1932

Abstract

The sensitivity of nuclear magnetic resonance (NMR) spectroscopy to the local atomic-scale environment offers great potential for the characterization of a diverse range of solid materials. Despite offering more information than its solution-state counterpart, solid-state NMR has not yet achieved a similar level of recognition, owing to the anisotropic interactions that broaden the spectral lines and hinder the extraction of structural information. Here, we describe the methods available to improve the resolution of solid-state NMR spectra and the continuing research in this area. We also highlight areas of exciting new and future development, including recent interest in combining experiment with theoretical calculations, the rise of a range of polarization transfer techniques that provide significant sensitivity enhancements, and the progress of in situ measurements. We demonstrate the detailed information available when studying dynamic and disordered solids and discuss the future applications of solid-state NMR spectroscopy across the chemical sciences.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061417-125852
2018-06-12
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/11/1/annurev-anchem-061417-125852.html?itemId=/content/journals/10.1146/annurev-anchem-061417-125852&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Bloch F, Hansen WW, Packard M 1946. Nuclear induction. Phys. Rev. 69:127
    [Google Scholar]
  2. 2.  Purcell E, Torry HC, Pound RV 1946. Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev. 69:37–38
    [Google Scholar]
  3. 3.  Apperley DC, Harris RK, Hodgkinson P 2012. Solid State NMR Basic Principles and Practice. New York: Momentum
    [Google Scholar]
  4. 4.  MacKenzie KJD, Smith ME 2002. Multinuclear Solid-State NMR of Inorganic Materials Oxford, UK: Pergamon
  5. 5.  Ashbrook SE, Dawson DM, Griffin JM 2013. Solid-state nuclear magnetic resonance spectroscopy. Local Structural Characterisation DW Bruce, D O'Hare, RI Walton 1–88 Chichester, UK: Wiley
    [Google Scholar]
  6. 6.  Harris RK, Wasylishen RE, Duer MJ 2009. NMR Crystallography Hoboken, NJ: John Wiley & Sons
  7. 7.  Martineau C, Senker J, Taulelle F 2014. NMR crystallography. Annu. Rep. NMR Spectrosc. 82:1–57
    [Google Scholar]
  8. 8.  Bonhomme C, Gervais C, Babonneau F, Coelho C, Pourpoint F et al. 2012. First-principles calculation of NMR parameters using the gauge including projector augmented wave method: a chemist's point of view. Chem. Rev. 112:5733–79
    [Google Scholar]
  9. 9.  Ashbrook SE, McKay D 2016. Combining solid-state NMR spectroscopy with first-principles calculations—a guide to NMR crystallography. Chem. Commun. 52:7186–204
    [Google Scholar]
  10. 10.  Pickard CJ, Mauri F 2001. All-electron magnetic response with pseudopotentials: NMR chemical shifts. Phys. Rev. B 63:245101
    [Google Scholar]
  11. 11.  Yates JR, Pickard CJ, Mauri F 2007. Calculation of NMR chemical shifts for extended systems using ultrasoft pseudopotentials. Phys. Rev. B 76:024401
    [Google Scholar]
  12. 12.  Andrew ER, Bradbury A, Eades RG 1958. Nuclear magnetic resonance spectra from a crystal rotated at high speed. Nature 182:1659
    [Google Scholar]
  13. 13.  Wasylishen RE, Ashbrook SE, Wimperis S 2012. NMR of Quadrupolar Nuclei in Solid Materials Chichester, UK: John Wiley & Sons
  14. 14.  Ashbrook SE, Sneddon S 2014. New methods and applications in solid-state NMR spectroscopy of quadrupolar nuclei. J. Am. Chem. Soc. 136:15440–56
    [Google Scholar]
