1932

Abstract

Orbitally induced increase in northern summer insolation after growth of a large ice sheet triggered deglaciation and associated global warming. Ice-albedo, sea-level, and greenhouse-gas feedbacks, together with tropical warming from weakening winds in response to polar amplification of warming, caused regional-to-global (near-) synchronization of deglaciation. Effects were larger at orbital rather than millennial frequencies because ice sheets and carbon dioxide vary slowly. Ice-sheet–linked changes in freshwater delivery to the North Atlantic, and possibly free oscillations in the climate system, forced millennial climate oscillations associated with changes in North Atlantic deep water (NADW) flow. The North Atlantic typically operates in one of three modes: modern, glacial, and Heinrich. Deglaciation occurred from a glacial-mode ocean that, in comparison to modern, had shallower depth of penetration of NADW formed further south, causing strong northern cooling and the widespread cold, dry, and windy conditions associated with the glacial maximum and the cold phases of the millennial Dansgaard-Oeschger oscillations. The glacial mode was punctuated by meltwater-forced Heinrich conditions that caused only small additional cooling at high northern latitudes, but greatly reduced the formation of NADW and triggered an oceanic “seesaw” that warmed some high-latitude southern regions centered in the South Atlantic.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.earth.27.1.149
1999-05-01
2024-04-16
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.earth.27.1.149
Loading
/content/journals/10.1146/annurev.earth.27.1.149
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error