1932

Abstract

The first mass spectrum of a molecule was measured by J.J. Thomson in 1910. Mass spectrometry (MS) soon became crucial to the study of isotopes and atomic weights and to the development of atomic weapons for World War II. Its notable applications to molecules began with the quantitative analysis of light hydrocarbons during World War II. When I joined the Dow Chemical Company in 1950, MS was not favored by organic chemists. This situation improved only with an increased understanding of gaseous ion chemistry, which was obtained through the use of extensive reference data. Gas chromatography–MS was developed in 1956, and tandem MS was first used a decade later. In neutralization-reionization MS, an unusual, unstable species is prepared by ion-beam neutralization and characterized by reionization. Electrospray ionization of a protein mixture produces its corresponding ionized molecules. In top-down proteomics, ions from an individual component can be mass separated and subjected to collision-activated and electron-capture dissociation to provide extensive sequence information.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061010-114018
2011-07-19
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/anchem/4/1/annurev-anchem-061010-114018.html?itemId=/content/journals/10.1146/annurev-anchem-061010-114018&mimeType=html&fmt=ahah

Literature Cited

  1. Thomson GP. 1.  1965. J.J. Thomson and the Cavendish Laboratory in His Day Garden City, NY: Doubleday186
  2. Davis EA, Falconer IJ. 2.  1997. J.J. Thomson and the Discovery of the Electron London: Taylor & Francis243
  3. Thomas JM. 3.  2006. J.J. Thomson: winner of the Nobel Prize for Physics, 1906. Angew. Chem. Int. Ed. 45:6797–800 [Google Scholar]
  4. Thomson JJ. 4.  1913. Rays of Positive Electricity and Their Application to Chemical Analysis London: Longmans Green277
  5. Aston FW.5.  1922. Isotopes London: Edward Arnold.252
  6. Thomson JJ.6.  1907. The Corpuscular Theory of Matter London: Constable239
  7. Linder EG. 7.  1932. Mass-spectrograph study of the ionization and dissociation by electron impact of benzene and carbon disulfide. Phys. Rev. 41:149–53 [Google Scholar]
  8. Washburn HW, Wiley HF, Rock SM. 8.  1943. The mass spectrometer as an analytical tool. Ind. Eng. Chem. 15:541–47 [Google Scholar]
  9. Thomson JJ. 9.  1939. Electronic waves. Philos. Mag. 27:1–32 [Google Scholar]
  10. Friedel RA, Sharkey AJ. 10.  1952. Correlation of the mass spectra of alcohols through C11 Presented at Pittsburgh Conf. Anal. Chem. Appl. Spectrosc., Pittsburgh, March 5–7
  11. Rock SM. 11.  1951. Qualitative analysis from mass spectra. Anal. Chem. 23:261–68 [Google Scholar]
  12. Beynon JH. 12.  1954. Qualitative analysis of organic compounds by mass spectrometry. Nature 174:735–37 [Google Scholar]
  13. Beynon JH. 13.  1960. Mass Spectrometry and Its Application to Organic Chemistry Amsterdam: Elsevier640
  14. Asselineau J, Ryhage R, Stenhagen E. 14.  1957. Mass spectrometric studies of long chain methyl esters. Determination of the molecular weight and structure of mycocerosic acid. Acta Chem. Scand. 11:196–98 [Google Scholar]
  15. Collin J. 15.  1952. Mass spectra of aliphatic amines. Bull. Soc. Sci. Liège 21:446–56 [Google Scholar]
  16. Reed RI. 16.  1958. Electron impact and molecular dissociation. I. Some steroids and triterpenoids. J. Chem. Soc. 1958:3342–46 [Google Scholar]
  17. Hanus V.17.  1959. Isomerization to tropylium ion induced by electron ionization and its significance. Nature 184:1796–98 [Google Scholar]
  18. Friedman L, Long FA. 18.  1953. Mass spectra and appearance potentials of ketene monomer and dimer: relation to structure of dimer. J. Am. Chem. Soc. 75:2837–40 [Google Scholar]
  19. Biemann K, Gapp F, Seibl J. 19.  1959. Application of mass spectrometry to structure problems: amino acid sequence in peptides. J. Am. Chem. Soc. 81:2274–75 [Google Scholar]
