1932

Abstract

Sensors are key tools for monitoring the dynamic changes of biomolecules and biofunctions that encode valuable information that helps us understand underlying biological processes of fundamental importance. Because of their distinctive size-dependent physicochemical properties, materials with nanometer scales have recently emerged as promising candidates for biological sensing applications by offering unique insights into real-time changes of key physiological parameters. This review focuses on recent advances in imaging-based nanosensor developments and applications categorized by their signal transduction mechanisms, namely, fluorescence, plasmonics, MRI, and photoacoustics. We further discuss the synergy created by multimodal nanosensors in which sensor components work based on two or more signal transduction mechanisms.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061417-125747
2019-06-12
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ac/12/1/annurev-anchem-061417-125747.html?itemId=/content/journals/10.1146/annurev-anchem-061417-125747&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Kim SJ, Choi SJ, Jang JS, Cho HJ, Kim ID 2017. Innovative nanosensor for disease diagnosis. Acc. Chem. Res. 50:1587–96
    [Google Scholar]
  2. 2.
    Rong G, Corrie SR, Clark HA 2017. In vivo biosensing: progress and perspectives. ACS Sens 2:327–38
    [Google Scholar]
  3. 3.
    Pantelopoulos A, Bourbakis NG. 2010. A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Trans. Syst. Man Cybern. C 40:1–12
    [Google Scholar]
  4. 4.
    Borisov SM, Wolfbeis OS. 2008. Optical biosensors. Chem. Rev. 108:423–61
    [Google Scholar]
  5. 5.
    Song S, Qin Y, He Y, Huang Q, Fan C, Chen HY 2010. Functional nanoprobes for ultrasensitive detection of biomolecules. Chem. Soc. Rev. 39:4234–43
    [Google Scholar]
  6. 6.
    Peng HS, Chiu DT. 2015. Soft fluorescent nanomaterials for biological and biomedical imaging. Chem. Soc. Rev. 44:4699–722
    [Google Scholar]
  7. 7.
    Bandokar AJ, Jeang WJ, Ghaffari R, Rogers JA 2019. Wearable sensors for biochemical sweat analysis. Annu. Rev. Anal. Chem. 12:1–22
    [Google Scholar]
  8. 8.
    Ma F, Li Y, Tang B, Zhang CY 2016. Fluorescent biosensors based on single-molecule counting. Acc. Chem. Res. 49:1722–30
    [Google Scholar]
  9. 9.
    Kresge N, Simoni RD, Hill RL 2006. The chemistry of fluorescent indicators: the work of Roger Y. Tsien. J. Biol. Chem. 281:29–31
    [Google Scholar]
  10. 10.
    Paredes RM, Etzler JC, Watts LT, Zheng W, Lechleiter JD 2008. Chemical calcium indicators. Methods 46:143–51
    [Google Scholar]
  11. 11.
    Santos-Figueroa LE, Moragues ME, Climent E, Agostini A, Martínez-Máñez R, Sancenón F 2013. Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the years 2010–2011. Chem. Soc. Rev. 42:3489–613
    [Google Scholar]
  12. 12.
    Lin MZ, Schnitzer MJ. 2016. Genetically encoded indicators of neuronal activity. Nat. Neurosci. 19:1142–53
    [Google Scholar]
  13. 13.
    Lamy CM, Sallin O, Loussert C, Chatton JY 2012. Sodium sensing in neurons with a dendrimer-based nanoprobe. ACS Nano 6:1176–87
    [Google Scholar]
  14. 14.
    Kim EH, Chin G, Rong G, Poskanzer KE, Clark HA 2018. Optical probes for neurobiological sensing and imaging. Acc. Chem. Res. 51:1023–32
    [Google Scholar]
  15. 15.
    Meyer D, Hagemann A, Kruss S 2017. Kinetic requirements for spatiotemporal chemical imaging with fluorescent nanosensors. ACS Nano 11:4017–27
    [Google Scholar]
  16. 16.
    Shi JY, Tian F, Lyu J, Yang M 2015. Nanoparticle based fluorescence resonance energy transfer (FRET) for biosensing applications. J. Mater. Chem. B 3:6989–7005
    [Google Scholar]
  17. 17.
