1932

Abstract

The electrochemical behavior of platinum single crystal surfaces can be taken as a model response for the interpretation of the activity of heterogeneous electrodes. The cyclic voltammogram of a given platinum electrode can be considered a fingerprint characteristic of the distribution of sites on its surface. We start this review by providing some simple mathematical descriptions of the voltammetric response in the presence of adsorption processes. We then describe the voltammogram of platinum basal planes, followed by the response of stepped surfaces. The voltammogram of polycrystalline materials can be understood as a composition of the response of the different basal contributions. Further resolution in the discrimination of different surface sites can be achieved with the aid of surface modification using adatoms such as bismuth or germanium. The application of these ideas is exemplified with the consideration of real catalysts composed of platinum nanoparticles with preferential shapes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061318-115541
2020-06-12
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/anchem/13/1/annurev-anchem-061318-115541.html?itemId=/content/journals/10.1146/annurev-anchem-061318-115541&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Frumkin AN, Petrii OA. 1975. Potentials of zero total charge and zero free charge of platinum group metals. Electrochim. Acta 20:347–59
    [Google Scholar]
  2. 2. 
    Gilman S. 1965. Modification of the surface area of platinum electrodes by the application of single pulses. J. Electroanal. Chem. 9:276–81
    [Google Scholar]
  3. 3. 
    Breiter MW. 1969. Electrochemical Processes in Fuel Cells New York: Springer-Verlag
  4. 4. 
    Will FG. 1965. Hydrogen adsorption on platinum single crystal electrodes. I. Isotherms and heats of adsorption. J. Electrochem. Soc. 112:451–55
    [Google Scholar]
  5. 5. 
    Llopis JF, Colom F. 1976. Platinum. Encyclopedia of Electrochemistry of the Elements AJ Bard 170–221 New York/Basel: Marcel Dekker
    [Google Scholar]
  6. 6. 
    Hamelin A. 1985. Double layer properties at sp and sd metal single-crystal electrodes. Modern Aspects of Electrochemistry BE Conway, RE White, JOM Bockris 1–101 New York: Plenum
    [Google Scholar]
  7. 7. 
    Climent V, Feliu JM. 2011. Thirty years of platinum single crystal electrochemistry. J. Solid State Electrochem. 15:1297–315
    [Google Scholar]
  8. 8. 
    Clavilier J, Rodes A, Elachi K, Zamakhchari MA 1991. Electrochemistry at platinum single-crystal surfaces in acidic media: hydrogen and oxygen-adsorption. J. Chim. Phys. Phys. Chim. Biol. 88:1291–337
    [Google Scholar]
  9. 9. 
    Conway BE, Angerstein-Kozlowska H, Sharp WBA, Criddle EE 1973. Ultrapurification of water for electrochemical and surface chemical work by catalytic pyrodistillation. Anal. Chem. 45:1331–36
    [Google Scholar]
  10. 10. 
    Bockris JOM, Ammar IA, Huq AKMS 1957. The mechanism of the hydrogen evolution reaction on platinum, silver and tungsten surfaces in acid solutions. J. Phys. Chem. 61:879–86
    [Google Scholar]
  11. 11. 
    Bockris JOM, Koch DFA. 1961. Comparative rates of the electrolytic evolution of hydrogen and deuterium on iron, tungsten and platinum. J. Phys. Chem. 65:1941–48
    [Google Scholar]
  12. 12. 
    Bockris JOM, Khan SUM. 1993. Surface Electrochemistry: A Molecular Level Approach New York: Plenum
  13. 13. 
    Clavilier J, Faure R, Guinet G, Durand R 1980. Preparation of monocrystalline Pt microelectrodes and electrochemical study of the plane surfaces cut in the direction of the {111} and {110} planes. J. Electroanal. Chem. 107:205–9
    [Google Scholar]
  14. 14. 
    Clavilier J. 1980. The role of anion on the electrochemical behaviour of a {111} platinum surface; an unusual splitting of the voltammogram in the hydrogen region. J. Electroanal. Chem. 107:211–16
    [Google Scholar]
  15. 15. 