  15. 15.  Samoson A, Lippmaa E, Pines A 1988. High resolution solid-state NMR averaging of second-order effects by means of a double-rotor. Mol. Phys. 65:1013–18
    [Google Scholar]
  16. 16.  Llor A, Virlet J 1988. Towards high-resolution NMR of more nuclei in solids: sample spinning with time-dependent spinner axis angle. Chem. Phys. Lett. 152:248–53
    [Google Scholar]
  17. 17.  Frydman L, Harwood JS 1995. Isotropic spectra of half-integer quadrupolar spins from bidimensional magic-angle spinning NMR. J. Am. Chem. Soc. 117:5367–68
    [Google Scholar]
  18. 18.  Goldburt A, Madhu PK 2005. Multiple-quantum magic-angle spinning: high-resolution solid-state NMR of half-integer spin quadrupolar nuclei. Annu. Rep. NMR Spectrosc. 54:81–153
    [Google Scholar]
  19. 19.  Ashbrook SE, Cutajar M, Pickard CJ, Walton RI, Wimperis S 2008. Structure and NMR assignment in calcined and as-synthesized forms of AlPO-14: a combined study by first-principles calculations and high-resolution 27Al–31P MAS NMR correlation. Phys. Chem. Chem. Phys. 10:5754–64
    [Google Scholar]
  20. 20.  Gan Z 2000. Isotropic NMR spectra of half-integer quadrupolar nuclei using satellite transitions and magic-angle spinning. J. Am. Chem. Soc. 122:3242–43
    [Google Scholar]
  21. 21.  Ashbrook SE, Wimperis S 2004. High-resolution NMR of quadrupolar nuclei in solids: the satellite-transition magic angle spinning (STMAS) experiment. Prog. Nucl. Magn. Reson. Spectrosc. 45:53–108
    [Google Scholar]
  22. 22.  Hodgkinson P 2005. Heteronuclear decoupling in the NMR of solids. Prog. Nucl. Magn. Reson. Spectrosc. 46:197–222
    [Google Scholar]
  23. 23.  Madhu PK 2009. High-resolution solid-state NMR spectroscopy of protons with homonuclear dipolar decoupling schemes under magic-angle spinning. Solid State Nucl. Magn. Reson. 35:2–11
    [Google Scholar]
  24. 24.  Sakellariou D, Lesage A, Hodgkinson P, Emsley L 2000. Homonuclear dipolar decoupling in solid-state NMR using continuous phase modulation. Chem. Phys. Lett. 319:253–60
    [Google Scholar]
  25. 25.  Pines A, Gibby MG, Waugh JS 1972. Proton-enhanced nuclear induction spectroscopy. A method for high resolution NMR of dilute spins in solids. J. Chem. Phys. 56:1776–77
    [Google Scholar]
  26. 26.  Lesage A 2009. Recent advances in solid-state NMR spectroscopy of spin I=1/2 nuclei. Phys. Chem. Chem. Phys. 32:6876–91
    [Google Scholar]
  27. 27.  Amoureux JP, Trébosc J, Delevoye L, Lafon O, Hu B, Wang Q 2009. Correlation NMR spectroscopy involving quadrupolar nuclei. Solid State Nucl. Magn. Reson. 35:12–18
    [Google Scholar]
  28. 28.  Cavadini S 2010. Indirect detection of nitrogen-14 in solid-state NMR spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 56:46–77
    [Google Scholar]
  29. 29.  Pandey MK, Kato H, Ishii Y, Nishiyama Y 2016. Two-dimensional proton-detected 35Cl/1H correlation solid-state NMR experiment under fast magic angle sample spinning: application to pharmaceutical compounds. Phys. Chem. Chem. Phys. 8:6209–16
    [Google Scholar]
  30. 30.  Veinberg SL, Johnston KE, Jaroszewicz MJ, Kispal BM, Mireault CR et al. 2016. Natural abundance 14N and 15N solid-state NMR of pharmaceuticals and their polymorphs. Phys. Chem. Chem. Phys. 18:17713–30
    [Google Scholar]
  31. 31.  Levitt MH 2007. Symmetry-based pulse sequences in magic-angle spinning solid-state NMR. Encyclopedia of Magnetic Resonance RK Harris, RE Wasylishen 165–96 Chichester, UK: John Wiley
    [Google Scholar]
  32. 32.  Schurko RW 2013. Ultra-wideline solid-state NMR spectroscopy. Acc. Chem. Res. 46:1985–95
    [Google Scholar]
