1932

Abstract

In seeking to develop and optimize reagentless electroanalytical assays, a consideration of the transducing interface features lies key to any subsequent sensitivity and selectivity. This review briefly summarizes some of the most commonly used receptive interfaces that have been employed within the development of impedimetric molecular sensors. We discuss the use of high surface area carbon, nanoparticles, and a range of bioreceptors that can subsequently be integrated. The review spans the most commonly utilized biorecognition elements, such as antibodies, antibody fragments, aptamers, and nucleic acids, and touches on some novel emerging alternatives such as nanofragments, molecularly imprinted polymers, and bacteriophages. Reference is made to the immobilization chemistries available along with a consideration of both optimal packing density and recognition probe orientation. We also discuss assay-relevant mechanistic details and applications in real sample analysis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061318-115600
2020-06-12
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/anchem/13/1/annurev-anchem-061318-115600.html?itemId=/content/journals/10.1146/annurev-anchem-061318-115600&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Patil AV, Fernandes FCB, Bueno PR, Davis JJ 2015. Immittance electroanalysis in diagnostics. Anal. Chem. 87:944–50
    [Google Scholar]
  2. 2. 
    Li Q, Tofaris GK, Davis JJ 2017. Concentration-normalized electroanalytical assaying of exosomal markers. Anal. Chem. 89:3184–90
    [Google Scholar]
  3. 3. 
    Tripathy S, Vanjari SRK, Singh V, Swaminathan S, Singh SG 2017. Electrospun manganese (III) oxide nanofiber based electrochemical DNA-nanobiosensor for zeptomolar detection of dengue consensus primer. Biosens. Bioelectron. 90:378–87
    [Google Scholar]
  4. 4. 
    Luo XL, Xu MY, Freeman C, James T, Davis JJ 2013. Ultrasensitive label free electrical detection of insulin in neat blood serum. Anal. Chem. 85:4129–34
    [Google Scholar]
  5. 5. 
    Vashist SK, Luong JHT. 2018. Antibody immobilization and surface functionalization chemistries for immunodiagnostics. Handbook of Immunoassay Technologies SK Vashist, JHT Luong 19–46 New York: Academic
    [Google Scholar]
  6. 6. 
    Makaraviciute A, Ramanaviciene A. 2013. Site-directed antibody immobilization techniques for immunosensors. Biosens. Bioelectron. 50:460–71
    [Google Scholar]
  7. 7. 
    Gupta RK, Periyakaruppan A, Meyyappan M, Koehne JE 2014. Label-free detection of C-reactive protein using a carbon nanofiber based biosensor. Biosens. Bioelectron. 59:112–19
    [Google Scholar]
  8. 8. 
    Szunerits S, Boukherroub R. 2018. Graphene-based biosensors. Interface Focus 8: https://doi.org/10.1098/rsfs.2016.0132
    [Crossref] [Google Scholar]
  9. 9. 
    Lawal AT. 2018. Progress in utilisation of graphene for electrochemical biosensors. Biosens. Bioelectron. 106:149–78
    [Google Scholar]
  10. 10. 
    Terse-Thakoor T, Badhulika S, Mulchandani A 2017. Graphene based biosensors for healthcare. J. Mater. Res. 32:2905–29
    [Google Scholar]
  11. 11. 
    Teixeira SR, Lloyd C, Yao S, Gazze AS, Whitaker IS et al. 2016. Polyaniline-graphene based alpha-amylase biosensor with a linear dynamic range in excess of 6 orders of magnitude. Biosens. Bioelectron. 85:395–402
    [Google Scholar]
  12. 12. 
    Luo J, Jiang SS, Liu XY 2014. Electrochemical sensor for bovine hemoglobin based on a novel graphene molecular imprinted polymers composite as recognition element. Sens. Actuators B 203:782–89
    [Google Scholar]
  13. 13. 
    Erdem A, Eksin E, Muti M 2014. Chitosan-graphene oxide based aptasensor for the impedimetric detection of lysozyme. Colloids Surfaces B 115:205–11
    [Google Scholar]
  14. 14. 
    Teixeira S, Conlan RS, Guy OJ, Sales MGF 2014. Novel single-wall carbon nanotube screen-printed electrode as an immunosensor for human chorionic gonadotropin. Electrochim. Acta 136:323–29
    [Google Scholar]
  15. 15. 
