medicine: RNA-Polymerase and Transcription L Silvestri 167–89 Amsterdam/London: North-Holland [Google Scholar]
  52. Milanesi G, Brody EN, Geiduschek EP. 51.  1969. Sequence of the in vitro transcription of T4 DNA. Nature 221:1014–16 [Google Scholar]
  53. Milanesi G, Brody EN, Grau O, Geiduschek EP. 52.  1970. Transcriptions of the bacteriophage T4 template in vitro: separation of “delayed early” from “immediate early” transcription. Proc. Natl. Acad. Sci. USA 66:181–88 [Google Scholar]
  54. Grau O, Guha A, Geiduschek EP, Szybalski W. 53.  1969. Transcription of the bacteriophage T4 template: strand selection by E. coli RNA polymerase in vitro. Nature 224:1105 [Google Scholar]
  55. Snyder L, Geiduschek EP. 54.  1968. In vitro synthesis of T4 late messenger RNA. Proc. Natl. Acad. Sci. USA 59:459–66 [Google Scholar]
  56. Pulitzer JF. 55.  1970. Function of T4 gene 55. I. Characterization of temperature-sensitive mutations in the “maturation” gene 55. J. Mol. Biol. 49:473–88 [Google Scholar]
  57. Pulitzer JF, Geiduschek EP. 56.  1970. Function of T4 gene 55. II. RNA synthesis by temperature-sensitive gene 55 mutants. J. Mol. Biol. 49:489–507 [Google Scholar]
  58. Riva S, Cascino A, Geiduschek EP. 57.  1970. Coupling of late transcription to viral replication in bacteriophage T4 development. J. Mol. Biol. 54:85–102 [Google Scholar]
  59. Wiberg JS. 58.  1966. Mutants of bacteriophage T4 unable to cause breakdown of host DNA. Proc. Natl. Acad. Sci. USA 55:614–21 [Google Scholar]
  60. Riva S, Cascino A, Geiduschek EP. 59.  1970. Uncoupling of late transcription from DNA replication in bacteriophage T4 development. J. Mol. Biol. 54:103–19 [Google Scholar]
  61. Cascino A, Riva S, Geiduschek EP. 60.  1970. DNA ligation and the coupling of T4 late transcription to replication. Cold Spring Harb. Symp. Quant. Biol. 35:213–20 [Google Scholar]
  62. Wu R, Geiduschek EP, Cascino A. 61.  1975. The role of replication proteins in the regulation of bacteriophage T4 transcription. II. Gene 45 and late transcription uncoupled from replication. J. Mol. Biol. 96:539–62 [Google Scholar]
  63. Levner MH, Cozzarelli NR. 62.  1972. Replication of viral DNA in SPO1-infected Bacillus subtilis. I. Replicative intermediates. Virology 48:402–16 [Google Scholar]
  64. Gage LP, Geiduschek EP. 63.  1971. RNA synthesis during bacteriophage SPO1 development: six classes of SPO1 RNA. J. Mol. Biol. 57:279–97 [Google Scholar]
  65. Okubo S, Yanagida T, Fujita DJ, Olsson-Wilhelm BM. 64.  1972. The genetics of bacteriophage SPO1. Biken J. 15:81–97 [Google Scholar]
  66. Fujita DJ, Ohlsson-Wilhelm BM, Geiduschek EP. 65.  1971. Transcription during bacteriophage SPO1 development: mutations affecting the program of viral transcription. J. Mol. Biol. 57:301–17 [Google Scholar]
  67. Wilson DL, Geiduschek EP. 66.  1969. A template-selective inhibitor of in vitro transcription. Proc. Natl. Acad. Sci. USA 62:514–20 [Google Scholar]
  68. Geiduschek EP, Sklar J. 67.  1969. Continual requirement for a host RNA polymerase component in a bacteriophage development. Nature 221:833–36 [Google Scholar]
  69. Haselkorn R, Vogel M, Brown RD. 68.  1969. Conservation of the rifamycin sensitivity of transcription during T4 development. Nature 221:836–38 [Google Scholar]
  70. Grau O, Ohlsson-Wilhelm BM, Geiduschek EP. 69.  1970. Transcription specificity in bacteriophage SPO1 development. Cold Spring Harb. Symp. Quant. Biol. 35:221–26 [Google Scholar]