    Clavilier J. 1999. Flame-annealing and cleaning technique. Interfacial Electrochemistry A Wieckowski 231–48 New York/Basel: Marcel Dekker
    [Google Scholar]
  16. 16. 
    Motoo S, Furuya N. 1984. Electrochemistry of platinum single crystal surfaces: Part I. Structural change of the Pt (111) surface followed by an electrochemical method. J. Electroanal. Chem. 172:339–58
    [Google Scholar]
  17. 17. 
    Itaya K, Sugawara S, Sashikata K, Furuya N 1990. In situ scanning tunneling microscopy of platinum (111) surface with the observation of monatomic steps. J. Vac. Sci. Technol. A 8:515–19
    [Google Scholar]
  18. 18. 
    Furuya N, Ichinose M, Shibata M 1999. Structural changes at the Pt(100) surface with a great number of potential cycles. J. Electroanal. Chem. 460:251–53
    [Google Scholar]
  19. 19. 
    Furuya N, Shibata M. 1999. Structural changes at various Pt single crystal surfaces with potential cycles in acidic and alkaline solutions. J. Electroanal. Chem. 467:85–91
    [Google Scholar]
  20. 20. 
    Jacobse L, Huang Y-F, Koper MTM, Rost MJ 2018. Correlation of surface site formation to nanoisland growth in the electrochemical roughening of Pt(111). Nat. Mater. 17:277–82
    [Google Scholar]
  21. 21. 
    Clavilier J, Durand R, Guinet G, Faure R 1981. Electrochemical adsorption behaviour of Pt(100) in sulphuric acid solution. J. Electroanal. Chem. 127:281–87
    [Google Scholar]
  22. 22. 
    Scortichini CL, Reilley CN. 1982. Surface characterization of Pt electrodes using underpotential deposition of H and Cu: Part 1. Pt(100). J. Electroanal. Chem. Interfac. Electrochem. 139:233–45
    [Google Scholar]
  23. 23. 
    Scortichini CL, Reilley CN. 1982. Surface characterization of Pt electrodes using underpotential deposition of H and Cu: Part 2. Pt(110) and Pt(111). J. Electroanal. Chem. Interfac. Electrochem. 139:247–64
    [Google Scholar]
  24. 24. 
    Scortichini CL, Woodward FE, Reilley CN 1982. Surface characterization of Pt electrodes using underpotential deposition of H and Cu: Part 3. Surface improvement of the flame-annealed Pt(100) and Pt(111) electrodes via potential cycling. J. Electroanal. Chem. Interfac. Electrochem. 139:265–74
    [Google Scholar]
  25. 25. 
    Scortichini CL, Reilley CN. 1983. Surface characterization of Pt electrodes using underpotential deposition of H and Cu: Part 4. Surface structural dependence of a non-equilibrium state of hydrogen adsorption. J. Electroanal. Chem. Interfac. Electrochem. 152:255–60
    [Google Scholar]
  26. 26. 
    Scortichini CL, Reilley CN. 1983. Surface characterization of Pt electrodes using underpotential deposition of H and Cu: Part 5. Characterization of Bd Pt catalyst surface. J. Catal. 79:138–46
    [Google Scholar]
  27. 27. 
    Woodard FE, Scortichini CL, Reilley CN 1983. Hydrogen chemisorption and related anion effects on Pt(110) electrodes. J. Electroanal. Chem. Interfac. Electrochem. 151:109–31
    [Google Scholar]
  28. 28. 
    Conway BE, Angerstein-Kozlowska H, Dhar HP 1974. On selection of standard states in adsorption isotherms. Electrochim. Acta 19:455–60
    [Google Scholar]
  29. 29. 
    Bard AJ, Faulkner LR. 2001. Electrochemical Methods: Fundamental and Applications New York: John Wiley & Sons
  30. 30. 
    Bockris JOM, Kita H. 1961. Analysis of galvanostatic transients and application to the iron electrode reaction. J. Electrochem. Soc. 108:676–85
    [Google Scholar]
  31. 31. 
    Gileadi E. 1993. Electrode Kinetics for Chemists New York: VCH
  32. 32. 