  20. Biemann K. 20.  1962. Mass Spectrometry: Organic Chemical Applications New York: McGraw-Hill370
  21. Rosenstock HM, Wallenstein MB, Wahrhaftig AL, Eyring H. 21.  1952. Absolute rate theory for isolated systems and the mass spectra of polyatomic molecules. Proc. Natl. Acad. Sci. USA 38:667–78 [Google Scholar]
  22. Tal'roze VL, Lyubimova AK. 22.  1952. Secondary processes in the ion source of the mass spectrograph. J. Mass Spectrom. 33:502–4 [Google Scholar]
  23. Rylander PN, Meyerson S, Grubb HM. 23.  1957. Organic ions in the gas phase. II. The tropylium ion. J. Am. Chem. Soc. 79:842–46 [Google Scholar]
  24. Doering WvE, Knox LH. 24.  1954. The cycloheptatrienylium (tropylium) ion. J. Am. Chem. Soc. 76:3203–6 [Google Scholar]
  25. Happ GP, Stewart DW. 25.  1952. Rearrangement peaks in the mass spectra of certain aliphatic acids. J. Am. Chem. Soc. 74:4404–8 [Google Scholar]
  26. Nicholson AJC. 26.  1954. The photochemical decomposition of the aliphatic methyl ketones. Trans. Faraday Soc. 50:1067–73 [Google Scholar]
  27. McLafferty FW. 27.  1956. Mass spectrometric analysis. Broad applicability to chemical research. Anal. Chem. 28:306–16 [Google Scholar]
  28. McLafferty FW.28.  1959. Mass spectrometric analysis: molecular rearrangements. Anal. Chem. 31:82–87 [Google Scholar]
  29. Spiteller G, Spitteller-Friedmann M. 29.  1964. Rearrangements of aliphatic compounds in the mass spectrometer. Monatshefte Chem. 95:257–64 [Google Scholar]
  30. Budzikiewicz H, Djerassi C, Williams DH. 30.  1964. Structural Elucidation of Natural Products by Mass Spectrometry. II Alkaloids San Francisco: Holden-Day306
  31. Shannon JS.31.  1964. New ion charge symbolism in mass spectrometry. Proc. R. Aust. Chem. Inst. 31:323–28 [Google Scholar]
  32. McLafferty FW, Gohlke RS. 32.  1959. Mass spectrometric analysis. Spectral data file utilizing machine filing and manual searching. Anal. Chem. 31:1160–63 [Google Scholar]
  33. Gohlke RS. 33.  1963. Uncertified Dow Mass Spectral Data Midland, MI: Dow Chem. Co.539
  34. McLafferty FW.34.  1963. Mass Spectral Correlations Washington, DC: Am. Chem. Soc.117
  35. McLafferty FW.35.  1966. Interpretation of Mass Spectra New York: Benjamin229
  36. Wiley WC.36.  1956. Bendix time-of-flight mass spectrometer. Science 124:817–20 [Google Scholar]
  37. Gohlke RS.37.  1959. Time-of-flight mass spectrometry and gas-liquid partition chromatography. Anal. Chem. 31:535–41 [Google Scholar]
  38. Gohlke RS, McLafferty FW. 38.  1993. Early gas chromatography/mass spectrometry. J. Am. Soc. Mass Spectrom. 4:367–71 [Google Scholar]
  39. Ryhage R. 39.  1964. Use of a mass spectrometer as a detector and analyzer for effluents emerging from high temperature gas liquid chromatography columns. Anal. Chem. 36:759–64 [Google Scholar]
  40. Baldwin MA, McLafferty FW. 40.  1973. Liquid chromatography–mass spectrometry interface. I. The direct introduction of liquid solutions into a chemical ionization mass spectrometer. Org. Mass Spectrom. 7:1111–12 [Google Scholar]
  41. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. 41.  1989. Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71 [Google Scholar]
  42. McLafferty FW. 42.  1983. Tandem Mass Spectrometry New York: Wiley506
  43. Abrahamsson S, Stenhagen E, McLafferty FW. 43.  1969. Atlas of Mass Spectral Data New York: Wiley2,354
  44. Venkataraghavan R, McLafferty FW, Van Lear GE. 44.  1969. Computer-aided interpretation of mass spectra. Org. Mass Spectrom. 2:1–15 [Google Scholar]
  45. McLafferty FW, Stauffer DB. 45.  1989. Wiley/NBS Registry of Mass Spectral Data New York: Wiley7,872
  46. McLafferty FW. 46.  2009. Registry of Mass Spectral Data and Registry Combined with NIST Hoboken, NJ: Wiley-Blackwell, 9th.