    Sahari A, Ruckh TT, Hutchings R, Clark HA 2015. Development of an optical nanosensor incorporating a pH-sensitive quencher dye for potassium imaging. Anal. Chem. 87:10684–87
    [Google Scholar]
  18. 18.
    Du X, Xie X. 2017. Non-equilibrium diffusion controlled ion-selective optical sensor for blood potassium determination. ACS Sens 2:1410–14
    [Google Scholar]
  19. 19.
    Morales JM, Skipwith CG, Clark HA 2015. Quadruplex integrated DNA (QuID) nanosensors for monitoring dopamine. Sensors 15:19912–24
    [Google Scholar]
  20. 20.
    Walsh R, Morales JM, Skipwith CG, Ruckh TT, Clark HA 2015. Enzyme-linked DNA dendrimer nanosensors for acetylcholine. Sci. Rep. 5:14832
    [Google Scholar]
  21. 21.
    Cash KJ, Clark HA. 2012. In vivo histamine optical nanosensors. Sensors 12:11922–32
    [Google Scholar]
  22. 22.
    Lee CH, Folz J, Zhang W, Jo J, Tan JWY et al. 2017. Ion-selective nanosensor for photoacoustic and fluorescence imaging of potassium. Anal. Chem. 89:7943–49
    [Google Scholar]
  23. 23.
    Rong G, Kim EH, Poskanzer KE, Clark HA 2017. A method for estimating intracellular ion concentration using optical nanosensors and ratiometric imaging. Sci. Rep. 7:10819
    [Google Scholar]
  24. 24.
    Huang X, Song J, Yung BC, Huang X, Xiong Y, Chen X 2018. Ratiometric optical nanoprobes enable accurate molecular detection and imaging. Chem. Soc. Rev. 47:2873–920
    [Google Scholar]
  25. 25.
    Rong GX, Kim EH, Qiang Y, Di WJ, Zhong YD et al. 2018. Imaging sodium flux during action potentials in neurons with fluorescent nanosensors and transparent microelectrodes. ACS Sens 3:2499–505
    [Google Scholar]
  26. 26.
    Waxman SG, Dib-Hajj S, Cummins TR, Black JA 1999. Sodium channels and pain. PNAS 96:7635–39
    [Google Scholar]
  27. 27.
    Qiang Y, Seo KJ, Zhao XY, Artoni P, Golshan NH et al. 2017. Bilayer nanomesh structures for transparent recording and stimulating microelectrodes. Adv. Funct. Mater. 27:1704117
    [Google Scholar]
  28. 28.
    Bachilo SM, Strano MS, Kittrell C, Hauge RH, Smalley RE, Weisman RB 2002. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298:2361–66
    [Google Scholar]
  29. 29.
    Zhang J, Boghossian AA, Barone PW, Rwei A, Kim JH et al. 2011. Single molecule detection of nitric oxide enabled by d(AT)15 DNA adsorbed to near infrared fluorescent single-walled carbon nanotubes. J. Am. Chem. Soc. 133:567–81
    [Google Scholar]
  30. 30.
    Iverson NM, Barone PW, Shandell M, Trudel LJ, Sen S et al. 2013. In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes. Nat. Nanotechnol. 8:873–80
    [Google Scholar]
  31. 31.
    Kruss S, Salem DP, Vukovic L, Lima B, Vander Ende E et al. 2017. High-resolution imaging of cellular dopamine efflux using a fluorescent nanosensor array. PNAS 114:1789–94
    [Google Scholar]
  32. 32.
    Hu J, Wang ZY, Li CC, Zhang CY 2017. Advances in single quantum dot-based nanosensors. Chem. Commun. 53:13284–95
    [Google Scholar]
  33. 33.
    Wegner KD, Hildebrandt N. 2015. Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem. Soc. Rev. 44:4792–834
    [Google Scholar]
  34. 34.
    van Sark WGJHM, Frederix PLTM, Van den Heuvel DJ, Gerritsen HC, Bol AA et al. 2001. Photooxidation and photobleaching of single CdSe/ZnS quantum dots probed by room-temperature time-resolved spectroscopy. J. Phys. Chem. B 105:8281–84
    [Google Scholar]
  35. 35.