    Climent V, Feliu JM. 2015. Cyclic voltammetry. Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry K Wandelt 48–74 Amsterdam: Elsevier
    [Google Scholar]
  33. 33. 
    Conway BE, Gileadi E. 1962. Kinetic theory of pseudo-capacitance and electrode reactions at appreciable surface coverage. Faraday Trans 58:2493–509
    [Google Scholar]
  34. 34. 
    Climent V, Feliu JM. 2017. Surface electrochemistry with Pt single-crystal electrodes. Advances in Electrochemical Science and Engineering: Nanopatterned and Nanoparticle-Modified Electrodes RC Alkire, PN Bartlett, J Lipkowski 1–57 Weinheim: Wiley-VCH Verlag
    [Google Scholar]
  35. 35. 
    Korzeniewski C, Climent V, Feliu J 2011. Electrochemistry at platinum single crystal electrodes. Electroanalytical Chemistry: A Series of Advances, Vol. 2475–170 Boca Raton, FL: CRC Press
    [Google Scholar]
  36. 36. 
    Lang B, Joyner RW, Somorjai GA 1972. Low energy electron diffraction studies of high index crystal surfaces of platinum. Surface Sci 30:440–53
    [Google Scholar]
  37. 37. 
    Korzeniewski C, Climent V, Feliu JM 2012. Electrochemistry at platinum single crystal electrodes. Electroanal. Chem. 24:75–169
    [Google Scholar]
  38. 38. 
    Van Hove MA, Somorjai GA 1980. A new microfacet notation for high-Miller-index surfaces of cubic materials with terrace, step and kink structures. Surface Sci 92:489–518
    [Google Scholar]
  39. 39. 
    Braunschweig B, Daum W. 2009. Superstructures and order/disorder transition of sulfate adlayers on Pt(111) in sulfuric acid solution. Langmuir 25:11112–20
    [Google Scholar]
  40. 40. 
    Funtikov AM, Stimming U, Vogel R 1997. Anion adsorption from sulfuric acid solutions on Pt(111) single crystal electrodes. J. Electroanal. Chem. 428:147–53
    [Google Scholar]
  41. 41. 
    Clavilier J, Albalat R, Gómez R, Orts JM, Feliu JM, Aldaz A 1992. Study of the charge displacement at constant potential during CO adsorption on Pt(110) and Pt(111) electrodes in contact with a perchloric acid solution. J. Electroanal. Chem. 330:489–97
    [Google Scholar]
  42. 42. 
    Clavilier J, Albalat R, Gómez R, Orts JM, Feliu JM 1993. Displacement of adsorbed iodine on platinum single-crystal electrodes by irreversible adsorption of CO at controlled potential. J. Electroanal. Chem. 360:325–35
    [Google Scholar]
  43. 43. 
    Orts JM, Gómez R, Feliu JM, Aldaz A, Clavilier J 1994. Potentiostatic charge displacement by exchanging adsorbed species on Pt(111) electrodes—acidic electrolytes with specific anion adsorption. Electrochim. Acta 39:1519–24
    [Google Scholar]
  44. 44. 
    Feliu JM, Orts JM, Gómez R, Aldaz A, Clavilier J 1994. New information on the unusual adsorption states of Pt(111) in sulphuric acid solutions from potentiostatic adsorbate replacement by CO. J. Electroanal. Chem. 372:265–68
    [Google Scholar]
  45. 45. 
    Clavilier J, Orts JM, Gómez R, Feliu JM, Aldaz A 1994. On the nature of the charged species displaced by CO adsorption from platinum oriented electrodes in sulphuric acid solution. Proceedings of the Symposium on Electrochemistry and Materials Science of Cathodic Hydrogen Absorption and Adsorption, Vol. 94-21 BE Conway, G Jerkiewicz 167–83 Pennington, NJ: Electrochem. Soc.
    [Google Scholar]
  46. 46. 
    Rodes A, Elachi K, Zamakhchari MA, Clavilier J 1990. Hydrogen probing of step and terrace sites on Pt(S)-[n(111) × (100)]. J. Electroanal. Chem. Interfac. Electrochem. 284:245–53
    [Google Scholar]
  47. 47. 