  47. McLafferty FW, Turecek F. 47.  1993. Computer identification of unknown mass spectra. Interpretation of Mass Spectra283–91 Mill Valley, CA: Univ. Sci. Books, 4th. [Google Scholar]
  48. McLafferty FW, Hertel RH, Villwock RD. 48.  1974. Probability based matching of mass spectra. Rapid identification of specific compounds in mixtures. Org. Mass Spectrom. 9:690–93 [Google Scholar]
  49. Pesyna GM, Venkataraghavan R, Dayringer HE, McLafferty FW. 49.  1976. A probability based matching system using a large collection of reference mass spectra. Anal. Chem. 48:1362–68 [Google Scholar]
  50. McLafferty FW, Zhang MY, Stauffer DB, Loh SY. 50.  1998. Comparison of algorithms and databases for matching unknown mass spectra. J. Am. Soc. Mass Spectrom. 9:92–95 [Google Scholar]
  51. McLafferty FW, Stauffer DA, Loh SY, Wesdemiotis C. 51.  1999. Unknown identification using reference mass spectra. Quality evaluation of databases. J. Am. Soc. Mass Spectrom. 10:1229–40 [Google Scholar]
  52. Budzikiewicz H, Djerassi C, Williams DH. 52.  1967. Mass Spectrometry of Organic Compounds San Francisco: Holden-Day690
  53. Kwok KS, Venkataraghavan R, McLafferty FW. 53.  1973. Computer-aided interpretation of mass spectra. III. A self-training interpretive and retrieval system. J. Am. Chem. Soc. 95:4185–94 [Google Scholar]
  54. Haraki KS, Venkataraghavan R, McLafferty FW. 54.  1981. Prediction of substructures of unknown mass spectra by the self-training interpretive and retrieval system. Anal. Chem. 53:386–92 [Google Scholar]
  55. McLafferty FW. 55.  1963. Mass Spectrometry of Organic Ions New York: Academic730
  56. Budzikiewicz H, Djerassi C, Williams DH. 56.  1964. Structural Elucidation of Natural Products by Mass Spectrometry. I Alkaloids San Francisco: Holden-Day233
  57. Djerassi C, Brewer HW, Budzikiewicz H, Orazi OO, Corral RA. 57.  1962. Mass spectrometry in structural and stereochemical problems. Spegazzinine and spegazzinidine. Experientia 18:113–15 [Google Scholar]
  58. Roller H, Dahm KH, Sweeley CC, Trost BM. 58.  1967. Structure of the juvenile hormone. Angew. Chem. Int. Ed. 6:179–80 [Google Scholar]
  59. Barber M, Jolles P, Vilkas E, Lederer E. 59.  1965. Determination of amino acid sequences in oligopeptides by mass spectrometry. I. The structure of fortuitine, an acylnonapeptide methyl ester. Biochem. Biophys. Res. Commun. 18:469–73 [Google Scholar]
  60. McLafferty FW, Wachs T, Lifshitz C, Innorta G, Irving P. 60.  1970. Substituent effects in unimolecular ion decompositions. XV. Mechanistic interpretations and the quasi-equilibrium theory. J. Am. Chem. Soc. 92:6867–80 [Google Scholar]
  61. Yates BF, Bouma WJ, Radom L. 61.  1986. Distonic radical cations. Guidelines for the assessment of their stability. Tetrahedron 42:6225–34 [Google Scholar]
  62. Gross ML, McLafferty FW. 62.  1971. Identification of C3H6+ structural isomers by ion cyclotron resonance spectroscopy. J. Am. Chem. Soc. 93:1267–68 [Google Scholar]
  63. Venkataraghavan R, Klimowski RJ, McLafferty FW. 63.  1970. On-line computers in research: high-resolution mass spectrometry. Acc. Chem. Res. 3:158–65 [Google Scholar]
  64. Hipple JA.64.  1947. Peak contour and half-life of metastable ions appearing in mass spectra. Phys. Rev. 71:594–99 [Google Scholar]