    Nidzworski D, Siuzdak K, Niedzialkowski P, Bogdanowicz R, Sobaszek M et al. 2017. A rapid-response ultrasensitive biosensor for influenza virus detection using antibody modified boron-doped diamond. Sci. Rep. 7:15707
    [Google Scholar]
  16. 16. 
    Cui M, Song ZL, Wu YM, Guo B, Fan XJ, Luo XL 2016. A highly sensitive biosensor for tumor maker alpha fetoprotein based on poly(ethylene glycol) doped conducting polymer PEDOT. Biosens. Bioelectron. 79:736–41
    [Google Scholar]
  17. 17. 
    Kumar S, Willander M, Sharma JG, Malhotra BD 2015. A solution processed carbon nanotube modified conducting paper sensor for cancer detection. J. Mater. Chem. B 3:9305–14
    [Google Scholar]
  18. 18. 
    Huo X, Liu X, Liu J, Sukumaran P, Alwarappan S, Wong DKY 2016. Strategic applications of nanomaterials as sensing platforms and signal amplification markers at electrochemical immunosensors. Electroanalysis 28:1730–49
    [Google Scholar]
  19. 19. 
    Cho I-H, Lee J, Kim J, Kang M, Paik JK et al. 2018. Current technologies of electrochemical immunosensors: perspective on signal amplification. Sensors 18:207
    [Google Scholar]
  20. 20. 
    Pan M, Gu Y, Yun Y, Li M, Jin X, Wang S 2017. Nanomaterials for electrochemical immunosensing. Sensors 17:1041
    [Google Scholar]
  21. 21. 
    Ahammad AJS, Al Mamun A, Akter T, Mamun MA, Faraezi S, Monira FZ 2016. Enzyme-free impedimetric glucose sensor based on gold nanoparticles/polyaniline composite film. J. Solid State Electrochem. 20:1933–39
    [Google Scholar]
  22. 22. 
    Wang W, Wang W, Davis JJ, Luo X 2015. Ultrasensitive and selective voltammetric aptasensor for dopamine based on a conducting polymer nanocomposite doped with graphene oxide. Microchim. Acta 182:1123–29
    [Google Scholar]
  23. 23. 
    Singh VK, Kumar S, Pandey SK, Srivastava S, Mishra M et al. 2018. Fabrication of sensitive bioelectrode based on atomically thin CVD grown graphene for cancer biomarker detection. Biosens. Bioelectron. 105:173–81
    [Google Scholar]
  24. 24. 
    Periyakaruppan A, Gandhiraman RP, Meyyappan M, Koehne JE 2013. Label-free detection of cardiac troponin-I using carbon nanofiber based nanoelectrode arrays. Anal. Chem. 85:3858–63
    [Google Scholar]
  25. 25. 
    Raghav R, Srivastava S. 2015. Core–shell gold–silver nanoparticles based impedimetric immunosensor for cancer antigen CA125. Sens. Actuators B 220:557–64
    [Google Scholar]
  26. 26. 
    Idris AO, Mabuba N, Arotiba OA 2018. A dendrimer supported electrochemical immunosensor for the detection of alpha-feto protein—a cancer biomarker. Electroanalysis 30:31–7
    [Google Scholar]
  27. 27. 
    Lange SC, van Andel E, Smulders MMJ, Zuilhof H 2016. Efficient and tunable three-dimensional functionalization of fully zwitterionic antifouling surface coatings. Langmuir 32:10199–205
    [Google Scholar]
  28. 28. 
    Jiang C, TanzirulAlam M, Parker SG, Gooding JJ 2015. Zwitterionic phenyl phosphorylcholine on indium tin oxide: a low-impedance protein-resistant platform for biosensing. Electroanalysis 27:884–89
    [Google Scholar]
  29. 29. 
    Wang W, Fan X, Xu S, Davis JJ, Luo X 2015. Low fouling label-free DNA sensor based on polyethylene glycols decorated with gold nanoparticles for the detection of breast cancer biomarkers. Biosens. Bioelectron. 71:51–56
    [Google Scholar]
  30. 30. 
    Barfidokht A, Gooding JJ. 2014. Approaches toward allowing electroanalytical devices to be used in biological fluids. Electroanalysis 26:1182–96
    [Google Scholar]
  31. 31. 
    Campuzano S, Pedrero M, Yáñez-Sedeño P, Pingarrón JM 2019. Antifouling (bio)materials for electrochemical (bio)sensing. Int. J. Mol. Sci. 20:423
    [Google Scholar]
  32. 32. 