  33. 33.  O'Dell LA, Schurko RW 2008. QCPMG using adiabatic pulses for faster acquisition of ultra-wideline NMR spectra. Chem. Phys. Lett. 464:97–102
    [Google Scholar]
  34. 34.  Johnston KE, O'Keefe CA, Gauvin RM, Trébosc J, Delevoye L et al. 2013. A study of transition-metal organometallic complexes combining 35Cl solid-state NMR spectroscopy and 35Cl NQR spectroscopy and first-principles DFT calculations. Chem. Eur. J. 19:12396–414
    [Google Scholar]
  35. 35.  Harris KJ, Lupulescu A, Lucier BEG, Frydman L, Schurko RW 2012. Broadband adiabatic inversion pulses for cross polarization in wideline solid-state NMR spectroscopy. J. Magn. Reson. 224:38–47
    [Google Scholar]
  36. 36.  Nakashima TT, Wasylishen RE 2011. Sensitivity and resolution enhancement of half-integer quadrupolar nuclei in solid-state NMR. Encyclopedia of Magnetic Resonance RK Harris, RE Wasylishen Chichester, UK: John Wiley https://doi.org/10.1002/9780470034590.emrstm1200
    [Crossref] [Google Scholar]
  37. 37.  Burum DP 2007. Cross polarisation in solids. Encyclopedia of Magnetic Resonance RK Harris, RE Wasylishen Chichester, UK: John Wiley https://doi.org/10.1002/9780470034590.emrstm0103
    [Crossref] [Google Scholar]
  38. 38.  Ashbrook SE, Wimperis S 2000. Single- and multiple-quantum cross-polarization in NMR of quadrupolar nuclei in static samples. Mol. Phys. 98:1–26
    [Google Scholar]
  39. 39.  Amoureux JP, Pruski M 2002. Theoretical and experimental assessment of single- and multiple-quantum cross-polarization in solid state NMR. Solid State Nucl. Magn. Reson. 7:327–31
    [Google Scholar]
  40. 40.  Ashbrook SE, Wimperis S 2004. Spin-locking of half-integer quadrupolar nuclei in nuclear magnetic resonance of solids: creation and evolution of coherences. J. Chem. Phys. 120:2719–31
    [Google Scholar]
  41. 41.  Meiboom S, Gill D 1958. Modified spin‐echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 29:688–91
    [Google Scholar]
  42. 42.  Carr HY, Purcell EM 1954. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev. 94:630–38
    [Google Scholar]
  43. 43.  Siegel R, Nakashima TT, Wasylishen RE 2004. Application of multiple-pulse experiments to characterize broad NMR chemical-shift powder patterns from spin-1/2 nuclei in the solid state. J. Phys. Chem. B 108:2218–26
    [Google Scholar]
  44. 44.  Hung I, Rossini AJ, Schurko RW 2004. Application of the Carr-Purcell Meiboom-Gill pulse sequence for the acquisition of solid-state NMR spectra of spin-1/2 nuclei. J. Phys. Chem. A 108:7112–20
    [Google Scholar]
  45. 45.  Ashbrook SE, Mitchell MR, Sneddon S, Moran RF, de los Reyes M et al. 2015. New insights into phase distribution, phase composition and disorder in Y2(Zr,Sn)2O7 ceramics from NMR spectroscopy. Phys. Chem. Chem. Phys. 17:9049–59
    [Google Scholar]
  46. 46.  Larsen FH, Jakobsen HJ, Ellis PD, Nielsen NC 1997. Sensitivity-enhanced quadrupolar-echo NMR of half-integer quadrupolar nuclei. Magnitudes and relative orientation of chemical shielding and quadrupolar coupling tensors. J. Phys. Chem. A 101:8597–606
    [Google Scholar]
  47. 47.  Hung I, Gan Z 2010. On the practical aspects of recording wideline QCPMG NMR spectra. J. Magn. Reson. 204:256–65
    [Google Scholar]
  48. 48.  Griffin JM, Berry AJ, Ashbrook SE 2011. Observation of “hidden” magnesium: first-principles calculations and 25Mg solid-state NMR of enstatite. Solid State Nucl. Magn. Reson. 40:91–99
    [Google Scholar]
  49. 49.  Vosegaard T, Larsen FH, Jakobsen HJ, Ellis PD, Nielsen NC 1997. Sensitivity-enhanced multiple-quantum MAS NMR of half-integer quadrupolar nuclei. J. Am. Chem. Soc. 119:9055–56