  65. Shannon TW, McLafferty FW. 65.  1966. Identification of gaseous organic ions by the use of “metastable peaks.”. J. Am. Chem. Soc. 88:5021–22 [Google Scholar]
  66. McLafferty FW, Bryce TA. 66.  1967. Metastable ion characteristics: characterization of isomeric molecules. Chem. Commun. 1967:1215–17 [Google Scholar]
  67. Gross ML, McLafferty FW. 67.  1968. Substituent effects in unimolecular ion decompositions. Formation of C6H5CO+ ions with varying internal energies. Chem. Commun. 1968:254–55 [Google Scholar]
  68. McLafferty FW, Fairweather RB. 68.  1968. Metastable ion characteristics. VIII. Characterization of ion decomposition mechanisms by metastable ion abundances. J. Am. Chem. Soc. 90:5915–17 [Google Scholar]
  69. McLafferty FW, Pike WT. 69.  1967. Metastable ion characteristics. III. Structures of C3H6O+ ions in the mass spectra of aliphatic ketones. J. Am. Chem. Soc. 89:5953–54 [Google Scholar]
  70. Dickman J, MacLeod JK, Djerassi C, Baldeschwieler JD. 70.  1969. Mass spectrometry in structural and stereochemical problems. CLXIX. Determination of the structures of the ions produced in the single and double McLafferty rearrangements by ion cyclotron resonance spectroscopy. J. Am. Chem. Soc. 91:2069–84 [Google Scholar]
  71. McLafferty FW, Schuddemage HDR. 71.  1969. Minimization of rearrangement reactions in mass spectra by use of collisional activation. J. Am. Chem. Soc. 91:1866–68 [Google Scholar]
  72. Haddon WF, McLafferty FW. 72.  1968. Metastable ion characteristics. VII. Collision induced metastables. J. Am. Chem. Soc. 90:4745–46 [Google Scholar]
  73. Haddon WF, McLafferty FW. 73.  1969. Metastable ion characteristics. Measurements with a modified time-of-flight mass spectrometer. Anal. Chem. 41:31–36 [Google Scholar]
  74. McLafferty FW, Bente PF III, Kornfeld R, Tsai S-C, Howe I. 74.  1973. Collisional activation spectra of organic ions. J. Am. Chem. Soc. 95:2120–29 [Google Scholar]
  75. McLafferty FW, Kornfeld R, Haddon WF, Levsen K, Sakai I. 75.  et al. 1973. Application of collisional activation spectra to the elucidation of organic ion structures. J. Am. Chem. Soc. 95:3886–92 [Google Scholar]
  76. Cheng MT, Kruppa GH, McLafferty FW, Cooper DA. 76.  Structural information from tandem mass spectrometry for china white and related fentanyl derivatives. Anal. Chem. 54:2204–7 [Google Scholar]
  77. Kruger TL, Litton JF, Kondrat RW, Cooks RG. 77.  1976. Mixture analysis by mass-analyzed ion kinetic energy spectrometry. Anal. Chem. 48:2113–19 [Google Scholar]
  78. Kondrat RW, Cooks RG. 78.  1978. Direct analysis of mixtures by mass spectrometry. Anal. Chem. 50:81–92A [Google Scholar]
  79. McLafferty FW, Bockhoff FM. 79.  1978. A separation/identification system for complex mixtures utilizing mass separation and mass spectral characterization. Anal. Chem. 50:69–76 [Google Scholar]
  80. McLafferty FW.80.  1980. Tandem mass spectrometry (MS/MS): a promising new analytical technique for specific component determination in complex mixtures. Acc. Chem. Res. 13:33–39 [Google Scholar]
  81. Yost RA, Enke CG. 81.  1979. Triple quadrupole mass spectrometry for direct mixture analysis and structure elucidation. Anal. Chem. 51:1251–62A [Google Scholar]