    Liu N, Xu Z, Morrin A, Luo X 2019. Low fouling strategies for electrochemical biosensors targeting disease biomarkers. Anal. Methods 11:702–11
    [Google Scholar]
  33. 33. 
    Luo X, Davis J. 2013. Electrical biosensors and the label free detection of protein disease biomarkers. Chem. Soc. Rev. 42:5944–62
    [Google Scholar]
  34. 34. 
    Clackson T, Hoogenboom HR, Griffiths AD, Winter G 1991. Making antibody fragments using phage display libraries. Nature 352:624–28
    [Google Scholar]
  35. 35. 
    Tomita M, Tsumoto K. 2011. Hybridoma technologies for antibody production. Immunotherapy 3:371–80
    [Google Scholar]
  36. 36. 
    Bradbury A, Plückthun A. 2015. Reproducibility: standardize antibodies used in research. Nature 518:27–29
    [Google Scholar]
  37. 37. 
    Baker M. 2015. Reproducibility crisis: blame it on the antibodies. Nature 521:274–76
    [Google Scholar]
  38. 38. 
    Pali M, Suni II 2018. Impedance detection of 3-phenoxybenzoic acid comparing wholes antibodies and antibody fragments for biomolecular recognition. Electroanalysis 30:2899–907
    [Google Scholar]
  39. 39. 
    Spain E, Gilgunn S, Sharma S, Adamson K, Carthy E et al. 2016. Detection of prostate specific antigen based on electrocatalytic platinum nanoparticles conjugated to a recombinant scFv antibody. Biosens. Bioelectron. 77:759–66
    [Google Scholar]
  40. 40. 
    Radecka H, Radecki J. 2015. Label-free electrochemical immunosensors for viruses and antibodies detection: review. J. Mex. Chem. Soc. 59:269–75
    [Google Scholar]
  41. 41. 
    Crivianu-Gaita V, Thompson M. 2016. Aptamers, antibody scFv, and antibody Fab′ fragments: an overview and comparison of three of the most versatile biosensor biorecognition elements. Biosens. Bioelectron. 85:32–45
    [Google Scholar]
  42. 42. 
    Jarocka U, Sawicka R, Gora-Sochacka A, Sirko A, Zagorski-Ostoja W et al. 2014. An immunosensor based on antibody binding fragments attached to gold nanoparticles for the detection of peptides derived from avian influenza hemagglutinin H5. Sensors 14:15714–28
    [Google Scholar]
  43. 43. 
    Vikholm I. 2005. Self-assembly of antibody fragments and polymers onto gold for immunosensing. Sens. Actuators B 106:311–16
    [Google Scholar]
  44. 44. 
    Vikholm-Lundin I, Albers WM. 2006. Site-directed immobilisation of antibody fragments for detection of C-reactive protein. Biosens. Bioelectron. 21:1141–48
    [Google Scholar]
  45. 45. 
    Vikholm-Lundin I. 2005. Immunosensing based on site-directed immobilization of antibody fragments and polymers that reduce nonspecific binding. Langmuir 21:6473–77
    [Google Scholar]
  46. 46. 
    Hassanzadeh-Ghassabeh G, Devoogdt N, De Pauw P, Vincke C, Muyldermans S 2013. Nanobodies and their potential applications. Nanomedicine 8:1013–26
    [Google Scholar]
  47. 47. 
    Muyldermans S. 2013. Nanobodies: natural single-domain antibodies. Annu. Rev. Biochem. 82:775–97
    [Google Scholar]
  48. 48. 
    Liu WS, Song HP, Chen Q, Yu JL, Xian M et al. 2018. Recent advances in the selection and identification of antigen-specific nanobodies. Mol. Immunol. 96:37–47
    [Google Scholar]
  49. 49. 
    Li HN, Yan JR, Ou WJ, Liu H, Liu SQ, Wan YK 2015. Construction of a biotinylated cameloid-like antibody for label-free detection of apolipoprotein B-100. Biosens. Bioelectron. 64:111–18
    [Google Scholar]
  50. 50. 
    Li ZY, Chen GY. 2018. Current conjugation methods for immunosensors. Nanomaterials 8:278
    [Google Scholar]
  51. 51. 
    Bryan T, Luo XL, Bueno PR, Davis JJ 2013. An optimised electrochemical biosensor for the label-free detection of C-reactive protein in blood. Biosens. Bioelectron. 39:94–98
    [Google Scholar]
  52. 52. 