  71. Hager G, Hall BD, Fields KL. 70.  1970. Transcription factors from T4-infected Escherichia coli. Cold Spring Harb. Symp. Quant. Biol. 35:233–39 [Google Scholar]
  72. Schmidt DA, Mazaitis AJ, Kasai T, Bautz EK. 71.  1970. Involvement of a phage T4 sigma factor and an anti-terminator protein in the transcription of early T4 genes in vivo. Nature 225:1012–16 [Google Scholar]
  73. Travers AA. 72.  1970. Positive control of transcription by a bacteriophage sigma factor. Nature 225:1009–12 [Google Scholar]
  74. Fox TD, Losick R, Pero J. 73.  1976. Regulatory gene 28 of bacteriophage SPO1 codes for a phage-induced subunit of RNA polymerase. J. Mol. Biol. 101:427–33 [Google Scholar]
  75. Fox TD. 74.  1976. Identification of phage SPO1 proteins coded by regulatory genes 33 and 34. Nature 262:748–53 [Google Scholar]
  76. Duffy JJ, Geiduschek EP. 75.  1977. Purification of a positive regulatory subunit from phage SPO1-modified RNA polymerase. Nature 270:28–32 [Google Scholar]
  77. Tijan R, Pero J. 76.  1976. Bacteriophage SPO1 regulatory proteins directing late gene transcription in vitro. Nature 262:753–57 [Google Scholar]
  78. Greene JR, Chelm BK, Geiduschek EP. 77.  1982. SPO1 gene 27 is required for viral late transcription. J. Virol. 41:715–20 [Google Scholar]
  79. Brennan SM, Chelm BK, Romeo JM, Geiduschek EP. 78.  1981. A transcriptional map of the bacteriophage SPO1 genome. II. The major early transcription units. Virology 111:604–28 [Google Scholar]
  80. Romeo JM, Brennan SM, Chelm BK, Geiduschek EP. 79.  1981. A transcriptional map of the bacteriophage SPO1 genome, I. The major early promoters. Virology 111:588–603 [Google Scholar]
  81. Chelm BK, Romeo JM, Brennan SM, Geiduschek EP. 80.  1981. A transcriptional map of the bacteriophage SPO1 genome. III. A region of early and middle promoters (the gene 28 region). Virology 112:572–88 [Google Scholar]
  82. Greene JR, Brennan SM, Andrew DJ, Thompson CC, Richards SH. 81.  et al. 1984. Sequence of the bacteriophage SPO1 gene coding for transcription factor 1, a viral homologue of the bacterial type II DNA-binding proteins. Proc. Natl. Acad. Sci. USA 81:7031–35 [Google Scholar]
  83. Sayre MH, Geiduschek EP. 82.  1990. Construction and properties of a temperature-sensitive mutation in the gene for the bacteriophage SPO1 DNA-binding protein TF1. J. Bacteriol. 172:4672–81 [Google Scholar]
  84. Grove A, Galeone A, Yu E, Mayol L, Geiduschek EP. 83.  1998. Affinity, stability and polarity of binding of the TATA binding protein governed by flexure at the TATA box. J. Mol. Biol. 282:731–39 [Google Scholar]
  85. Rabussay D, Geiduschek EP. 84.  1977. Phage T4-modified RNA polymerase transcribes T4 late genes in vitro. Proc. Natl. Acad. Sci. USA 74:5305–9 [Google Scholar]
  86. Rabussay D, Geiduschek EP. 85.  1979. Construction and properties of a cell-free system for bacteriophage T4 late RNA synthesis. J. Biol. Chem. 254:339–49 [Google Scholar]
  87. Huberman JA. 86.  1968. Visualization of replicating mammalian and T4 bacteriophage DNA. Cold Spring Harb. Symp. Quant. Biol. 33:509–24 [Google Scholar]
  88. Kassavetis GA, Geiduschek EP. 87.  1982. Bacteriophage T4 late promoters: mapping 5′ ends of T4 gene 23 mRNAs. EMBO J. 1:107–14 [Google Scholar]
  89. Christensen AC, Young ET. 88.  1982. T4 late transcripts are initiated near a conserved DNA sequence. Nature 299:369–71 [Google Scholar]
  90. Kassavetis GA, Elliott T, Rabussay DP, Geiduschek EP. 89.  1983. Initiation of transcription at phage T4 late promoters with purified RNA polymerase. Cell 33:887–97 [Google Scholar]