    Hildebrandt N, Spillmann CM, Algar WR, Pons T, Stewart MH et al. 2017. Energy transfer with semiconductor quantum dot bioconjugates: a versatile platform for biosensing, energy harvesting, and other developing applications. Chem. Rev. 117:536–711
    [Google Scholar]
  36. 36.
    Orte A, Alvarez-Pez JM, Ruedas-Rama MJ 2013. Fluorescence lifetime imaging microscopy for the detection of intracellular pH with quantum dot nanosensors. ACS Nano 7:6387–95
    [Google Scholar]
  37. 37.
    Zamaleeva AI, Collot M, Bahembera E, Tisseyre C, Rostaing P et al. 2014. Cell-penetrating nanobiosensors for pointillistic intracellular Ca2+-transient detection. Nano Lett 14:2994–3001
    [Google Scholar]
  38. 38.
    Ruckh TT, Skipwith CG, Chang W, Senko AW, Bulovic V et al. 2016. Ion-switchable quantum dot Förster resonance energy transfer rates in ratiometric potassium sensors. ACS Nano 10:4020–30
    [Google Scholar]
  39. 39.
    Chakraborty K, Veetil AT, Jaffrey SR, Krishnan Y 2016. Nucleic acid-based nanodevices in biological imaging. Annu. Rev. Biochem. 85:349–73
    [Google Scholar]
  40. 40.
    Saha S, Prakash V, Halder S, Chakraborty K, Krishnan Y 2015. A pH-independent DNA nanodevice for quantifying chloride transport in organelles of living cells. Nat. Nanotechnol. 10:645–51
    [Google Scholar]
  41. 41.
    Tay CY, Yuan L, Leong DT 2015. Nature-inspired DNA nanosensor for real-time in situ detection of mRNA in living cells. ACS Nano 9:5609–17
    [Google Scholar]
  42. 42.
    Chen F, Bai M, Cao K, Zhao Y, Cao X et al. 2017. Programming enzyme-initiated autonomous DNAzyme nanodevices in living cells. ACS Nano 11:11908–14
    [Google Scholar]
  43. 43.
    Wei W, He X, Ma N 2014. DNA-templated assembly of a heterobivalent quantum dot nanoprobe for extra- and intracellular dual-targeting and imaging of live cancer cells. Angew. Chem. Int. Ed. 53:5573–77
    [Google Scholar]
  44. 44.
    Peng R, Zheng X, Lyu Y, Xu L, Zhang X et al. 2018. Engineering a 3D DNA-logic gate nanomachine for bispecific recognition and computing on target cell surfaces. J. Am. Chem. Soc. 140:9793–96
    [Google Scholar]
  45. 45.
    He L, Lu D, Liang H, Xie S, Zhang X et al. 2018. mRNA-initiated, three-dimensional DNA amplifier able to function inside living cells. J. Am. Chem. Soc. 140:258–63
    [Google Scholar]
  46. 46.
    Lin KY, Kwong GA, Warren AD, Wood DK, Bhatia SN 2013. Nanoparticles that sense thrombin activity as synthetic urinary biomarkers of thrombosis. ACS Nano 7:9001–9
    [Google Scholar]
  47. 47.
    Dudani JS, Ibrahim M, Kirkpatrick J, Warren AD, Bhatia SN 2018. Classification of prostate cancer using a protease activity nanosensor library. PNAS 115:8954–59
    [Google Scholar]
  48. 48.
    Wang C, Li X, Zhang F 2016. Bioapplications and biotechnologies of upconversion nanoparticle-based nanosensors. Analyst 141:3601–20
    [Google Scholar]
  49. 49.
    Liu Y, Chen M, Cao T, Sun Y, Li C et al. 2013. A cyanine-modified nanosystem for in vivo upconversion luminescence bioimaging of methylmercury. J. Am. Chem. Soc. 135:9869–76
    [Google Scholar]
  50. 50.
    Yu Q, Gao P, Zhang KY, Tong X, Yang H et al. 2017. Luminescent gold nanocluster-based sensing platform for accurate H2S detection in vitro and in vivo with improved anti-interference. Light Sci. Appl. 6:e17107
    [Google Scholar]
  51. 51.