    Rashid JIA, Yusof NA. 2017. The strategies of DNA immobilization and hybridization detection mechanism in the construction of electrochemical DNA sensor: a review. Sens. Bio-Sens. Res. 16:19–31
    [Google Scholar]
  53. 53. 
    Lin L, Chen J, Lin Q, Chen W, Chen J et al. 2010. Electrochemical biosensor based on nanogold-modified poly-eriochrome black T film for BCR/ABL fusion gene assay by using hairpin LNA probe. Talanta 80:2113–19
    [Google Scholar]
  54. 54. 
    Biniaz Z, Mostafavi A, Shamspur T, Torkzadeh-Mahani M, Mohamadi M 2017. Electrochemical sandwich immunoassay for the prostate specific antigen using a polyclonal antibody conjugated to thionine and horseradish peroxidase. Microchim. Acta 184:2731–38
    [Google Scholar]
  55. 55. 
    Sánchez JLA, Fragoso A, Joda H, Suárez G, McNeil CJ, O'Sullivan C 2016. Site-directed introduction of disulfide groups on antibodies for highly sensitive immunosensors. Anal. Bioanal. Chem. 408:5337–46
    [Google Scholar]
  56. 56. 
    Bush DB, Knotts TA. 2017. Probing the effects of surface hydrophobicity and tether orientation on antibody-antigen binding. J. Chem. Phys. 146:155103
    [Google Scholar]
  57. 57. 
    Welch NG, Scoble JA, Muir BW, Pigram PJ 2017. Orientation and characterization of immobilized antibodies for improved immunoassays. Biointerphases 12:02D301
    [Google Scholar]
  58. 58. 
    Matysiak-Brynda E, Wagner B, Bystrzejewski M, Grudzinski IP, Nowicka AM 2018. The importance of antibody orientation in the electrochemical detection of ferritin. Biosens. Bioelectron. 109:83–89
    [Google Scholar]
  59. 59. 
    Seo JS, Lee S, Poulter CD 2013. Regioselective covalent immobilization of recombinant antibody-binding proteins A, G, and L for construction of antibody arrays. J. Am. Chem. Soc. 135:8973–80
    [Google Scholar]
  60. 60. 
    Kaiki T, Hitoshi O, Hideaki E, Daijyu T, Mitsuru I 2016. Protein-G-based human immunoglobulin G biosensing by electrochemical impedance spectroscopy. Jpn. J. Appl. Phys. 55:02BE6
    [Google Scholar]
  61. 61. 
    Elshafey R, Tavares AC, Siaj M, Zourob M 2013. Electrochemical impedance immunosensor based on gold nanoparticles–protein G for the detection of cancer marker epidermal growth factor receptor in human plasma and brain tissue. Biosens. Bioelectron. 50:143–49
    [Google Scholar]
  62. 62. 
    Chen XQ, Zhou GB, Song P, Wang JJ, Gao JM et al. 2014. Ultrasensitive electrochemical detection of prostate-specific antigen by using antibodies anchored on a DNA nanostructural scaffold. Anal. Chem. 86:7337–42
    [Google Scholar]
  63. 63. 
    Ashwini M, Murugan SB, Balamurugan S, Sathishkumar R 2016. Advances in molecular cloning. Mol. Biol. 50:1–6
    [Google Scholar]
  64. 64. 
    Hughes RA, Ellington AD. 2017. Synthetic DNA synthesis and assembly: putting the synthetic in synthetic biology. Cold Spring Harb. Perspect. Biol. 9:a023812
    [Google Scholar]
  65. 65. 
    Svobodova M, Bunka DHJ, Nadal P, Stockley PG, O'Sullivan CK 2013. Selection of 2′F-modified RNA aptamers against prostate-specific antigen and their evaluation for diagnostic and therapeutic applications. Anal. Bioanal. Chem. 405:9149–57
    [Google Scholar]
  66. 66. 
    Bala A, Górski Ł 2016. Application of nucleic acid analogues as receptor layers for biosensors. Anal. Methods 8:236–44
    [Google Scholar]
  67. 67. 
    Tan A, Lim C, Zou S, Ma Q, Gao Z 2016. Electrochemical nucleic acid biosensors: from fabrication to application. Anal. Methods 8:5169–89
    [Google Scholar]
  68. 68. 