    Francke R, Climent V, Baltruschat H, Feliu JM 2008. Electrochemical deposition of copper on stepped platinum surfaces in the zone vicinal to the (100) plane. J. Electroanal. Chem. 624:228–40
    [Google Scholar]
  48. 48. 
    Gómez R, Climent V, Feliu JM, Weaver MJ 2000. Dependence of the potential of zero charge of stepped platinum (111) electrodes on the oriented step-edge density: electrochemical implications and comparison with work function behavior. J. Phys. Chem. B 104:597–605
    [Google Scholar]
  49. 49. 
    Clavilier J, El Achi K, Rodes A 1989. In situ characterization of the Pt(S)-[n(111) × (111)] electrode surfaces using electrosorbed hydrogen for probing terrace and step sites. J. Electroanal. Chem. Interfac. Electrochem. 272:253–61
    [Google Scholar]
  50. 50. 
    Clavilier J, Elachi K, Rodes A 1990. In situ probing of step and terrace sites on Pt(S)-[n(111) × (111)] electrodes. Chem. Phys. 141:1–14
    [Google Scholar]
  51. 51. 
    Feliu JM, Herrero E, Climent V 2011. Electrocatalytic properties of stepped surfaces. Catalysis in Electrochemistry E Santos, W Schmickler 127–63 Hoboken, NJ: John Wiley & Sons
    [Google Scholar]
  52. 52. 
    Attard GA, Hazzazi O, Wells PB, Climent V, Herrero E, Feliu JM 2004. On the global and local values of the potential of zero total charge at well-defined platinum surfaces: stepped and adatom modified surfaces. J. Electroanal. Chem. 568:329–42
    [Google Scholar]
  53. 53. 
    Clavilier J, Feliu JM, Aldaz A 1988. An irreversible structure sensitive adsorption step in bismuth underpotential deposition at platinum electrodes. J. Electroanal. Chem. Interfac. Electrochem. 243:419–33
    [Google Scholar]
  54. 54. 
    Clavilier J, Feliu JM, Fernandez-Vega A, Aldaz A 1989. Electrochemical-behavior of irreversibly adsorbed bismuth on Pt (100) with different degrees of crystalline surface order. J. Electroanal. Chem. Interfac. Electrochem. 269:175–89
    [Google Scholar]
  55. 55. 
    Gómez R, Llorca MJ, Feliu JM, Aldaz A 1992. The behavior of germanium adatoms irreversibly adsorbed on platinum single-crystals. J. Electroanal. Chem. 340:349–55
    [Google Scholar]
  56. 56. 
    Feliu JM, Fernández-Vega A, Aldaz A, Clavilier J 1988. New observations of a structure sensitive electrochemical-behavior of irreversibly adsorbed arsenic and antimony from acidic solutions on Pt(111) and Pt(100) orientations. J. Electroanal. Chem. Interfac. Electrochem. 256:149–63
    [Google Scholar]
  57. 57. 
    Orts JM, Rodes A, Feliu JM 1997. Irreversibly adsorbed As at full blockage on Pt(111) electrodes: surface stoichiometry. J. Electroanal. Chem. 434:121–27
    [Google Scholar]
  58. 58. 
    Climent V, Herrero E, Feliu JM 1998. Electrocatalysis of formic acid and CO oxidation on antimony-modified Pt(111) electrodes. Electrochim. Acta 44:1403–14
    [Google Scholar]
  59. 59. 
    Feliu JM, Gómez R, Llorca MJ, Aldaz A 1993. Electrochemical behavior of irreversibly adsorbed selenium dosed from solution on Pt(h,k,l) single-crystal electrodes in sulfuric and perchloric acid media. Surface Sci 289:152–62
    [Google Scholar]
  60. 60. 
    Feliu JM, Llorca MJ, Gómez R, Aldaz A 1993. Electrochemical behavior of irreversibly adsorbed tellurium dosed from solution on Pt(h,k,l) single-crystal electrodes in sulfuric and perchloric acid media. Surface Sci 297:209–22
    [Google Scholar]
  61. 61. 
