1932

Abstract

Experimental techniques to monitor and visualize the behaviors of single nanoparticles have not only revealed the significant spatial and temporal heterogeneity of those individuals, which are hidden in ensemble methods, but more importantly, they have also enabled researchers to elucidate the origin of such heterogeneity. In pursuing the intrinsic structure-function relations of single nanoparticles, the recently developed stochastic collision approach demonstrated some early promise. However, it was later realized that the appropriate sizing of a single nanoparticle by an electrochemical method could be far more challenging than initially expected owing to the dynamic motion of nanoparticles in electrolytes and complex charge-transfer characteristics at electrode surfaces. This clearly indicates a strong necessity to integrate single nanoparticle electrochemistry with high-resolution optical microscopy. Hence, this review aims to give a timely update of the latest progress for both electrochemically sensing and seeing single nanoparticles. A major focus is on collision-based measurements, where nanoparticles or single entities in solution impact on a collector electrode and the electrochemical response is recorded. These measurements are further enhanced with optical measurements in parallel. For completeness, advances in other related methods for single nanoparticle electrochemistry are also included.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061318-114902
2019-06-12
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ac/12/1/annurev-anchem-061318-114902.html?itemId=/content/journals/10.1146/annurev-anchem-061318-114902&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Tschulik K, Haddou B, Omanović D, Rees NV, Compton RG 2013. Coulometric sizing of nanoparticles: cathodic and anodic impact experiments open two independent routes to electrochemical sizing of Fe3O4 nanoparticles. Nano Res 6:836–41
    [Google Scholar]
  2. 2.
    Alligrant TM, Dasari R, Stevenson KJ, Crooks RM 2015. Electrocatalytic amplification of single nanoparticle collisions using DNA-modified surfaces. Langmuir 31:11724–33
    [Google Scholar]
  3. 3.
    Dicka JE, Hilterbrand AT, Strawsine LM, Upton JW, Bard AJ 2016. Enzymatically enhanced collisions on ultramicroelectrodes for specific and rapid detection of individual viruses. PNAS 113:6403–8
    [Google Scholar]
  4. 4.
    Cheng W, Compton RG. 2016. Quantifying the electrocatalytic turnover of vitamin B12-mediated dehalogenation on single soft nanoparticles. Angew. Chem. Int. Ed. 55:2545–49
    [Google Scholar]
  5. 5.
    Li D, Kong N, Liu J, Wang H, Barrow CJ et al. 2015. Real-time electrochemical monitoring of covalent bond formation in solution via nanoparticle-electrode collisions. Chem. Commun. 51:16349–52
    [Google Scholar]
  6. 6.
    Anderson TJ, Zhang B. 2016. Single-nanoparticle electrochemistry through immobilization and collision. Acc. Chem. Res. 49:2625–31
    [Google Scholar]
  7. 7.
    Peng YY, Qian RC, Hafez ME, Long YT 2017. Stochastic collision nanoelectrochemistry: a review of recent developments. ChemElectroChem 4:977–85
    [Google Scholar]
  8. 8.
    Bentley CL, Kang M, Unwin PR 2016. Time-resolved detection of surface oxide formation at individual gold nanoparticles: role in electrocatalysis and new approach for sizing by electrochemical impacts. J. Am. Chem. Soc. 138:12755–58
    [Google Scholar]
  9. 9.
    Ma W, Ma H, Chen JF, Peng YY, Yang ZY et al. 2017. Tracking motion trajectories of individual nanoparticles using time-resolved current traces. Chem. Sci. 8:1854–61
    [Google Scholar]
  10. 10.
    Shin C, Bae H, Kang M, Kim B, Kwon SJ 2016. Direct observation of single Pt nanoparticle collision onto single-crystalline gold nanowire electrodes. Chem. Asian J. 11:2181–87
    [Google Scholar]
  11. 11.
    Ustarroz J, Kang M, Bullions E, Unwin PR 2017. Impact and oxidation of single silver nanoparticles at electrode surfaces: one shot versus multiple events. Chem. Sci. 8:1841–53
    [Google Scholar]
  12. 12.
    Mirkin MV, Sun T, Yu Y, Zhou M 2016. Electrochemistry at one nanoparticle. Acc. Chem. Res. 49:2328–35
    [Google Scholar]
  13. 13.
    Hao R, Fan Y, Zhang B 2016. Electrochemical detection of nanoparticle collision by reduction of silver chloride. J. Electrochem. Soc. 163:3145–51
    [Google Scholar]
  14. 14.
    Xiao X, Bard AJ. 2007. Observing single nanoparticle collisions at an ultramicroelectrode by electrocatalytic amplification. J. Am. Chem. Soc. 129:9610–12
    [Google Scholar]
  15. 15.