    Sun XC, Lei Y. 2017. Fluorescent carbon dots and their sensing applications. Trends Anal. Chem. 89:163–80
    [Google Scholar]
  52. 52.
    Galyean AA, Behr MR, Cash KJ 2018. Ionophore-based optical nanosensors incorporating hydrophobic carbon dots and a pH-sensitive quencher dye for sodium detection. Analyst 143:458–65
    [Google Scholar]
  53. 53.
    Mahou P, Vermot J, Beaurepaire E, Supatto W 2014. Multicolor two-photon light-sheet microscopy. Nat. Methods 11:600–1
    [Google Scholar]
  54. 54.
    Xu S, Cui J, Wang L 2016. Recent developments of low-toxicity NIR II quantum dots for sensing and bioimaging. Trends Anal. Chem. 80:149–55
    [Google Scholar]
  55. 55.
    Yi M, Yang S, Peng Z, Liu C, Li J et al. 2014. Two-photon graphene oxide/aptamer nanosensing conjugate for in vitro or in vivo molecular probing. Anal. Chem. 86:3548–54
    [Google Scholar]
  56. 56.
    Wan H, Yue J, Zhu S, Uno T, Zhang X et al. 2018. A bright organic NIR-II nanofluorophore for three-dimensional imaging into biological tissues. Nat. Commun. 9:1171
    [Google Scholar]
  57. 57.
    Fan Y, Wang P, Lu Y, Wang R, Zhou L et al. 2018. Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging. Nat. Nanotechnol. 13:941–46
    [Google Scholar]
  58. 58.
    Suhling K, Hirvonen LM, Levitt JA, Chung P-H, Tregidgo C et al. 2015. Fluorescence lifetime imaging (FLIM): basic concepts and some recent developments. Med. Photonics 27:3–40
    [Google Scholar]
  59. 59.
    Niehörster T, Löschberger A, Gregor I, Kramer B, Rahn HJ et al. 2016. Multi-target spectrally resolved fluorescence lifetime imaging microscopy. Nat. Methods 13:257–62
    [Google Scholar]
  60. 60.
    Shi J, Zhou M, Gong A, Li Q, Wu Q et al. 2016. Fluorescence lifetime imaging of nanoflares for mRNA detection in living cells. Anal. Chem. 88:1979–83
    [Google Scholar]
  61. 61.
    Zhang KY, Zhang J, Liu Y, Liu S, Zhang P et al. 2015. Core-shell structured phosphorescent nanoparticles for detection of exogenous and endogenous hypochlorite in live cells via ratiometric imaging and photoluminescence lifetime imaging microscopy. Chem. Sci. 6:301–7
    [Google Scholar]
  62. 62.
    Howes PD, Chandrawati R, Stevens MM 2014. Colloidal nanoparticles as advanced biological sensors. Science 346:1247390
    [Google Scholar]
  63. 63.
    Lee TH, Lapidus LJ, Zhao W, Travers KJ, Herschlag D, Chu S 2007. Measuring the folding transition time of single RNA molecules. Biophys. J. 92:3275–83
    [Google Scholar]
  64. 64.
    Zvyagin AV, Sreenivasan VKA, Goldys EM, Panchenko VY, Deyev SM 2015. Photoluminescent hybrid inorganic-protein nanostructures for imaging and sensing in vivo and in vitro. Bio-Synthetic Hybrid Materials and Bionanoparticles: A Biological Chemical Approach Towards Material Science A Boker, P van Rijn 245–84 RSC: Cambridge, UK
    [Google Scholar]
  65. 65.
    Guo LH, Jackman JA, Yang HH, Chen P, Cho NJ, Kim DH 2015. Strategies for enhancing the sensitivity of plasmonic nanosensors. Nano Today 10:213–39
    [Google Scholar]
  66. 66.
    Taylor AB, Zijlstra P. 2017. Single-molecule plasmon sensing: current status and future prospects. ACS Sens 2:1103–22
    [Google Scholar]
  67. 67.