    Du Y, Dong S. 2017. Nucleic acid biosensors: recent advances and perspectives. Anal. Chem. 89:189–215
    [Google Scholar]
  69. 69. 
    Herne TM, Tarlov MJ. 1997. Characterization of DNA probes immobilized on gold surfaces. J. Am. Chem. Soc. 119:8916–20
    [Google Scholar]
  70. 70. 
    Fan C, Plaxco KW, Heeger AJ 2003. Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. PNAS 100:9134–37
    [Google Scholar]
  71. 71. 
    Shahrokhian S, Salinnian R. 2018. Ultrasensitive detection of cancer biomarkers using conducting polymer/electrochemically reduced graphene oxide-based biosensor: application toward BRCA1 sensing. Sens. Actuators B 266:160–69
    [Google Scholar]
  72. 72. 
    Corrigan DK, Schulze H, Henihan G, Hardie A, Ciani I et al. 2013. Development of a PCR-free electrochemical point of care test for clinical detection of methicillin resistant Staphylococcusaureus (MRSA). Analyst 138:6997–7005
    [Google Scholar]
  73. 73. 
    Labib M, Berezovski MV. 2015. Electrochemical sensing of microRNAs: avenues and paradigms. Biosens. Bioelectron. 68:83–94
    [Google Scholar]
  74. 74. 
    Siddiquee S, Kobun R, Azriah A 2015. A review of peptide nucleic acid. Adv. Tech. Biol. Med. 3:131
    [Google Scholar]
  75. 75. 
    Tercero N, Wang K, Levicky R 2010. Capacitive monitoring of morpholino-DNA surface hybridization: experimental and theoretical analysis. Langmuir 26:14351–58
    [Google Scholar]
  76. 76. 
    Zhang L, Ding BZ, Chen QH, Feng Q, Lin L, Sun JS 2017. Point-of-care-testing of nucleic acids by microfluidics. Trends Anal. Chem. 94:106–16
    [Google Scholar]
  77. 77. 
    Piro B, Noël V, Reisberg S 2015. DNA and PNA probes for DNA detection in electroanalytical systems. RNA and DNA Diagnostics V Erdmann, S Jurga, J Barciszewski 47–80 Cham, Switz.: Springer
    [Google Scholar]
  78. 78. 
    Hua M, Tao ML, Wang P, Zhang YF, Wu ZS et al. 2010. Label-free electrochemical cocaine aptasensor based on a target-inducing aptamer switching conformation. Anal. Sci. 26:1265–70
    [Google Scholar]
  79. 79. 
    Meng XM, Xu MR, Zhu JY, Yin HS, Ai SY 2012. Fabrication of DNA electrochemical biosensor based on gold nanoparticles, locked nucleic acid modified hairpin DNA and enzymatic signal amplification. Electrochim. Acta 71:233–38
    [Google Scholar]
  80. 80. 
    O'Connor R, Tercero N, Qiao W, Levicky R 2011. Electrochemical studies of morpholino-DNA surface hybridization. Bioelectronics, Biointerfaces, and Biomedical Applications 4 M Madou, D Landheer, K Sode, C Wang, A Hoff, et al 99–110 Pennington, NJ: Electrochem. Soc.
    [Google Scholar]
  81. 81. 
    Gao Z, Deng H, Shen W, Ren Y 2013. A label-free biosensor for electrochemical detection of femtomolar microRNAs. Anal. Chem. 85:1624–30
    [Google Scholar]
  82. 82. 
    Wu JC, Meng QC, Ren HM, Wang HT, Wu J, Wang Q 2017. Recent advances in peptide nucleic acid for cancer bionanotechnology. Acta Pharmacol. Sin. 38:798–805
    [Google Scholar]
  83. 83. 
    Malcher J, Wesoly J, Bluyssen HAR 2014. Molecular properties and medical applications of peptide nucleic acids. Mini-Rev. Med. Chem. 14:401–10
    [Google Scholar]
  84. 84. 
    D'Agata R, Giuffrida MC, Spoto G 2017. Peptide nucleic acid-based biosensors for cancer diagnosis. Molecules 22:1951
    [Google Scholar]
  85. 85. 
    Deng HM, Shen W, Ren YQ, Gao ZQ 2014. A highly sensitive microRNA biosensor based on hybridized microRNA-guided deposition of polyaniline. Biosens. Bioelectron. 60:195–200
    [Google Scholar]
  86. 86. 