    Hutton LA, Miller TS, Bard AJ, Macpherson JV 2013. Boron doped diamond ultramicroelectrodes: a generic platform for sensing single nanoparticle electrocatalytic collisions. Chem. Commun. 49:5657–59
    [Google Scholar]
  16. 16.
    Kim J, Kim B, Cho SK, Bard AJ 2014. Tunneling ultramicroelectrode: nanoelectrodes and nanoparticle collisions. J. Am. Chem. Soc. 136:8173–76
    [Google Scholar]
  17. 17.
    Boika A, Thorgaard SN, Bard AJ 2013. Monitoring the electrophoretic migration and adsorption of single insulating nanoparticles at ultramicroelectrodes. J. Phys. Chem. B 117:4371–80
    [Google Scholar]
  18. 18.
    Chen CH, Ravenhill ER, Momotenko D, Kim YR, Lai SCS, Unwin PR 2015. Impact of surface chemistry on nanoparticle-electrode interactions in the electrochemical detection of nanoparticle collisions. Langmuir 31:11932–42
    [Google Scholar]
  19. 19.
    Ying Y, Ding Z, Long YT 2017. Advanced electroanalytical chemistry at nanoelectrodes. Chem. Sci. 8:3338–48
    [Google Scholar]
  20. 20.
    Oja SM, Fan Y, Armstrong CM, Defnet P, Zhang B 2016. Nanoscale electrochemistry revisited. Anal. Chem. 88:414–30
    [Google Scholar]
  21. 21.
    Kwon SJ, Zhou H, Fan FRF, Vorobyev V, Zhang B, Bard AJ 2011. Stochastic electrochemistry with electrocatalytic nanoparticles at inert ultramicroelectrodes-theory and experiments. Phys. Chem. Chem. Phys. 13:5394–402
    [Google Scholar]
  22. 22.
    Dick JE, Bard AJ. 2015. Recognizing single collisions of PtCl62− at femtomolar concentrations on ultramicroelectrodes by nucleating electrocatalytic clusters. J. Am. Chem. Soc. 137:13752–55
    [Google Scholar]
  23. 23.
    Patrice FT, Qiu K, Zhao LJ, Fodjo EK, Li DW, Long YT 2018. Electrocatalytic oxidation of tris(2-carboxyethyl) phosphine at pyrroloquinoline quinone modified carbon nanotube through single nanoparticle collision. Anal. Chem. 90:6059–63
    [Google Scholar]
  24. 24.
    Zhou H, Park JH, Fan FF, Bard AJ 2012. Observation of single metal nanoparticle collisions by open circuit. J. Am. Chem. Soc. 134:13212–15
    [Google Scholar]
  25. 25.
    Figueiredo PG, Grob L, Rinklin P, Krause KJ, Wolfrum B 2018. On-chip stochastic detection of silver nanoparticles without a reference electrode. ACS Sens 3:93–98
    [Google Scholar]
  26. 26.
    Quinn BM, Hof PGV, Lemay SG 2004. Time-resolved electrochemical detection of discrete adsorption events. J. Am. Chem. Soc. 126:8360–61
    [Google Scholar]
  27. 27.
    Patel AN, Martinez-Marrades A, Brasiliense V, Koshelev D, Besbes M et al. 2015. Deciphering the elementary steps of transport-reaction processes at individual Ag nanoparticles by 3D superlocalization microscopy. Nano Lett 15:6454–63
    [Google Scholar]
  28. 28.
    Fosdick SE, Anderson MJ, Nettleton EG, Crooks RM 2013. Correlated electrochemical and optical tracking of discrete collision events. J. Am. Chem. Soc. 135:5994–97
    [Google Scholar]
  29. 29.
    Dick JE, Renault C, Bard AJ 2015. Observation of single-protein and DNA macromolecule collisions on ultramicroelectrodes. J. Am. Chem. Soc. 137:8376–79
    [Google Scholar]
  30. 30.
    Dick JE, Hilterbrand AT, Boika A, Upton JW, Bard AJ 2015. Electrochemical detection of a single cytomegalovirus at an ultramicroelectrode and its antibody anchoring. PNAS 112:5303–8
    [Google Scholar]
  31. 31.
    Anderson CM, Dick JE, Webb LJ, Bard AJ 2015. Electrochemical detection of single phospholipid vesicle collisions at a Pt ultramicroelectrode. Langmuir 31:11734–39
    [Google Scholar]
  32. 32.
    Xiao X, Fan FRF, Zhou J, Bard AJ 2008. Current transients in single nanoparticle collision events. J. Am. Chem. Soc. 130:16669–77
    [Google Scholar]
  33. 33.