    Climent V, García-Aráez N, Feliu JM 2008. Clues for the molecular-level understanding of electrocatalysis on single-crystal platinum surfaces modified by p-block adatoms. Fuel Cell Catalysis: A Surface Science Approach MTM Koper 209–44 Hoboken, NJ: John Wiley & Sons
    [Google Scholar]
  62. 62. 
    Solla-Gullón J, Rodríguez P, Herrero E, Aldaz A, Feliu JM 2008. Surface characterization of platinum electrodes. Phys. Chem. Chem. Phys. 10:1359–73
    [Google Scholar]
  63. 63. 
    Armand D, Clavilier J. 1987. Quantitative-analysis of the distribution of the hydrogen adsorption states at platinum surfaces: Part 2. Application to Pt (110), stepped and polyoriented platinum surfaces in sulfuric-acid medium. J. Electroanal. Chem. Interfac. Electrochem. 233:251–65
    [Google Scholar]
  64. 64. 
    Armand D, Clavilier J. 1987. Quantitative-analysis of the distribution of the hydrogen adsorption states at platinum surfaces: Part 1. Application to Pt (100) in sulfuric-acid medium. J. Electroanal. Chem. Interfac. Electrochem. 225:205–14
    [Google Scholar]
  65. 65. 
    Vidal-Iglesias FJ, Arán-Ais RM, Solla-Gullón J, Herrero E, Feliu JM 2012. Electrochemical characterization of shape-controlled Pt nanoparticles in different supporting electrolytes. ACS Catal 2:901–10
    [Google Scholar]
  66. 66. 
    Solla-Gullón J, Vidal-Iglesias FJ, Herrero E, Feliu JM, Aldaz A 2013. Electrocatalysis on shape-controlled Pt nanoparticles. Polymer Electrolyte Fuel Cells: Science, Applications, and Challenges AA Franco 93–52 Boca Raton, FL: Pan Stanford
    [Google Scholar]
  67. 67. 
    Martínez-Rodríguez RA, Vidal-Iglesias FJ, Solla-Gullón J, Cabrera CR, Feliu JM 2014. Synthesis and electrocatalytic properties of H2SO4-induced (100) Pt nanoparticles prepared in water-in-oil microemulsion. ChemPhysChem 15:1997–2001
    [Google Scholar]
  68. 68. 
    Arán-Ais RM, Vidal-Iglesias FJ, Solla-Gullón J, Herrero E, Feliu JM 2015. Electrochemical characterization of clean shape-controlled Pt nanoparticles prepared in presence of oleylamine/oleic acid. Electroanalysis 27:945–56
    [Google Scholar]
  69. 69. 
    Martínez-Rodríguez RA, Vidal-Iglesias FJ, Solla-Gullón J, Cabrera CR, Feliu JM 2016. Electrochemical characterisation of platinum nanoparticles prepared in a water-in-oil microemulsion in the presence of different modifiers and metal precursors. ChemElectroChem 3:1601–8
    [Google Scholar]
  70. 70. 
    Martínez-Rodríguez RA, Vidal-Iglesias FJ, Solla-Gullón J, Cabrera CR, Feliu JM 2014. Synthesis of Pt nanoparticles in water-in-oil microemulsion: on the effect of HCl on their surface structure. J. Am. Chem. Soc. 136:1280–83
    [Google Scholar]
  71. 71. 
    López-Cudero A, Vidal-Iglesias FJ, Solla-Gullón J, Herrero E, Aldaz A, Feliu JM 2009. Formic acid electrooxidation on Bi-modified polyoriented and preferential (111) Pt nanoparticles. Phys. Chem. Chem. Phys. 11:416–24
    [Google Scholar]
  72. 72. 
    Moglianetti M, Solla-Gullón J, Donati P, Pedone D, Debellis D et al. 2018. Citrate-coated, size-tunable octahedral platinum nanocrystals: a novel route for advanced electrocatalysts. ACS Appl. Mater. Interfaces 10:41608–17
    [Google Scholar]
  73. 73. 