    Liu G, Sun CF, Li D, Song SP, Mao BW et al. 2010. Gating of redox currents at gold nanoelectrodes via DNA hybridization. Adv. Mater. 22:2148–50
    [Google Scholar]
  87. 87. 
    Lao RJ, Song SP, Wu HP, Wang LH, Zhang ZZ et al. 2005. Electrochemical interrogation of DNA monolayers on gold surfaces. Anal. Chem. 77:6475–80
    [Google Scholar]
  88. 88. 
    Pan D, Zuo XL, Wan Y, Wang LH, Zhang J et al. 2007. Electrochemical interrogation of interactions between surface-confined DNA and methylene blue. Sensors 7:2671–80
    [Google Scholar]
  89. 89. 
    Murphy JN, Cheng AKH, Yu HZ, Bizzotto D 2009. On the nature of DNA self-assembled monolayers on Au: measuring surface heterogeneity with electrochemical in situ fluorescence microscopy. J. Am. Chem. Soc. 131:4042–50
    [Google Scholar]
  90. 90. 
    Casanova-Moreno JR, Bizzotto D. 2015. Frequency response analysis of potential-modulated orientation changes of a DNA self-assembled layer using spatially resolved fluorescence measurements. Electrochim. Acta 162:62–71
    [Google Scholar]
  91. 91. 
    Ranjbar S, Shahrokhian S. 2018. Design and fabrication of an electrochemical aptasensor using Au nanoparticles/carbon nanoparticles/cellulose nanofibers nanocomposite for rapid and sensitive detection of Staphylococcus aureus. Bioelectrochemistry 123:70–76
    [Google Scholar]
  92. 92. 
    Xu Y, Yang L, Ye X, He P, Fang Y 2006. An aptamer-based protein biosensor by detecting the amplified impedance signal. Electroanalysis 18:1449–56
    [Google Scholar]
  93. 93. 
    Lu L, Li J, Kang T, Cheng S 2015. Bi-functionalized aptasensor for ultrasensitive detection of thrombin. Talanta 138:273–78
    [Google Scholar]
  94. 94. 
    Jolly P, Tamboli V, Harniman RL, Estrela P, Allender CJ, Bowen JL 2016. Aptamer-MIP hybrid receptor for highly sensitive electrochemical detection of prostate specific antigen. Biosens. Bioelectron. 75:188–95
    [Google Scholar]
  95. 95. 
    Jarczewska M, Kekedy-Nagy L, Nielsen JS, Campos R, Kjems J et al. 2015. Electroanalysis of pM-levels of urokinase plasminogen activator in serum by phosphorothioated RNA aptamer. Analyst 140:3794–802
    [Google Scholar]
  96. 96. 
    Campos R, Kotlyar A, Ferapontova EE 2014. DNA-mediated electron transfer in DNA duplexes tethered to gold electrodes via phosphorothioated dA tags. Langmuir 30:11853–57
    [Google Scholar]
  97. 97. 
    Liu Y, Liu Y, Qiao L, Liu Y, Liu B 2018. Advances in signal amplification strategies for electrochemical biosensing. Curr. Opin. Electrochem. 12:5–12
    [Google Scholar]
  98. 98. 
    Jimenez GC, Eissa S, Ng A, Alhadrami H, Zourob M, Siaj M 2015. Aptamer-based label-free impedimetric biosensor for detection of progesterone. Anal. Chem. 87:1075–82
    [Google Scholar]
  99. 99. 
    Piccoli J, Hein R, El-Sagheer AH, Brown T, Cilli EM et al. 2018. Redox capacitive assaying of C-reactive protein at a peptide supported aptamer interface. Anal. Chem. 90:3005–8
    [Google Scholar]
  100. 100. 
    Ertürk G, Lood R. 2018. Bacteriophages as biorecognition elements in capacitive biosensors: phage and host bacteria detection. Sens. Actuators B 258:535–43
    [Google Scholar]
  101. 101. 
    Janczuk M, Niedziółka-Jönsson J, Szot-Karpińska K 2016. Bacteriophages in electrochemistry: a review. J. Electroanal. Chem. 779:207–19
    [Google Scholar]
  102. 102. 
    Reali S, Najib EY, Treuerné Balázs KE, Tan ACH, Váradi L et al. 2019. Novel diagnostics for point-of-care bacterial detection and identification. RSC Adv 9:21486–97
    [Google Scholar]
  103. 103. 