    Boika A, Bard AJ. 2015. Time of first arrival in electrochemical collision experiments as a measure of ultralow concentrations of analytes in solution. Anal. Chem. 87:4341–46
    [Google Scholar]
  34. 34.
    Wang W, Tao N. 2014. Detection, counting, and imaging of single nanoparticles. Anal. Chem. 86:2–14
    [Google Scholar]
  35. 35.
    Stuart EJE, Tschulik K, McAuley CB, Compton RG 2014. Electrochemical observation of single collision events: fullerene nanoparticles. ACS Nano 8:7648–54
    [Google Scholar]
  36. 36.
    Bard AJ, Zhou H, Jung S 2010. Electrochemistry of single nanoparticles via electrocatalytic amplification. Isr. J. Chem. 50:267–76
    [Google Scholar]
  37. 37.
    Hayden BE, Pletcher D, Suchsland J 2007. Enhanced activity for electrocatalytic oxidation of carbon monoxide. Angew. Chem. Int. Ed. 46:3530–32
    [Google Scholar]
  38. 38.
    Zhou H, Fan FF, Bard AJ 2010. Observation of discrete Au nanoparticle. J. Phys. Chem. Lett. 1:2671–74
    [Google Scholar]
  39. 39.
    Dick JE, Renault C, Kim B, Bard AJ 2014. Simultaneous detection of single attoliter droplet collisions by electrochemical and electrogenerated chemiluminescent responses. Angew. Chem. Int. Ed. 53:11859–62
    [Google Scholar]
  40. 40.
    Zhao LJ, Qian RC, Ma W, Tian H, Long YT 2016. Electrocatalytic efficiency analysis of catechol molecules for NADH oxidation during nanoparticle collision. Anal. Chem. 88:8375–79
    [Google Scholar]
  41. 41.
    Zhang F, Defnet PA, Fan Y, Hao R, Zhang B 2018. Transient electrocatalytic water oxidation in single-nanoparticle collision. J. Phys. Chem. C 122:6447–55
    [Google Scholar]
  42. 42.
    Percival SJ, Zhang B. 2016. Fast-scan cyclic voltammetry allows determination of electron-transfer kinetic constants in single nanoparticle collision. J. Phys. Chem. C 120:20536–46
    [Google Scholar]
  43. 43.
    Clausmeyer J, Masa J, Ventosa E, Öhl D, Schuhmann W 2016. Nanoelectrodes reveal the electrochemistry of single nickelhydroxide nanoparticles. Chem. Commun. 52:2408–11
    [Google Scholar]
  44. 44.
    Li X, McAuley CB, Tschulik K, Shao L, Compton RG 2015. Ultra-small palladium nanoparticle decorated carbon nanotubes: conductivity and reactivity. ChemPhysChem 16:2322–25
    [Google Scholar]
  45. 45.
    Kang M, Perry D, Kim YR, Colburn AW, Lazenby RA, Unwin PR 2015. Time-resolved detection and analysis of single nanoparticle electrocatalytic impacts. J. Am. Chem. Soc. 137:3410902–5
    [Google Scholar]
  46. 46.
    Alligrant TM, Nettleton EG, Crooks RM 2013. Electrochemical detection of individual DNA. Lab Chip 13:349–54
    [Google Scholar]
  47. 47.
    Patrice FT, Qiu K, Zhao LJ, Fodjo EK, Li DW, Long YT 2018. Individual modified carbon nanotube collision for electrocatalytic oxidation of hydrazine in aqueous solution. ACS Appl. Nano Mater. 1:2069–75
    [Google Scholar]
  48. 48.
    Dasari R, Tai K, Robinson DA, Stevenson KJ 2014. Electrochemical monitoring of single nanoparticle collisions at mercury-modified platinum ultramicroelectrodes. ACS Nano 8:4539–46
    [Google Scholar]
  49. 49.
    Percival SJ, Bard AJ. 2017. Ultra-sensitive potentiometric measurements of dilute redox molecule solutions and determination of sensitivity factors at platinum ultramicroelectrodes. Anal. Chem. 89:9843–49
    [Google Scholar]
  50. 50.
    Park JH, Zhou H, Percival SJ, Zhang B, Fan FRF, Bard AJ 2013. Open circuit (mixed) potential changes upon contact between different inert electrodes—size and kinetic effects. Anal. Chem. 85:964–70
    [Google Scholar]
  51. 51.
    Trojánek A, Mare V. 2018. Open circuit potential transients associated with single emulsion droplet collisions at an interface between two immiscible electrolyte solutions. Electrochem. Commun. 86:113–16
    [Google Scholar]
  52. 52.