    Grozovski V, Solla-Gullón J, Climent V, Herrero E, Feliu JM 2010. Formic acid oxidation on shape-controlled Pt nanoparticles studied by pulsed voltammetry. J. Phys. Chem. C 114:13802–12
    [Google Scholar]
  74. 74. 
    Vidal-Iglesias FJ, Solla-Gullón J, Rodríguez P, Herrero E, Montiel V et al. 2004. Shape-dependent electrocatalysis: ammonia oxidation on platinum nanoparticles with preferential (100) surfaces. Electrochem. Commun. 6:1080–84
    [Google Scholar]
  75. 75. 
    Figueiredo MC, Vidal-Iglesias FJ, Solla-Gullón J, Climent V, Feliu JM 2012. Nitrate reduction on platinum (111) surfaces modified with Bi: single crystals and nanoparticles. Z. Phys. Chem. 226:901–17
    [Google Scholar]
  76. 76. 
    Figueiredo MC, Solla-Gullón J, Vidal-Iglesias FJ, Climent V, Feliu JM 2013. Nitrate reduction at Pt(100) single crystals and preferentially oriented nanoparticles in neutral media. Catal. Today 202:2–11
    [Google Scholar]
  77. 77. 
    Duca M, Figueiredo MC, Climent V, Rodriguez P, Feliu JM, Koper MTM 2011. Selective catalytic reduction at quasi-perfect Pt(100) domains: a universal low-temperature pathway from nitrite to N2. J. Am. Chem. Soc. 133:10928–39
    [Google Scholar]
  78. 78. 
    Herrero E, Buller LJ, Abruna HD 2001. Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. Chem. Rev. 101:1897–930
    [Google Scholar]
  79. 79. 
    Hernández J, Solla-Gullón J, Herrero E, Feliu JM, Aldaz A 2009. In situ surface characterization and oxygen reduction reaction on shape-controlled gold nanoparticles. J. Nanosci. Nanotechnol. 9:2256–73
    [Google Scholar]
  80. 80. 
    Hara M, Linke U, Wandlowski T 2007. Preparation and electrochemical characterization of palladium single crystal electrodes in 0.1 M H2SO4 and HClO4: Part 1. Low-index phases. Electrochim. Acta 52:5733–48
    [Google Scholar]
  81. 81. 
    Hoshi N, Kagaya K, Hori Y 2000. Voltammograms of the single-crystal electrodes of palladium in aqueous sulfuric acid electrolyte: Pd(S)-[n(111) × (111)] and Pd(S)-[n(100) × (111)]. J. Electroanal. Chem. 485:55–60
    [Google Scholar]
  82. 82. 
    Hoshi N, Kuroda M, Hori Y 2002. Voltammograms of stepped and kinked stepped surfaces of palladium: Pd(S)-[n(111) × (100)] and Pd(S)-[n(100) × (110)]. J. Electroanal. Chem. 521:155–60
    [Google Scholar]
  83. 83. 
    Xu QQ, Linke U, Bujak R, Wandlowski T 2009. Preparation and electrochemical characterization of low-index rhodium single crystal electrodes in sulfuric acid. Electrochim. Acta 54:5509–21
    [Google Scholar]
  84. 84. 
    Rhee CK, Wasberg M, Zelenay P, Wieckowski A 1991. Reduction of perchlorate on rhodium and its specificity to surface crystallographic orientation. Catal. Lett. 10:149–64
    [Google Scholar]
  85. 85. 
    Zelenay P, Horanyi G, Rhee CK, Wieckowski A 1991. Voltammetric and radioactive labeling studies of single crystal and polycristaline rhodium electrodes in sulfate-containing electrolytes. J. Electroanal. Chem. Interfac. Electrochem. 300:499–519
    [Google Scholar]
  86. 86. 
    Hunter JD. 2007. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9:90–95
    [Google Scholar]
  87. 87. 
    King HW. 1993. Crystal structures and lattice parameters of allotropes of the elements. CRC Handbook of Chemistry and Physics DR Lide 19–21 London: CRC Press. , 81st ed..
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-061318-115541
Loading
/content/journals/10.1146/annurev-anchem-061318-115541
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error