    Storhoff JJ, Lazarides AA, Mucic RC, Mirkin CA, Letsinger RL, Schatz GC 2000. What controls the optical properties of DNA-linked gold nanoparticle assemblies. J. Am. Chem. Soc. 122:4640–50
    [Google Scholar]
  68. 68.
    Jain PK, Huang WY, El-Sayed MA 2007. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett 7:2080–88
    [Google Scholar]
  69. 69.
    Rong G, Wang H, Reinhard BM 2010. Insights from a nanoparticle minuet: two-dimensional membrane profiling through silver plasmon ruler tracking. Nano Lett 10:230–38
    [Google Scholar]
  70. 70.
    Rong GX, Reinhard BM. 2012. Monitoring the size and lateral dynamics of ErbB1 enriched membrane domains through live cell plasmon coupling microscopy. PLOS ONE 7:e34175
    [Google Scholar]
  71. 71.
    Feizpour A, Stelter D, Wong C, Akiyama H, Gummuluru S et al. 2017. Membrane fluidity sensing on the single virus particle level with plasmonic nanoparticle transducers. ACS Sens 2:1415–23
    [Google Scholar]
  72. 72.
    Chen T, Hong Y, Reinhard BM 2015. Probing DNA stiffness through optical fluctuation analysis of plasmon rulers. Nano Lett 15:5349–57
    [Google Scholar]
  73. 73.
    Sun M, Xu L, Fu P, Wu X, Kuang H et al. 2016. Scissor-like chiral metamolecules for probing intracellular telomerase activity. Adv. Funct. Mater. 26:7352–58
    [Google Scholar]
  74. 74.
    Li M, Cushing SK, Wu N 2015. Plasmon-enhanced optical sensors: a review. Analyst 140:386–406
    [Google Scholar]
  75. 75.
    Xu J, Yu H, Hu Y, Chen M, Shao S 2016. A gold nanoparticle-based fluorescence sensor for high sensitive and selective detection of thiols in living cells. Biosens. Bioelectron. 75:1–7
    [Google Scholar]
  76. 76.
    Lio DCS, Liu C, Wiraja C, Qiu B, Fhu CW et al. 2018. Molecular beacon gold nanosensors for leucine-rich alpha-2-glycoprotein-1 detection in pathological angiogenesis. ACS Sens 3:1647–55
    [Google Scholar]
  77. 77.
    Wu P, Hwang K, Lan T, Lu Y 2013. A DNAzyme-gold nanoparticle probe for uranyl ion in living cells. J. Am. Chem. Soc. 135:5254–57
    [Google Scholar]
  78. 78.
    Zhu D, Zhao DX, Huang JX, Li J, Zuo XL et al. 2018. Protein-mimicking nanoparticle (Protmin)-based nanosensor for intracellular analysis of metal ions. Nucl. Sci. Tech. 29:5
    [Google Scholar]
  79. 79.
    Gu X, Trujillo MJ, Olson JE, Camden JP 2018. SERS sensors: recent developments and a generalized classification scheme based on the signal origin. Annu. Rev. Anal. Chem. 11:147–69
    [Google Scholar]
  80. 80.
    Harmsen S, Bedics MA, Wall MA, Huang R, Detty MR, Kircher MF 2015. Rational design of a chalcogenopyrylium-based surface-enhanced resonance Raman scattering nanoprobe with attomolar sensitivity. Nat. Commun. 6:6570
    [Google Scholar]
  81. 81.
    Haun JB, Yoon TJ, Lee H, Weissleder R 2010. Magnetic nanoparticle biosensors. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2:291–304
    [Google Scholar]
  82. 82.
    Blümich B. 2016. Introduction to compact NMR: a review of methods. Trends Anal. Chem. 83:2–11
    [Google Scholar]
  83. 83.
    Zabow G, Dodd SJ, Koretsky AP 2015. Shape-changing magnetic assemblies as high-sensitivity NMR-readable nanoprobes. Nature 520:73–77
    [Google Scholar]
  84. 84.
    Liu G, Gao J, Ai H, Chen X 2013. Applications and potential toxicity of magnetic iron oxide nanoparticles. Small 9:1533–45
    [Google Scholar]
  85. 85.