    Bentley CL, Perry D, Unwin PR 2018. Stability and placement of Ag/AgCl quasi-reference counter electrodes in confined electrochemical cells. Anal. Chem. 90:127700–7
    [Google Scholar]
  53. 53.
    Oja SM, Robinson DA, Vitti NJ, Edwards MA, Liu Y et al. 2017. Observation of multipeak collision behavior during the electro-oxidation of single Ag nanoparticles. J. Am. Chem. Soc. 139:708–18
    [Google Scholar]
  54. 54.
    Robinson DA, Liu Y, Edwards MA, Vitti NJ, Oja SM et al. 2017. Collision dynamics during the electrooxidation of individual silver nanoparticles. J. Am. Chem. Soc. 139:16923–31
    [Google Scholar]
  55. 55.
    Ma W, Ma H, Yang ZY, Long YT 2018. Single Ag nanoparticle electro-oxidation: potential-dependent current traces and potential-independent electron transfer kinetic. J. Phys. Chem. Lett. 9:1429–33
    [Google Scholar]
  56. 56.
    Sundaresan V, Monaghan JW, Willets KA 2018. Visualizing the effect of partial oxide formation on single silver nanoparticle electrodissolution. J. Phys. Chem. C 122:3138–45
    [Google Scholar]
  57. 57.
    Zhou YG, Rees NV, Pillay J, Tshikhudo R, Vilakazi S, Compton RG 2012. Gold nanoparticles show electroactivity: counting and sorting nanoparticles upon impact with electrodes. Chem. Commun. 48:224–26
    [Google Scholar]
  58. 58.
    Rees NV, Zhou Y, Compton RG 2011. The aggregation of silver nanoparticles in aqueous solution investigated via anodic particle coulometry. ChemPhysChem 12:1645–47
    [Google Scholar]
  59. 59.
    Zhou Y, Rees NV, Compton RG 2011. The electrochemical detection and characterization of silver nanoparticles in aqueous solution. Angew. Chem. Int. Ed. 50:4219–21
    [Google Scholar]
  60. 60.
    Zhou Y, Haddou B, Rees V, Compton RG 2012. The charge transfer kinetics of the oxidation of silver and nickel nanoparticles via particle-electrode impact electrochemistry. Phys. Chem. Chem. Phys. 14:14354–57
    [Google Scholar]
  61. 61.
    Rees NV, Zhou Y, Compton RG 2012. The non-destructive sizing of nanoparticles via particle-electrode collisions: tag-redox coulometry (TRC). Chem. Phys. Lett. 525–526:69–71
    [Google Scholar]
  62. 62.
    Sardesai NP, Andreescu D, Andreescu S 2013. Electroanalytical evaluation of antioxidant activity of cerium oxide nanoparticles by nanoparticle collisions at microelectrodes. J. Am. Chem. Soc. 135:16770–73
    [Google Scholar]
  63. 63.
    Daryanavard N, Zare HR. 2017. Single palladium nanoparticle collisions detection through chronopotentiometric method: introducing a new approach to improve the analytical signals. Anal. Chem. 89:8901–7
    [Google Scholar]
  64. 64.
    Zhang F, Edwards MA, Hao R, White HS, Zhang B 2017. Collision and oxidation of silver nanoparticles on a gold nanoband electrode. J. Phys. Chem. C 121:23564–73
    [Google Scholar]
  65. 65.
    Krause KJ, Brings F, Schnitker J, Kätelhön E, Rinklin P et al. 2017. The influence of supporting ions on the electrochemical detection of individual silver nanoparticles: understanding the shape and frequency of current transients in nano-impacts. Chem. Eur. J. 23:4638–43
    [Google Scholar]
  66. 66.
    Ngamchuea K, Clark ROD, Sokolov SV, Young NP, McAuley CB, Compton RG 2017. Single oxidative collision events of silver nanoparticles: understanding the rate-determining chemistry. Chem. Eur. J. 23:16085–96
    [Google Scholar]
  67. 67.
    Eloul S, Kätelhön E, McAuley CB, Tschulik K, Compton RG 2015. Diffusional nanoimpacts: the stochastic limit. J. Phys. Chem. C 119:14400–10
    [Google Scholar]
  68. 68.
    Hill CM, Kim J, Bard AJ 2015. Electrochemistry at a metal nanoparticle on a tunneling film: a steady-state model of current densities at a tunneling ultramicroelectrode. J. Am. Chem. Soc. 137:11321–26
    [Google Scholar]
  69. 69.
    Kätelhön E, Tanner EEL, McAuley CB, Compton RG 2016. Destructive nano-impacts: What information can be extracted from spike shapes. ? Electrochim. Acta 199:297–304
    [Google Scholar]
  70. 70.