  82. Yost RA, Enke CG, McGilvery DC, Smith D, Morrison JD. 82.  1979. High efficiency collision-induced dissociation in an RF-only quadrupole. Int. J. Mass Spectrom. Ion Phys. 30:127–36 [Google Scholar]
  83. McLafferty FW, Venkataraghavan R, Irving P. 83.  1970. Determination of amino acid sequences in peptide mixtures by mass spectrometry. Biochem. Biophys. Res. Commun. 39:274–78 [Google Scholar]
  84. Wipf H-K, Irving P, McCamish M, Venkataraghavan R, McLafferty FW. 84.  Mass spectrometric studies of peptides. V. Determination of amino acid sequences in peptide mixtures by mass spectrometry. J. Am. Chem. Soc. 95:3369–75 [Google Scholar]
  85. McLafferty FW, Todd PJ, McGilvery DC, Baldwin MA. 85.  1980. High-resolution tandem mass spectrometry (MS/MS) of increased sensitivity and mass range. J. Am. Chem. Soc. 102:3360–63 [Google Scholar]
  86. Amster IJ, Baldwin MA, Cheng MT, Proctor CJ, McLafferty FW. 86.  1983. Tandem mass spectrometry of higher molecular weight compounds. J. Am. Chem. Soc. 105:1654–55 [Google Scholar]
  87. Cheng MT, Barbalas MP, Pegues RF, McLafferty FW. 87.  1983. Tandem mass spectrometry: structural and stereochemical information from steroids. J. Am. Chem. Soc. 105:1510–13 [Google Scholar]
  88. Amster IJ, McLafferty FW. 88.  1985. Tandem mass spectrometry with fast atom bombardment ionization of cobalamins. Anal. Chem. 57:1208–10 [Google Scholar]
  89. Gellene GI, Porter RF. 89.  1983. Neutralized ion-beam spectroscopy. Acc. Chem. Res. 16:200–7 [Google Scholar]
  90. Danis PO, Wesdemiotis C, McLafferty FW. 90.  1983. Neutralization-reionization mass spectrometry (NRMS). J. Am. Chem. Soc. 105:7454–56 [Google Scholar]
  91. Burgers PC, Holmes JL, Mommers AA, Terlouw JK. 91.  1983. Neutral products of ion fragmentations: hydrogen cyanide and hydrogen isocyanide (HNC) identified by collisionally induced dissociative ionization. Chem. Phys. Lett. 102:1–3 [Google Scholar]
  92. Feng R, Wesdemiotis C, Baldwin MA, McLafferty FW. 92.  1988. An improved tandem double-focusing mass spectrometer for neutralization-reionization and collisional activation studies. Int. J. Mass Spectrom. Ion Processes 86:95–107 [Google Scholar]
  93. McLafferty FW.93.  1990. Studies of unusual simple molecules by neutralization-reionization mass spectrometry. Science 247:925–29 [Google Scholar]
  94. Holmes JL.94.  1989. The neutralization of organic cations. Mass Spectrom. Rev. 8:513–39 [Google Scholar]
  95. Schwarz H.95.  1989. Generation of elusive neutrals and dications by neutralization. Charge stripping of monocations in beam experiments. Pure Appl. Chem. 61:685–92 [Google Scholar]
  96. Zhang M-Y, Wesdemiotis C, Marchetti M, Danis PO, Ray JC Jr. 96.  et al. 1989. Characterization of four C4H4 molecules and cations by neutralization-reionization mass spectrometry. J. Am. Chem. Soc. 111:8341–46 [Google Scholar]
  97. Drinkwater DE, McLafferty FW. 97.  1993. Reduced isotope scrambling in neutralization-reionization mass spectra. Org. Mass Spectrom. 28:378–81 [Google Scholar]
  98. Comisarow MB, Marshall AG. 98.  1974. Fourier transform ion cyclotron resonance spectroscopy. Chem. Phys. Lett. 25:282–83 [Google Scholar]
  99. Cody RB Jr, Amster IJ, McLafferty FW. 99.  1985. Peptide mixture sequencing by tandem Fourier-transform mass spectrometry. Proc. Natl. Acad. Sci. USA 82:6367–70 [Google Scholar]