    Nakamura Y, Mochida A, Choyke PL, Kobayashi H 2016. Nanodrug delivery: Is the enhanced permeability and retention effect sufficient for curing cancer?. Bioconjug. Chem. 27:2225–38
    [Google Scholar]
  86. 86.
    Lee N, Yoo D, Ling D, Cho MH, Hyeon T, Cheon J 2015. Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem. Rev. 115:10637–89
    [Google Scholar]
  87. 87.
    Luo Y, Kim EH, Flask CA, Clark HA 2018. Nanosensors for the chemical imaging of acetylcholine using magnetic resonance imaging. ACS Nano 12:5761–73
    [Google Scholar]
  88. 88.
    Okada S, Bartelle BB, Li N, Breton-Provencher V, Lee JJ et al. 2018. Calcium-dependent molecular fMRI using a magnetic nanosensor. Nat. Nanotechnol. 13:473–77
    [Google Scholar]
  89. 89.
    Angelovski G. 2017. Heading toward macromolecular and nanosized bioresponsive MRI probes for successful functional imaging. Acc. Chem. Res. 50:2215–24
    [Google Scholar]
  90. 90.
    Berridge MJ. 2014. Calcium regulation of neural rhythms, memory and Alzheimer's disease. J. Physiol. 592:281–93
    [Google Scholar]
  91. 91.
    Yuan Y, Ge S, Sun H, Dong X, Zhao H et al. 2015. Intracellular self-assembly and disassembly of 19F nanoparticles confer respective “off” and “on” 19F NMR/MRI signals for legumain activity detection in zebrafish. ACS Nano 9:5117–24
    [Google Scholar]
  92. 92.
    Gallo J, Kamaly N, Lavdas I, Stevens E, Nguyen QD et al. 2014. CXCR4-targeted and MMP-responsive iron oxide nanoparticles for enhanced magnetic resonance imaging. Angew. Chem. Int. Ed. 53:9550–54
    [Google Scholar]
  93. 93.
    Liow SS, Dou Q, Kai D, Li Z, Sugiarto S et al. 2017. Long-term real-time in vivo drug release monitoring with AIE thermogelling polymer. Small 13:1603404
    [Google Scholar]
  94. 94.
    Liu J, Bu J, Bu W, Zhang S, Pan L et al. 2014. Real-time in vivo quantitative monitoring of drug release by dual-mode magnetic resonance and upconverted luminescence imaging. Angew. Chem. Int. Ed. 53:4551–55
    [Google Scholar]
  95. 95.
    Schellenberger E. 2010. Bioresponsive nanosensors in medical imaging. J. R. Soc. Interface 7:Suppl. 1S83–91
    [Google Scholar]
  96. 96.
    Reinhardt CJ, Chan J. 2018. Development of photoacoustic probes for in vivo molecular imaging. Biochemistry 57:194–99
    [Google Scholar]
  97. 97.
    Lemaster JE, Jokerst JV. 2017. What is new in nanoparticle-based photoacoustic imaging?. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 9:1404
    [Google Scholar]
  98. 98.
    Cash KJ, Li C, Xia J, Wang LV, Clark HA 2015. Optical drug monitoring: photoacoustic imaging of nanosensors to monitor therapeutic lithium in vivo. ACS Nano 9:1692–98
    [Google Scholar]
  99. 99.
    Eil R, Vodnala SK, Clever D, Klebanoff CA, Sukumar M et al. 2016. Ionic immune suppression within the tumour microenvironment limits T cell effector function. Nature 537:539–43
    [Google Scholar]
  100. 100.
    Li W, Chen X. 2015. Gold nanoparticles for photoacoustic imaging. Nanomedicine 10:299–320
    [Google Scholar]
  101. 101.
    Yasmin Z, Khachatryan E, Lee YH, Maswadi S, Glickman R, Nash KL 2015. In vitro monitoring of oxidative processes with self-aggregating gold nanoparticles using all-optical photoacoustic spectroscopy. Biosens. Bioelectron. 64:676–82
    [Google Scholar]
  102. 102.