    Maisonhaute E. 2016. Transient electrochemistry: beyond simply temporal resolution. Chem. Commun. 52:251–63
    [Google Scholar]
  71. 71.
    Little CA, Xie R, McAuley CB, Kätelhön E, Li X et al. 2018. A quantitative methodology for the study of particle-electrode impacts. Phys. Chem. Chem. Phys. 20:13537–46
    [Google Scholar]
  72. 72.
    Hao R, Zhang B. 2016. Observing electrochemical dealloying by single-nanoparticle collision. Anal. Chem. 88:8728–34
    [Google Scholar]
  73. 73.
    Saw EN, Grasmik V, Rurainsky C, Epple M, Tschulik K 2016. Electrochemistry at single bimetallic nanoparticles—using nano impacts for sizing and compositional analysis of individual AgAu alloy nanoparticles. Faraday Discuss 193:327–38
    [Google Scholar]
  74. 74.
    Brasiliense V, Berto P, Combellas C, Kuszelewicz R, Tessier G, Kanoufi F 2016. Electrochemical transformation of individual nanoparticles revealed by coupling microscopy and spectroscopy. Faraday Discuss 193:339–52
    [Google Scholar]
  75. 75.
    McAuley CB, Marrades AM, Tschulik K, Patel AN, Combellas C et al. 2014. Simultaneous electrochemical and 3D optical imaging of silver nanoparticle oxidation. Chem. Phys. Lett. 597:20–25
    [Google Scholar]
  76. 76.
    Brasiliense V, Patel AN, Marrades AM, Shi J, Chen Y et al. 2016. Correlated electrochemical and optical detection reveals the chemical reactivity of individual silver nanoparticles. J. Am. Chem. Soc. 138:3478–83
    [Google Scholar]
  77. 77.
    Kim YR, Lai SCS, McKelvey K, Zhang G, Perry D et al. 2015. Nucleation and aggregative growth of palladium nanoparticles on carbon electrodes: experiment and kinetic model. J. Phys. Chem. C 119:17389–97
    [Google Scholar]
  78. 78.
    Bartlett TR, Sokolov SV, Compton RG 2015. Electrochemical nanoparticle sizing via nano-impacts: how large a nanoparticle can be measured. ? Chem. Open 4:600–5
    [Google Scholar]
  79. 79.
    Hayden BE. 2013. Particle size and support effects in electrocatalysis. Acc. Chem. Res. 46:1858–66
    [Google Scholar]
  80. 80.
    Xiao X, Pan S, Jang JS, Fan FRF, Bard AJ 2009. Single nanoparticle electrocatalysis: effect of monolayers on particle and electrode on electron transfer. J. Phys. Chem. C 113:14978–82
    [Google Scholar]
  81. 81.
    Chou A, Eggers PK, Paddon-Row MN, Gooding JJ 2009. Self-assembled carbon nanotube electrode arrays: effect of length of the linker between nanotubes and electrode. J. Phys. Chem. C 113:3203–11
    [Google Scholar]
  82. 82.
    Gooding JJ, Ciampi S. 2011. The molecular level modification of surfaces: from self-assembled monolayers to complex molecular assemblies. Chem. Soc. Rev. 40:2704–18
    [Google Scholar]
  83. 83.
    Shein JB, Lai LMH, Eggers PK, Paddon-Row MN, Gooding JJ 2009. Formation of efficient electron transfer pathways by adsorbing gold nanoparticles to self-assembled monolayer modified electrodes. Langmuir 25:1811121–28
    [Google Scholar]
  84. 84.
    Zhao J, Wasem M, Bradbury CR, Fermín DJ 2008. Charge transfer across self-assembled nanoscale metal-insulator-metal heterostructures. J. Phys. Chem. C 112:7284–89
    [Google Scholar]
  85. 85.
    Bradbury CR, Zhao J, Fermín DJ 2008. Distance-independent charge-transfer resistance at gold electrodes modified by thiol monolayers and metal nanoparticles. J. Phys. Chem. C 112:10153–60
    [Google Scholar]
  86. 86.
    Castañeda AD, Alligrant TM, Loussaert JA, Crooks RM 2015. Electrocatalytic amplification of nanoparticle collisions at electrodes modified with polyelectrolyte multilayer films. Langmuir 31:876–85
    [Google Scholar]
  87. 87.
    McKelvey K, German SR, Zhang Y, White HS, Edwards MA 2017. Nanopipettes as a tool for single nanoparticle electrochemistry. Curr. Opin. Electrochem. 6:4–9
    [Google Scholar]
  88. 88.