  91. Elliott T, Geiduschek EP. 90.  1984. Defining a bacteriophage T4 late promoter: absence of a “-35” region. Cell 36:211–19 [Google Scholar]
  92. Kassavetis GA, Geiduschek EP. 91.  1984. Defining a bacteriophage T4 late promoter: bacteriophage T4 gene 55 protein suffices for directing late promoter recognition. Proc. Natl. Acad. Sci. USA 81:5101–5 [Google Scholar]
  93. Herendeen DR, Kassavetis GA, Barry J, Alberts BM, Geiduschek EP. 92.  1989. Enhancement of bacteriophage T4 late transcription by components of the T4 DNA replication apparatus. Science 245:952–58 [Google Scholar]
  94. Herendeen DR, Williams KP, Kassavetis GA, Geiduschek EP. 93.  1990. An RNA polymerase-binding protein that is required for communication between an enhancer and a promoter. Science 248:573–78 [Google Scholar]
  95. Herendeen DR, Kassavetis GA, Geiduschek EP. 94.  1992. A transcriptional enhancer whose function imposes a requirement that proteins track along DNA. Science 256:1298–303 [Google Scholar]
  96. Tinker RL, Williams KP, Kassavetis GA, Geiduschek EP. 95.  1994. Transcriptional activation by a DNA-tracking protein: structural consequences of enhancement at the T4 late promoter. Cell 77:225–37 [Google Scholar]
  97. Tinker-Kulberg RL, Fu TJ, Geiduschek EP, Kassavetis GA. 96.  1996. A direct interaction between a DNA-tracking protein and a promoter recognition protein: implications for searching DNA sequence. EMBO J. 15:5032–39 [Google Scholar]
  98. Fu TJ, Sanders GM, O'Donnell M, Geiduschek EP. 97.  1996. Dynamics of DNA-tracking by two sliding-clamp proteins. EMBO J. 15:4414–22 [Google Scholar]
  99. Sanders GM, Kassavetis GA, Geiduschek EP. 98.  1997. Dual targets of a transcriptional activator that tracks on DNA. EMBO J. 16:3124–32 [Google Scholar]
  100. Wong K, Geiduschek EP. 99.  1998. Activator-sigma interaction: a hydrophobic segment mediates the interaction of a sigma family promoter recognition protein with a sliding clamp transcription activator. J. Mol. Biol. 284:195–203 [Google Scholar]
  101. Wong K, Kassavetis GA, Léonetti JP, Geiduschek EP. 100.  2003. Mutational and functional analysis of a segment of the sigma family bacteriophage T4 late promoter recognition protein gp55. J. Biol. Chem. 278:7073–80 [Google Scholar]
  102. Nechaev S, Kamali-Moghaddam M, André E, Léonetti JP, Geiduschek EP. 101.  2004. The bacteriophage T4 late-transcription coactivator gp33 binds the flap domain of Escherichia coli RNA polymerase. Proc. Natl. Acad. Sci. USA 101:17365–70 [Google Scholar]
  103. Fu TJ, Geiduschek EP, Kassavetis GA. 102.  1998. Abortive initiation of transcription at a hybrid promoter. An analysis of the sliding clamp activator of bacteriophage T4 late transcription, and a comparison of the σ70 and T4 gp55 promoter recognition proteins. J. Biol. Chem. 273:34042–48 [Google Scholar]
  104. Kolesky SE, Ouhammouch M, Geiduschek EP. 103.  2002. The mechanism of transcriptional activation by the topologically DNA-linked sliding clamp of bacteriophage T4. J. Mol. Biol 321:767–84 [Google Scholar]
  105. Nechaev S, Geiduschek EP. 104.  2006. The role of an upstream promoter interaction in initiation of bacterial transcription. EMBO J. 25:1700–9 [Google Scholar]
  106. Hofstetter H, Kressman A, Birnstiel ML. 105.  1981. A split promoter for a eucaryotic tRNA gene. Cell 24:573–85 [Google Scholar]
  107. Klemenz R, Stillman DJ, Geiduschek EP. 106.  1982. Specific interactions of Saccharomyces cerevisiae proteins with a promoter region of eukaryotic tRNA genes. Proc. Natl. Acad. Sci. USA 79:6191–95 [Google Scholar]
  108. Stillman DJ, Geiduschek EP. 107.  1984. Differential binding of a S. cerevisiae RNA polymerase III transcription factor to two promoter segments of a tRNA gene. EMBO J. 3:847–53 [Google Scholar]
  109. Stillman DJ, Better M, Geiduschek EP. 108.  1985. Electron-microscopic examination of the binding of a large RNA polymerase III transcription factor to a tRNA gene. J. Mol. Biol. 185:451–55 [Google Scholar]
  110. Kassavetis GA, Riggs DL, Negri R, Nguyen LH, Geiduschek EP. 109.  1989. Transcription factor IIIB generates extended DNA interactions in RNA polymerase III transcription complexes on tRNA genes. Mol. Cell. Biol. 9:2551–66 [Google Scholar]
  111. Braun BR, Riggs DL, Kassavetis GA, Geiduschek EP. 110.  1989. Multiple states of protein-DNA interaction in the assembly of transcription complexes on Saccharomyces cerevisiae 5S ribosomal RNA genes. Proc. Natl. Acad. Sci. USA 86:2530–34 [Google Scholar]
  112. Bartholomew B, Kassavetis GA, Braun BR, Geiduschek EP. 111.  1990. The subunit structure of Saccharomyces cerevisiae transcription factor IIIC probed with a novel photocrosslinking reagent. EMBO J. 9:2197–205 [Google Scholar]
  113. Bartholomew B, Kassavetis GA, Geiduschek EP. 112.  1991. Two components of Saccharomyces cerevisiae transcription factor IIIB (TFIIIB) are stereospecifically located upstream of a tRNA gene and interact with the second-largest subunit of TFIIIC. Mol. Cell. Biol. 11:5181–89 [Google Scholar]
  114. Kassavetis GA, Bartholomew B, Blanco JA, Johnson TE, Geiduschek EP. 113.  1991. Two essential components of the Saccharomyces cerevisiae transcription factor TFIIIB: transcription and DNA-binding properties. Proc. Natl. Acad. Sci. USA 88:7308–12 [Google Scholar]
  115. Braun BR, Bartholomew B, Kassavetis GA, Geiduschek EP. 114.  1992. Topography of transcription factor complexes on the Saccharomyces cerevisiae 5 S RNA gene. J. Mol. Biol. 228:1063–77 [Google Scholar]
  116. Kassavetis GA, Braun BR, Nguyen LH, Geiduschek EP. 115.  1990. S. cerevisiae TFIIIB is the transcription initiation factor proper of RNA polymerase III, while TFIIIA and TFIIIC are assembly factors. Cell 60:235–45 [Google Scholar]
  117. Kassavetis GA, Joazeiro CA, Pisano M, Geiduschek EP, Colbert T. 116.  et al. 1992. The role of the TATA-binding protein in the assembly and function of the multisubunit yeast RNA polymerase III transcription factor, TFIIIB. Cell 71:1055–64 [Google Scholar]
  118. Kassavetis GA, Nguyen ST, Kobayashi R, Kumar A, Geiduschek EP, Pisano M. 117.  1995. Cloning, expression, and function of TFC5, the gene encoding the B″component of the Saccharomyces cerevisiae RNA polymerase III transcription factor TFIIIB. Proc. Natl. Acad. Sci. USA 92:9786–90 [Google Scholar]
  119. Matsuzaki H, Kassavetis GA, Geiduschek EP. 118.  1994. Analysis of RNA chain elongation and termination by Saccharomyces cerevisiae RNA polymerase III. J. Mol. Biol. 235:1173–92 [Google Scholar]
  120. Bardeleben C, Kassavetis GA, Geiduschek EP. 119.  1994. Encounters of Saccharomyces cerevisiae RNA polymerase III with its transcription factors during RNA chain elongation. J. Mol. Biol. 235:1193–205 [Google Scholar]
  121. Bustamante C, Moffitt JR. 120.  2009. Past, present and future of single-molecule studies of transcription. In RNA Polymerases as Molecular Motors, ed. H Buc, T Strick, pp. 302–14 Cambridge, UK: R. Soc. Chem [Google Scholar]
  122. Studitsky VM, Kassavetis GA, Geiduschek EP, Felsenfeld G. 121.  1997. Mechanism of transcription through the nucleosome by eukaryotic RNA polymerase. Science 278:1960–63 [Google Scholar]
  123. Whitehall SK, Kassavetis GA, Geiduschek EP. 122.  1995. The symmetry of the yeast U6 RNA gene's TATA box and the orientation of the TATA-binding protein in yeast TFIIIB. Genes Dev. 9:2974–85 [Google Scholar]
  124. Joazeiro CA, Kassavetis GA, Geiduschek EP. 123.  1996. Alternative outcomes in assembly of promoter complexes: the roles of TBP and a flexible linker in placing TFIIIB on tRNA genes. Genes Dev. 10:725–39 [Google Scholar]
  125. Kassavetis GA, Steiner DF. 124.  2006. Nhp6 is a transcriptional initiation fidelity factor for RNA polymerase III transcription in vitro and in vivo. J. Biol. Chem. 281:7445–51 [Google Scholar]
  126. Kumar A, Kassavetis GA, Geiduschek EP, Hambalko M, Brent CJ. 125.  1997. Functional dissection of the B″ component of RNA polymerase III transcription factor IIIB: a scaffolding protein with multiple roles in assembly and initiation of transcription. Mol. Cell. Biol. 17:1868–80 [Google Scholar]
  127. Kassavetis GA, Kumar A, Ramirez E, Geiduschek EP. 126.  1998. Functional and structural organization of Brf, the TFIIB-related component of the RNA polymerase III transcription initiation complex. Mol. Cell. Biol. 18:5587–99 [Google Scholar]
  128. Kassavetis GA, Kumar A, Letts GA, Geiduschek EP. 127.  1998. A postrecruitment function for the RNA polymerase III transcription-initiation factor IIIB. Proc. Natl. Acad. Sci. USA 95:9196–201 [Google Scholar]
  129. Kassavetis GA, Letts GA, Geiduschek EP. 128.  2001. The RNA polymerase III transcription initiation factor TFIIIB participates in two steps of promoter opening. EMBO J. 20:2823–34 [Google Scholar]
  130. Schröder O, Bryant GO, Geiduschek EP, Berk AJ, Kassavetis GA. 129.  2003. A common site on TBP for transcription by RNA polymerases II and III. EMBO J. 22:5115–24 [Google Scholar]
  131. Juo ZS, Kassavetis GA, Wang J, Geiduschek EP, Sigler PB. 130.  2003. Crystal structure of a transcription factor IIIB core interface ternary complex. Nature 422:534–39 [Google Scholar]
  132. Kassavetis GA, Driscoll R, Geiduschek EP. 131.  2006. Mapping the principal interaction site of the Brf1 and Bdp1 subunits of Saccharomyces cerevisiae TFIIIB. J. Biol. Chem. 281:14321–29 [Google Scholar]
  133. Kassavetis GA, Soragni E, Driscoll R, Geiduschek EP. 132.  2005. Reconfiguring the connectivity of a multiprotein complex: fusions of yeast TATA-binding protein with Brf1, and the function of transcription factor IIIB. Proc. Natl. Acad. Sci. USA 102:15406–11 [Google Scholar]
  134. Yieh L, Kassavetis G, Geiduschek EP, Sandmeyer SB. 133.  2000. The Brf and TATA-binding protein subunits of the RNA polymerase III transcription factor IIIB mediate position-specific integration of the gypsy-like element, Ty3. J. Biol. Chem. 275:29800–7 [Google Scholar]
  135. Ouhammouch M, Sayre MH, Kadonaga JT, Geiduschek EP. 134.  1997. Activation of RNA polymerase II by topologically linked DNA-tracking proteins. Proc. Natl. Acad. Sci. USA 94:6718–23 [Google Scholar]
  136. Ouhammouch M, Dewhurst RE, Hausner W, Thomm M, Geiduschek EP. 135.  2003. Activation of archaeal transcription by recruitment of the TATA-binding protein. Proc. Natl. Acad. Sci. USA 100:5097–102 [Google Scholar]
  137. Ouhammouch M, Werner F, Weinzierl RO, Geiduschek EP. 136.  2004. A fully recombinant system for activator-dependent archaeal transcription. J. Biol. Chem. 279:51719–21 [Google Scholar]
/content/journals/10.1146/annurev.biochem.77.051906.142055
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error