    Liu Y, Yang Z, Huang X, Yu G, Wang S et al. 2018. Glutathione-responsive self-assembled magnetic gold nanowreath for enhanced tumor imaging and imaging-guided photothermal therapy. ACS Nano 12:8129–37
    [Google Scholar]
  103. 103.
    Luke GP, Myers JN, Emelianov SY, Sokolov KV 2014. Sentinel lymph node biopsy revisited: ultrasound-guided photoacoustic detection of micrometastases using molecularly targeted plasmonic nanosensors. Cancer Res 74:5397–408
    [Google Scholar]
  104. 104.
    Cao W, Gao W, Liu Z, Hao W, Li X et al. 2018. Visualizing miR-155 to monitor breast tumorigenesis and response to chemotherapeutic drugs by a self-assembled photoacoustic nanoprobe. Anal. Chem. 90:9125–31
    [Google Scholar]
  105. 105.
    Pu K, Shuhendler AJ, Jokerst JV, Mei J, Gambhir SS et al. 2014. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat. Nanotechnol. 9:233–39
    [Google Scholar]
  106. 106.
    Lyu Y, Zhen X, Miao Y, Pu K 2017. Reaction-based semiconducting polymer nanoprobes for photoacoustic imaging of protein sulfenic acids. ACS Nano 11:358–67
    [Google Scholar]
  107. 107.
    Miao Q, Lyu Y, Ding D, Pu K 2016. Semiconducting oligomer nanoparticles as an activatable photoacoustic probe with amplified brightness for in vivo imaging of pH. Adv. Mater. 28:3662–68
    [Google Scholar]
  108. 108.
    Chen Q, Liu X, Chen J, Zeng J, Cheng Z, Liu Z 2015. A self-assembled albumin-based nanoprobe for in vivo ratiometric photoacoustic pH imaging. Adv. Mater. 27:6820–27
    [Google Scholar]
  109. 109.
    Chen Q, Liu X, Zeng J, Cheng Z, Liu Z 2016. Albumin-NIR dye self-assembled nanoparticles for photoacoustic pH imaging and pH-responsive photothermal therapy effective for large tumors. Biomaterials 98:23–30
    [Google Scholar]
  110. 110.
    Ng KK, Shakiba M, Huynh E, Weersink RA, Roxin A et al. 2014. Stimuli-responsive photoacoustic nanoswitch for in vivo sensing applications. ACS Nano 8:8363–73
    [Google Scholar]
  111. 111.
    Dragulescu-Andrasi A, Kothapalli SR, Tikhomirov GA, Rao J, Gambhir SS 2013. Activatable oligomerizable imaging agents for photoacoustic imaging of furin-like activity in living subjects. J. Am. Chem. Soc. 135:11015–22
    [Google Scholar]
  112. 112.
    Köker T, Tang N, Tian C, Zhang W, Wang X et al. 2018. Cellular imaging by targeted assembly of hot-spot SERS and photoacoustic nanoprobes using split-fluorescent protein scaffolds. Nat. Commun. 9:607
    [Google Scholar]
  113. 113.
    Zhang C, Moonshi SS, Wang W, Ta HT, Han Y et al. 2018. High F-content perfluoropolyether-based nanoparticles for targeted detection of breast cancer by 19F magnetic resonance and optical imaging. ACS Nano 12:9162–76
    [Google Scholar]
  114. 114.
    Nel AE, Madler L, Velegol D, Xia T, Hoek EM et al. 2009. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 8:543–57
    [Google Scholar]
  115. 115.
    Björnmalm M, Faria M, Caruso F 2016. Increasing the impact of materials in and beyond bio-nano science. J. Am. Chem. Soc. 138:13449–56
    [Google Scholar]
  116. 116.
    Gooding JJ, Bakker E, Kelley S, Long Y, Merkx M et al. 2017. Should there be minimum information reporting standards for sensors?. ACS Sens 2:1377–79
    [Google Scholar]
  117. 117.
    Faria M, Björnmalm M, Thurecht KJ, Kent SJ, Parton RG et al. 2018. Minimum information reporting in bio-nano experimental literature. Nat. Nanotechnol. 13:777–85
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-061417-125747
Loading
/content/journals/10.1146/annurev-anchem-061417-125747
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error