    Takami T, Park BH, Kawai T 2014. Nanopipette exploring nanoworld. Nano Convergence 1:17
    [Google Scholar]
  89. 89.
    Zhou M, Yu Y, Hu K, Xin HL, Mirkin MV 2017. Collisions of Ir oxide nanoparticles with carbon nanopipettes: experiments with one nanoparticle. Anal. Chem. 89:52880–85
    [Google Scholar]
  90. 90.
    Li T, He X, Zhang K, Wang K, Yu P, Mao L 2016. Observing single nanoparticle events at the orifice of a nanopipet. Chem. Sci. 7:6365–68
    [Google Scholar]
  91. 91.
    Hagendorfer H, Kaegi R, Parlinska M, Sinnet B, Ludwig C, Ulrich A 2012. Characterization of silver nanoparticle products using asymmetric flow field flow fractionation with a multidetector approach—a comparison to transmission electron microscopy and batch dynamic light scattering. Anal. Chem. 84:2678–85
    [Google Scholar]
  92. 92.
    McAuley CB, Little CA, Sokolov SV, Kätelhön E, Zampardi G, Compton RG 2016. Fluorescence monitored voltammetry of single attoliter droplets. Anal. Chem. 88:11213–21
    [Google Scholar]
  93. 93.
    Freedman KJ, Otto LM, Ivanov AP, Barik A, Oh SH, Edel JB 2016. Nanopore sensing at ultra-low concentrations using single-molecule dielectrophoretic trapping. Nat. Commun. 7:10217
    [Google Scholar]
  94. 94.
    Angeli E, Volpe A, Fanzio P, Repetto L, Firpo G et al. 2015. Simultaneous electro-optical tracking for nanoparticle recognition and counting. Nano Lett 15:5696–701
    [Google Scholar]
  95. 95.
    Hill CM, Bennett R, Zhou C, Street S, Zheng J, Pan S 2015. Single Ag nanoparticle spectroelectrochemistry via dark-field scattering and fluorescence microscopies. J. Phys. Chem. C 119:6760–68
    [Google Scholar]
  96. 96.
    Hao R, Fan Y, Zhang B 2017. Imaging dynamic collision and oxidation of single silver nanoparticles at the electrode/solution interface. J. Am. Chem. Soc. 139:12274–82
    [Google Scholar]
  97. 97.
    Zhou X, Andoy NM, Liu G, Choudhary E, Han KS et al. 2012. Quantitative super-resolution imaging uncovers reactivity patterns on single nanocatalysts. Nat. Nanotech. 7:237–41
    [Google Scholar]
  98. 98.
    Guerrette JP, Percival SJ, Zhang B 2013. Fluorescence coupling for direct imaging of electrocatalytic heterogeneity. J. Am. Chem. Soc. 135:855–61
    [Google Scholar]
  99. 99.
    Lu J, Fan Y, Howard MD, Vaughan JC, Zhang B 2017. Single-molecule electrochemistry on a porous silica-coated electrode. J. Am. Chem. Soc. 139:2964–71
    [Google Scholar]
  100. 100.
    Hoener BS, Kirchner SR, Heiderscheit TS, Collins SSE, Chang WS et al. 2018. Plasmonic sensing and control of single-nanoparticle electrochemistry. Chem 4:1560–85
    [Google Scholar]
  101. 101.
    Wang W. 2018. Imaging the chemical activity of single nanoparticles with optical microscopy. Chem. Soc. Rev. 47:2485–508
    [Google Scholar]
  102. 102.
    Qiu K, Fato TP, Wang PY, Long YT 2019. Real-time monitoring of electrochemical reactions on single nanoparticles by dark-field and Raman microscopy. Dalton Trans 48:3809–14
    [Google Scholar]
  103. 103.
    Pang J, Liu HL, Li J, Zhai TT, Wang K, Xia XH 2018. Structural change of a single Ag nanoparticle observed by dark-field microspectroscopy. ChemPhysChem 19:954–58
    [Google Scholar]
  104. 104.
    Wang JG, Hua X, Li M, Long YT 2017. Mussel-inspired polydopamine functionalized plasmonic nanocomposites for single-particle catalysis. ACS Appl. Mater. Interfaces 9:3016–23
    [Google Scholar]
  105. 105.
    Hill CM, Pan S. 2013. A dark-field scattering spectroelectrochemical technique for tracking the electrodeposition of single silver nanoparticles. J. Am. Chem. Soc. 135:17250–53
    [Google Scholar]
  106. 106.
    Fang Y, Wang W, Wo X, Luo Y, Yin S et al. 2014. Plasmonic imaging of electrochemical oxidation of single nanoparticles. J. Am. Chem. Soc. 136:12584–87
    [Google Scholar]
  107. 107.