    [Google Scholar]
  50. 50.  Kentgens APM, Verhagen R 1999. Advantages of double frequency sweeps in static, MAS and MQMAS NMR of spin I=3/2 nuclei. Chem. Phys. Lett. 300:435–43
    [Google Scholar]
  51. 51.  Madhu PK, Goldbourt A, Frydman L, Vega S 1999. Sensitivity enhancement of the MQMAS NMR experiment by fast amplitude modulation of the pulses. Chem. Phys. Lett. 307:41–47
    [Google Scholar]
  52. 52.  Madhu PK, Goldbourt A, Frydman L, Vega S 2000. Fast radio-frequency amplitude modulation in multiple-quantum magic-angle-spinning nuclear magnetic resonance: theory and experiments. J. Chem. Phys. 112:2377–91
    [Google Scholar]
  53. 53.  Colaux H, Dawson DM, Ashbrook SE 2014. Efficient amplitude-modulated pulses for triple- to single-quantum coherence conversion in MQMAS NMR. J. Phys. Chem. A 118:6018–25
    [Google Scholar]
  54. 54.  Colaux H, Dawson DM, Ashbrook SE 2017. Investigating FAM-N pulses for signal enhancement in MQMAS NMR of quadrupolar nuclei. Solid State Nucl. Magn. Reson. 84:89–102
    [Google Scholar]
  55. 55.  Ni QZ, Daviso E, Can TV, Markhasin E, Jawla SK et al. 2013. High frequency dynamic nuclear polarization. Acc. Chem. Res. 46:1933–41
    [Google Scholar]
  56. 56.  Rossini AJ, Zagdoun A, Lelli M, Lesage A, Copéret C, Emsley L 2013. Dynamic nuclear polarization surface enhanced NMR spectroscopy. Acc. Chem. Res. 46:1942–51
    [Google Scholar]
  57. 57.  Märker K, Paul S, Fernández-de-Alba C, Lee D, Mouesca J-M et al. 2017. Welcoming natural isotopic abundance in solid-state NMR: probing π-stacking and supramolecular structure of organic nanoassemblies using DNP. Chem. Sci. 8:974–87
    [Google Scholar]
  58. 58.  Song C, Hu K-N, Joo C-G, Swager TM, Griffin RG 2006. TOTAPOL: a biradical polarizing agent for dynamic nuclear polarization experiments in aqueous media. J. Am. Chem. Soc. 128:11385–90
    [Google Scholar]
  59. 59.  Hu K-N, Yu H-H, Swager TM, Griffin RG 2004. Dynamic nuclear polarization with biradicals. J. Am. Chem. Soc. 126:10844–45
    [Google Scholar]
  60. 60.  Blanc F, Sperrin L, Jefferson DA, Pawsey S, Rosay M, Grey CP 2013. Dynamic nuclear polarization enhanced natural abundance 17O spectroscopy. J. Am. Chem. Soc. 135:2975–78
    [Google Scholar]
  61. 61.  Perras FA, Chaudhary U, Slowing II, Pruski M 2016. Probing surface hydrogen bonding and dynamics by natural abundance, multidimensional, 17O DNP-NMR spectroscopy. J. Phys. Chem. C 120:11535–44
    [Google Scholar]
  62. 62.  Rossini AJ, Schlagnitweit J, Lesage A, Emsley L 2015. High-resolution NMR of hydrogen in organic solids by DNP enhanced natural abundance deuterium spectroscopy. J. Magn. Reson. 259:192–98
    [Google Scholar]
  63. 63.  Moran RF, Dawson DM, Ashbrook SE 2017. Exploiting NMR spectroscopy for the study of disorder in solids. Int. Rev. Phys. Chem. 36:39–115
    [Google Scholar]
  64. 64.  Griffin JM, Yates JR, Berry AJ, Wimperis S, Ashbrook SE 2010. High-resolution 19F MAS NMR spectroscopy: structural disorder and unusual J couplings in a fluorinated hydroxy-silicate. J. Am. Chem. Soc. 132:15651–60
    [Google Scholar]
  65. 65.  Ashbrook SE, Whittle KR, Lumpkin GR, Farnan I 2006. 89Y magic-angle spinning NMR of Y2Ti2–xSnxO7 pyrochlores. J. Phys. Chem. B 110:10358–64
    [Google Scholar]
  66. 66.  Reader SW, Mitchell MR, Johnston KE, Pickard CJ, Whittle KR, Ashbrook SE 2009. Cation disorder in pyrochlore ceramics: 89Y MAS NMR and first-principles calculations. J. Phys. Chem. C 113:18874–83