  100. Amster IJ, McLafferty FW, Castro ME, Russell DH, Cody RB Jr, Ghaderi S. 100.  1986. Detection of mass 16241 ions by Fourier-transform mass spectrometry. Anal. Chem. 58:483–85 [Google Scholar]
  101. McLafferty FW, Amster IJ. 101.  1986. Tandem Fourier-transform mass spectrometry. Int. J. Mass Spectrom. Ion Processes 72:85–91 [Google Scholar]
  102. Loo JA, Williams ER, Amster IJ, Furlong JJP, Wang BH. 102.  et al. 1987. 252Cf plasma desorption with Fourier-transform mass spectrometry. Anal. Chem. 59:1880–82 [Google Scholar]
  103. Amster IJ, Loo JA, Furlong JJP, McLafferty FW. 103.  1987. Cesium ion desorption ionization with Fourier-transform mass spectrometry. Anal. Chem. 59:313–17 [Google Scholar]
  104. Hunt DF, Shabanowitz J, Yates JR III, Zhu N-Z, Russell DH, Castro ME. 104.  1987. Tandem quadrupole Fourier-transform mass spectrometry of oligopeptides and small proteins. Proc. Natl. Acad. Sci. USA 84:620–23 [Google Scholar]
  105. Henry KD, Williams ER, Wang B-H, McLafferty FW, Shabanowitz J, Hunt DF. 105.  1989. Fourier-transform mass spectrometry of large molecules by electrospray ionization. Proc. Natl. Acad. Sci. USA 86:9075–78 [Google Scholar]
  106. Mann M, Kelleher NL. 106.  2008. Precision proteomics: the case for high resolution and high mass accuracy. Proc. Natl. Acad. Sci. USA 105:18132–38 [Google Scholar]
  107. Kelleher NL, Lin HY, Valaskovic GA, Aaserud DJ, Fridriksson EK, McLafferty FW. 107.  1999. Top down versus bottom up protein characterization by tandem high-resolution mass spectrometry. J. Am. Chem. Soc. 121:806–12 [Google Scholar]
  108. Pesavento JJ, Bullock CR, LeDuc RD, Mizzen CA, Kelleher NL. 108.  2008. Combinatorial modification of human histone H4 quantitated by two-dimensional liquid chromatography coupled with top down mass spectrometry. J. Biol. Chem. 283:14927–37 [Google Scholar]
  109. McLafferty FW.109.  1994. High-resolution tandem FT mass spectrometry above 10 kDa. Acc. Chem. Res. 27:379–86 [Google Scholar]
  110. Valaskovic GA, Kelleher NL, McLafferty FW. 110.  1996. Attomole protein characterization by capillary electrophoresis/mass spectrometry. Science 273:1199–202 [Google Scholar]
  111. Belov ME, Goshkov ME, Udseth HR, Anderson GA, Smith RD. 111.  2000. Zeptomole-sensitivity electrospray ionization–Fourier transform ion cyclotron resonance mass spectrometry of proteins. Anal. Chem. 72:2271–79 [Google Scholar]
  112. Little DP, Speir JP, Senko MW, O'Connor PB, McLafferty FW. 112.  1994. Infrared multiphoton dissociation of large multiply charged ions for biomolecule sequencing. Anal. Chem. 66:2809–15 [Google Scholar]
  113. Guan Z, Kelleher NL, O'Connor PB, Aaserud DJ, Little DP, McLafferty FW. 113.  1996. 193 nm photodissociation of larger multiply-charged biomolecules. Int. J. Mass Spectrom. Ion Processes 157/158:357–64 [Google Scholar]
  114. Williams ER, Henry KD, McLafferty FW, Shabanowitz J, Hunt DF. 114.  1990. Surface-induced dissociation of large peptide ions in Fourier-transform mass spectrometry. J. Am. Soc. Mass Spectrom. 1:413–16 [Google Scholar]
  115. McLafferty FW, Amster IJ, Furlong JJP, Loo JA, Wang BH, Williams ER. 115.  1987. Tandem Fourier-transform mass spectrometry of large molecules. Tandem Fourier-Transform Mass Spectrometry MV Buchanan 116–26 Washington, DC: Am. Chem. Soc. [Google Scholar]