    Shan X, Perez ID, Wang L, Wiktor P, Gu Y et al. 2012. Imaging the electrocatalytic activity of single nanoparticles. Nat. Nanotech. 7:4–8
    [Google Scholar]
  108. 108.
    Brasiliense V, Clausmeyer J, Berto P, Tessier G, Combellas C et al. 2018. Monitoring cobalt-oxide single particle electrochemistry with subdiffraction accuracy. Anal. Chem. 12:7341–48
    [Google Scholar]
  109. 109.
    Fang Y, Wang H, Yu H, Liu X, Wang W et al. 2016. Plasmonic imaging of electrochemical reactions of single nanoparticles. Acc. Chem. Res. 49:2614–24
    [Google Scholar]
  110. 110.
    Bingham JM, Willets KA, Shah NC, Andrews DQ, Duyne RPV 2009. Localized surface plasmon resonance imaging: simultaneous single nanoparticle spectroscopy and diffusional dynamics. J. Phys. Chem. C 113:16839–42
    [Google Scholar]
  111. 111.
    Lee KJ, Nallathamby PD, Browning LM, Desai T, Cherukuri PK, Xu XHN 2012. Single nanoparticle spectroscopy for real-time in vivo quantitative analysis of transport and toxicity of single nanoparticles in single embryos. Analyst 137:2973–86
    [Google Scholar]
  112. 112.
    Lee SH, Roichman Y, Yi GR, Kim SH, Yang SM et al. 2007. Characterizing and tracking single colloidal particles with video holographic microscopy. Opt. Express 15:18275–82
    [Google Scholar]
  113. 113.
    Verpillat F, Joud F, Desbiolles P, Gross M 2011. Dark-field digital holographic microscopy for 3D-tracking of gold nanoparticles. Opt. Express 19:26044–55
    [Google Scholar]
  114. 114.
    Batchelor-McAuley C, Martinez-Marrades A, Tschulik K, Patel AN, Combellas C et al. 2014. Simultaneous electrochemical and 3D optical imaging of silver nanoparticle oxidation. Chem. Phys. Lett. 597:20–25
    [Google Scholar]
  115. 115.
    Schönauer D, Wiesner K, Fleischer M, Moos R 2009. Selective mixed potential ammonia exhaust gas sensor. Sens. Actuators B 140:585–90
    [Google Scholar]
  116. 116.
    Martinez-Marrades A, Rupprecht JF, Gross M, Tessier G 2014. Stochastic 3D optical mapping by holographic localization of Brownian scatterers. Opt. Express 22:29191–203
    [Google Scholar]
  117. 117.
    Ebejer N, Guell AG, Lai SCS, McKelvey K, Snowden ME, Unwin PR 2013. Scanning electrochemical cell microscopy: a versatile technique for nanoscale electrochemistry and functional imaging. Annu. Rev. Anal. Chem. 6:329–51
    [Google Scholar]
  118. 118.
    Bentley CL, Kang M, Unwin PR 2017. Scanning electrochemical cell microscopy: new perspectives on electrode processes in action. Curr. Opin. Electrochem. 6:23–30
    [Google Scholar]
  119. 119.
    Zoski CG. 2017. Nanoscale scanning electrochemical microscopy: emerging advances in applications and theory. Curr. Opin. Electrochem. 1:46–52
    [Google Scholar]
  120. 120.
    Bentley CL, Kang M, Maddar FM, Li F, Walker M et al. 2017. Electrochemical maps and movies of the hydrogen evolution reaction on natural crystals of molybdenite (MoS2): basal versus edge plane activity. Chem. Sci. 8:6583–93
    [Google Scholar]
  121. 121.
    Unwin PR, Guell AG, Zhang G 2016. Nanoscale electrochemistry of sp2 carbon materials: from graphite and graphene to carbon nanotubes. Acc. Chem. Res. 49:2041–48
    [Google Scholar]
  122. 122.
    Kim J, Renault C, Nioradze N, Curras NA, Leonard KC, Bard AJ 2016. Electrocatalytic activity of individual Pt nanoparticles studied by nanoscale scanning electrochemical microscopy. J. Am. Chem. Soc. 138:8560–68
    [Google Scholar]
  123. 123.
    Kai T, Zoski CG, Bard AJ 2018. Scanning electrochemical microscopy at the nanometer level. Chem. Commun. 54:1934–47
    [Google Scholar]
  124. 124.
    Blanchard PY, Sun T, Yu Y, Wei Z, Matsui H, Mirkin MV 2016. Scanning electrochemical microscopy study of permeability of a thiolated aryl multilayer and imaging of single nanocubes anchored to it. Langmuir 32:2500–8
    [Google Scholar]
  125. 125.