    [Google Scholar]
  67. 67.  Massiot D, Fayon F, Capron M, King I, Le Calvé S et al. 2002. Modelling one‐and two‐dimensional solid‐state NMR spectra. Magn. Reson. Chem. 40:70–76
    [Google Scholar]
  68. 68.  Czjzek G, Fink J, Götz F, Schmidt H, Coey JMD 1981. Atomic coordination and the distribution of electric field gradients in amorphous solids. Phys. Rev. B 23:2513–30
    [Google Scholar]
  69. 69.  Le Caër G, Bureau B, Massiot D 2010. An extension of the Czjzek model for the distributions of electric field gradients in disordered solids and an application to NMR spectra of 71Ga in chalcogenide glasses. J. Phys. Condens. Matter 22:065401
    [Google Scholar]
  70. 70.  Duer MJ 2004. Introduction to Solid-State NMR Spectroscopy Oxford, UK: Blackwell
  71. 71.  Batchelder LS 2007. Deuterium NMR in solids. eMagRes https://doi.org/10.1002/9780470034590.emrstm0111
    [Crossref]
  72. 72.  Mowat JPS, Miller SR, Griffin JM, Seymour VR, Ashbrook SE et al. 2011. Structural chemistry, monoclinic-to-orthorhombic phase transition, and CO2 adsorption behavior of the small pore scandium terephthalate, Sc2(O2CC6H4CO2)3, and its nitro- and amino-functionalized derivatives. Inorg. Chem. 50:10844–58
    [Google Scholar]
  73. 73.  Griffin JM, Miller AJ, Berry AJ, Wimperis S, Ashbrook SE 2010. Dynamics on the microsecond timescale in hydrous silicates studied by solid-state 2H NMR spectroscopy. Phys. Chem. Chem. Phys. 12:2989–98
    [Google Scholar]
  74. 74.  Dawson DM, Griffin JM, Seymour VR, Wheatley PS, Amri M et al. 2017. A multinuclear NMR study of six forms of AlPO-34: structure and motional broadening. J. Phys. Chem. C 121:1781–93
    [Google Scholar]
  75. 75.  Martineau C 2014. NMR crystallography: applications to inorganic materials. Solid State Nucl. Magn. Reson. 63–64:1–12
    [Google Scholar]
  76. 76.  Mafra L 2015. NMR crystallography (special edition). Solid State Nucl. Magn. Reson 651–132
    [Google Scholar]
  77. 77.  Bryce DL 2017. NMR crystallography: structure and properties of materials from solid-state nuclear magnetic resonance observables. IUCrJ 4:350–59
    [Google Scholar]
  78. 78.  Pöppler AC, Corlett EK, Pearce H, Seymour MP, Reid M et al. 2017. Single-crystal X-ray diffraction and NMR crystallography of a 1:1 cocrystal of dithianon and pyrimethanil. Acta Crystallogr. C 73:149–156
    [Google Scholar]
  79. 79.  Widdifield CM, Robson H, Hodgkinson P 2016. Furosemide's one little hydrogen atom: NMR crystallography structure verification of powdered molecular organics. Chem. Commun. 52:6685–88
    [Google Scholar]
  80. 80.  Fernandes A, McKay D, Sneddon S, Dawson DM, Lawson S et al. 2016. Phase composition and disorder in La2(Sn,Ti)2O7 ceramics: new insights from NMR crystallography. J. Phys. Chem. C 120:20288–96
    [Google Scholar]
  81. 81.  Brouwer DH, Cadars S, Hotke K, Van Huizen J, Van Huizen N 2017. Structure determination of a partially ordered layered silicate material with an NMR crystallography approach. Acta Crystallogr. C 73:126–27
    [Google Scholar]
  82. 82.  Bouchevreau B, Martineau C, Mellot-Draznieks C, Tuel A, Suchomel MR et al. 2013. High-resolution structural characterization of two layered aluminophosphates by synchrotron powder diffraction and NMR crystallographies. Chem. Mater. 25:2227–42
    [Google Scholar]
  83. 83.  Yates JR, Dobbins SE, Pickard CJ, Mauri F, Ghi PY, Harris RK 2005. A combined first principles computational and solid-state NMR study of a molecular crystal: flurbiprofen. Phys. Chem. Chem. Phys. 7:1402–7
    [Google Scholar]