    Furst AL, Francis MB. 2019. Impedance-based detection of bacteria. Chem. Rev. 119:700–26
    [Google Scholar]
  104. 104. 
    Petrenko VA. 2018. Landscape phage: evolution from phage display to nanobiotechnology. Viruses 10:E311
    [Google Scholar]
  105. 105. 
    Richter L, Janczuk-Richter M, Niedziółka-Jönsson J, Paczesny J, Holyst R 2018. Recent advances in bacteriophage-based methods for bacteria detection. Drug Discov. Today 23:448–55
    [Google Scholar]
  106. 106. 
    Zhou Y, Marar A, Kner P, Ramasamy RP 2017. Charge-directed immobilization of bacteriophage on nanostructured electrode for whole-cell electrochemical biosensors. Anal. Chem. 89:5734–41
    [Google Scholar]
  107. 107. 
    Bhasin A, Ogata AF, Briggs JS, Tam PY, Tan MX et al. 2018. The virus bioresistor: wiring virus particles for the direct, label-free detection of target proteins. Nano Lett 18:3623–29
    [Google Scholar]
  108. 108. 
    BelBruno JJ. 2019. Molecularly imprinted polymers. Chem. Rev. 119:94–119
    [Google Scholar]
  109. 109. 
    Pan J, Chen W, Ma Y, Pan G 2018. Molecularly imprinted polymers as receptor mimics for selective cell recognition. Chem. Soc. Rev. 47:5574–87
    [Google Scholar]
  110. 110. 
    Zamora-Galvez A, Ait-Lahcen A, Mercante LA, Morales-Narvaez E, Amine A, Merkoci A 2016. Molecularly imprinted polymer-decorated magnetite nanoparticles for selective sulfonamide detection. Anal. Chem. 88:3578–84
    [Google Scholar]
  111. 111. 
    Wang R, Yan K, Wang F, Zhang JD 2014. A highly sensitive photoelectrochemical sensor for 4-aminophenol based on CdS-graphene nanocomposites and molecularly imprinted polypyrrole. Electrochim. Acta 121:102–8
    [Google Scholar]
  112. 112. 
    Xia JF, Cao XY, Wang ZH, Yang M, Zhang FF et al. 2016. Molecularly imprinted electrochemical biosensor based on chitosan/ionic liquid-graphene composites modified electrode for determination of bovine serum albumin. Sens. Actuators B. 225:305–11
    [Google Scholar]
  113. 113. 
    Golabi M, Kuralay F, Jager EWH, Beni V, Turner APF 2017. Electrochemical bacterial detection using poly(3-aminophenylboronic acid)-based imprinted polymer. Biosens. Bioelectron. 93:87–93
    [Google Scholar]
  114. 114. 
    Tiede C, Bedford R, Heseltine SJ, Smith G, Wijetunga I et al. 2017. Affimers proteins are versatile and renewable affinity reagents. eLife 6:e24903
    [Google Scholar]
  115. 115. 
    Davis JJ, Tkac J, Laurenson S, Ferrigno PK 2007. Peptide aptamers in label-free protein detection: 1. Characterization of the immobilized scaffold. Anal. Chem. 79:1089–96
    [Google Scholar]
  116. 116. 
    Davis JJ, Tkac J, Humphreys R, Buxton AT, Lee TA, Ferrigno PK 2009. Peptide aptamers in label-free protein detection: 2. Chemical optimization and detection of distinct protein isoforms. Anal. Chem. 81:3314–20
    [Google Scholar]
  117. 117. 
    Woodman R, Yeh JTH, Laurenson S, Ferrigno PK 2005. Design and validation of a neutral protein scaffold for the presentation of peptide aptamers. J. Mol. Biol. 352:1118–33
    [Google Scholar]
  118. 118. 
    Zhurauski P, Arya SK, Jolly P, Tiede C, Tomlinson DC et al. 2018. Sensitive and selective affimer-functionalised interdigitated electrode-based capacitive biosensor for Her4 protein tumour biomarker detection. Biosens. Bioelectron. 108:1–8
    [Google Scholar]
  119. 119. 
    Xu Q, Evetts S, Hu M, Talbot K, Wade-Martins R, Davis JJ 2014. An impedimetric assay of α-synuclein autoantibodies in early stage Parkinson's disease. RSC Advances 4:58773–77
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-061318-115600
Loading
/content/journals/10.1146/annurev-anchem-061318-115600
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error