    Tan SY, Perry D, Unwin PR 2018. Double layer effects in voltammetric measurements with scanning electrochemical microscopy (SECM). J. Electroanal. Chem. 819:240–50
    [Google Scholar]
  126. 126.
    Kleijn SEF, Lai SCS, Koper MTM, Unwin PR 2014. Electrochemistry of nanoparticles. Angew. Chem. Int. Ed. 53:3558–86
    [Google Scholar]
  127. 127.
    Mathwig K, Aartsma TJ, Canters GW, Lemay SG 2014. Nanoscale methods for single-molecule electrochemistry. Annu. Rev. Anal. Chem. 7:383–404
    [Google Scholar]
  128. 128.
    Stuart EJE, Rees NV, Cullen JT, Compton RG 2013. Direct electrochemical detection and sizing of silver nanoparticles in seawater media. Nanoscale 5:174–77
    [Google Scholar]
  129. 129.
    Cheng W, Compton RG. 2014. Electrochemical detection of nanoparticles by “nano-impact” methods. TrAC Trends Anal. Chem. 58:79–89
    [Google Scholar]
  130. 130.
    Kwon SJ, Bard AJ. 2012. DNA analysis by application of Pt nanoparticle electrochemical amplification with single label response. J. Am. Chem. Soc. 134:10777–79
    [Google Scholar]
  131. 131.
    Sepunaru L, Plowman BJ, Sokolov SV, Young NP, Compton RG 2016. Rapid electrochemical detection of single influenza viruses tagged with silver nanoparticles. Chem. Sci. 7:3892–99
    [Google Scholar]
  132. 132.
    Sepunaru L, Tschulik K, McAuley CB, Gavish R, Compton RG 2015. Electrochemical detection of single E. coli bacteria labeled with silver nanoparticles. Biomater. Sci. 3:816–20
    [Google Scholar]
  133. 133.
    Dick JE. 2016. Electrochemical detection of single cancer and healthy cell collisions on a microelectrode. Chem. Commun. 52:10906–9
    [Google Scholar]
  134. 134.
    Salamifar SE, Lai RY. 2013. Use of combined scanning electrochemical and fluorescence microscopy for detection of reactive oxygen species in prostate cancer cells. Anal. Chem. 85:9417–21
    [Google Scholar]
  135. 135.
    Koley D, Bard AJ. 2010. Triton X-100 concentration effects on membrane permeability of a single HeLa cell by scanning electrochemical microscopy (SECM). PNAS 107:16783–87
    [Google Scholar]
  136. 136.
    Zhou H, Liu J, Xu JJ, Chen HY 2011. Highly sensitive electrochemiluminescence detection of single-nucleotide polymorphisms based on isothermal cycle-assisted triple-stem probe with dual-nanoparticle label. Anal. Chem. 83:8320–28
    [Google Scholar]
  137. 137.
    Li YT, Zhang SH, Wang L, Xiao RR, Liu W et al. 2014. Nanoelectrode for amperometric monitoring of individual vesicular exocytosis inside single synapses. Angew. Chem. Int. Ed. 53:12456–60
    [Google Scholar]
  138. 138.
    Li X, Majdi S, Dunevall J, Fathali H, Ewing AG 2015. Quantitative measurement of transmitters in individual vesicles in the cytoplasm of single cells with nanotip electrodes. Angew. Chem. Int. Ed. 54:11978–82
    [Google Scholar]
  139. 139.
    Zhou M, Dick JE, Hu K, Mirkin MV, Bard AJ 2018. Ultrasensitive electroanalysis: femtomolar determination of lead, cobalt, and nickel. Anal. Chem. 90:1142–46
    [Google Scholar]
  140. 140.
    Montoya JH, Seitz LC, Chakthranont P, Vojvodic A, Jaramillo TF, Norskov JK 2017. Materials for solar fuels and chemicals. Nat. Mater. 16:70–81
    [Google Scholar]
  141. 141.
    Peng YY, Ma H, Ma W, Long YT, Tian H 2018. Single nanoparticle photoelectrochemistry at a nanoparticulate TiO2-filmed ultramicroelectrode. Angew. Chem. Int. Ed. 57:3758–62
    [Google Scholar]
  142. 142.
    Ma H, Ma W, Chen JF, Liu XY, Peng YY et al. 2018. Quantifying visible-light-induced electron transfer properties of single dye-sensitized ZnO entity for water splitting. J. Am. Chem. Soc. 140:5272–79
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-061318-114902
Loading
/content/journals/10.1146/annurev-anchem-061318-114902
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error