  84. 84.  Harris RK, Hodgkinson P, Pickard CJ, Yates JR, Zorin V 2007. Chemical shift computations on a crystallographic basis: some reflections and comments. Magn. Reson. Chem. 45:S174–86
    [Google Scholar]
  85. 85.  Byrne PJ, Warren JE, Morris RE, Ashbrook SE 2009. Structure and NMR assignment in AlPO4-15: a combined study by diffraction, MAS NMR and first-principles calculations. Solid State Sci 11:1001–6
    [Google Scholar]
  86. 86.  Brouwer DH, Langendoen KP, Ferrant Q 2011. Measurement and calculation of 13C chemical shift tensors in α-glucose and α-glucose monohydrate. Can. J. Chem. 89:737–44
    [Google Scholar]
  87. 87.  Sneddon S, Dawson DM, Pickard CJ, Ashbrook SE 2014. Calculating NMR parameters in aluminophosphates: evaluation of dispersion correction schemes. Phys. Chem. Chem. Phys. 16:2660–73
    [Google Scholar]
  88. 88.  Klimeš J, Michaelides A 2012. Perspective: advances and challenges in treating van der Waals dispersion forces in density functional theory. J. Chem. Phys. 137:120901
    [Google Scholar]
  89. 89.  Grimme S 2006. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27:1787–99
    [Google Scholar]
  90. 90.  Tkatchenko A, Scheffler M 2009. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 102:073005
    [Google Scholar]
  91. 91.  Dudenko DV, Yates JR, Harris KDM, Brown SP 2013. An NMR crystallography DFT-D approach to analyse the role of intermolecular hydrogen bonding and π–π interactions in driving cocrystallisation of indomethacin and nicotinamide. CrystEngComm 15:8797–807
    [Google Scholar]
  92. 92.  Folliet N, Gervais C, Costa D, Laurent G, Babonneau F et al. 2013. A molecular picture of the adsorption of glycine in mesoporous silica through NMR experiments combined with DFT-D calculations. J. Phys. Chem. C 117:4104–14
    [Google Scholar]
  93. 93.  Mowat JPS, Seymour VR, Griffin JM, Thompson SP, Slawin AMZ et al. 2012. A novel structural form of MIL-53 observed for the scandium analogue and its response to temperature variation and CO2 adsorption. Dalton Trans 41:3937–41
    [Google Scholar]
  94. 94.  Day GM 2011. Current approaches to predicting molecular organic crystal structures. Crystallogr. Rev. 17:3–52
    [Google Scholar]
  95. 95.  Pickard CJ, Needs RJ 2011. Ab initio random structure searching. J. Phys. Condens. Matter 23:053201
    [Google Scholar]
  96. 96.  Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MIJ et al. 2005. First principles methods using CASTEP. Z. Kristallogr. 220:567–70
    [Google Scholar]
  97. 97.  Mayo M, Morris AJ 2017. Structure prediction of Li-Sn and Li-Sb intermetallics for lithium-ion batteries anodes. Chem. Mater. 29:5787–95
    [Google Scholar]
  98. 98.  Moran RF, McKay D, Pickard CJ, Berry AJ, Griffin JM, Ashbrook SE 2016. Hunting for hydrogen: random structure searching and prediction of NMR parameters of hydrous wadsleyite. Phys. Chem. Chem. Phys. 18:10173–81
    [Google Scholar]
  99. 99.  Griffin JM, Berry AJ, Frost DJ, Wimperis S, Ashbrook SE 2013. Water in the Earth's mantle: a solid-state NMR study of hydrous wadsleyite. Chem. Sci. 4:1523–38
    [Google Scholar]
  100. 100.  Ashbrook SE, Dawson DM 2013. Exploiting periodic first-principles calculations in NMR spectroscopy of disordered solids. Acc. Chem. Res. 46:1964–74
    [Google Scholar]
  101. 101.  Seymour VR, Eschenroeder ECV, Castro M, Wright PA, Ashbrook SE 2013. Application of NMR crystallography to the determination of the mechanism of charge-balancing in organocation-templated AlPO STA-2. CrystEngComm 15:8668–79
    [Google Scholar]
  102. 102.  Dervişoğlu R, