1932

Abstract

▪ Abstract 

We review the history of DNA mechanics and its analysis. We evaluate several methods to analyze the structures of superhelical DNA molecules, each predicated on the assumption that DNA can be modeled with reasonable accuracy as an extended, linearly elastic polymer. Three main approaches are considered: mechanical equilibrium methods, which seek to compute minimum energy conformations of topologically constrained molecules; statistical mechanical methods, which seek to compute the Boltzmann distribution of equilibrium conformations that arise in a finite temperature environment; and dynamic methods, which seek to compute deterministic trajectories of the helix axis by solving equations of motion. When these methods include forces of self-contact, which prevent strand passage and preserve the topological constraint, each predicts plectonemically interwound structures. On the other hand, the extent to which these mechanical methods reliably predict energetic and thermodynamic properties of superhelical molecules is limited, in part because of their inability to account explicitly for interactions involving solvent. Monte Carlo methods predict the entropy associated with supercoiling to be negative, in conflict with a body of experimental evidence that finds it is large and positive, as would be the case if superhelical deformations significantly disrupt the ordering of ambient solvent molecules. This suggests that the large-scale conformational properties predicted by elastomechanical models are not the only ones determining the energetics and thermodynamics of supercoiling. Moreover, because all such models that preserve the topological constraint correctly predict plectonemic interwinding, despite these and other limitations, this constraint evidently dominates energetic and thermodynamic factors in determining supercoil geometry. Therefore, agreement between predicted structures and structures obtained experimentally, for example, by electron microscopy, does not in itself provide evidence for the correctness or completeness of any given model of DNA mechanics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.bioeng.6.062403.132016
2005-08-15
2024-04-19
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.bioeng.6.062403.132016
Loading
/content/journals/10.1146/annurev.bioeng.6.062403.132016
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error