  116. Zubarev RA, Kelleher NL, McLafferty FW. 116.  1998. Electron capture dissociation of multiply charged protein cations. A nonergodic process. J. Am. Chem. Soc. 120:3265–66 [Google Scholar]
  117. Sze SK, Ge Y, Oh HB, McLafferty FW. 117.  2003. Plasma electron capture dissociation for the characterization of large proteins by top down mass spectrometry. Anal. Chem. 75:1599–603 [Google Scholar]
  118. Sze SK, Ge Y, Oh HB, McLafferty FW. 118.  2002. Top down mass spectrometry of a 29 kDa protein for characterization of any posttranslational modification to within one residue. Proc. Natl. Acad. Sci. USA 99:1774–49 [Google Scholar]
  119. Mirgorodskaya E, Roepstorff P, Zubarev R. 119.  1999. Localization of O-glycosylation sites in peptides by electron capture dissociation in a Fourier transform mass spectrometer. Anal. Chem. 71:4431–36 [Google Scholar]
  120. Shi SD-H, Hemling ME, Carr SA, Horn DM, Lindh I, McLafferty FW. 120.  2001. Phosphopeptide/phosphoprotein mapping by electron capture dissociation mass spectrometry. Anal. Chem. 73:19–22 [Google Scholar]
  121. Syka JE, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF. 121.  2004. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl. Acad. Sci. USA 101:9528–33 [Google Scholar]
  122. Hofstadler SA, Sannes-Lowery KA. 122.  2006. Applications of ESI-MS in drug discovery: interrogation of noncovalent complexes. Nat. Rev. Drug Discov. 5:585–95 [Google Scholar]
  123. Benesch JL, Aquilina JA, Ruotolo BT, Sobott F, Robinson CV. 123.  2006. Tandem mass spectrometry reveals the quaternary structure of macromolecular assemblies. Chem. Biol. 13:597–609 [Google Scholar]
  124. Suckau D, Shi Y, Beu SC, Senko MW, Quinn JP. 124.  et al. 1993. Coexisting stable conformations of gaseous protein ions. Proc. Natl. Acad. Sci. USA 90:790–93 [Google Scholar]
  125. Bohrer BC, Merenbloom SI, Koeniger SL, Hilderbrand AE, Clemmer DE. 125.  2008. Biomolecule analysis by ion mobility spectrometry. Annu. Rev. Anal. Chem. 1:293–327 [Google Scholar]
  126. Breuker K, Oh HB, Horn DM, Cerda BA, McLafferty FW. 126.  2002. Detailed unfolding and folding of gaseous ubiquitin ions characterized by electron capture dissociation. J. Am. Chem. Soc. 124:6407–20 [Google Scholar]
  127. Oh HB, Breuker K, Sze SK, Ge Y, Carpenter BK, McLafferty FW. 127.  2002. Secondary and tertiary structures of gaseous protein ions characterized by electron capture dissociation mass spectrometry and photofragment spectroscopy. Proc. Natl. Acad. Sci. USA 99:15863–68 [Google Scholar]
  128. Breuker K, McLafferty FW. 128.  2008. Stepwise evolution of protein native structure with electrospray into the gas phase, 10−12–102 s. Proc. Natl. Acad. Sci. USA 105:18145–52 [Google Scholar]
  129. Han X, Jin M, Breuker K, McLafferty FW. 129.  2006. Extending top-down mass spectrometry to proteins with masses >200 kDa. Science 314:109–12 [Google Scholar]
  130. McLafferty FW.130.  1984. Trends in analytical instrumentation. Science 226:251–53 [Google Scholar]
/content/journals/10.1146/annurev-anchem-061010-114018
Loading
/content/journals/10.1146/annurev-anchem-061010-114018
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error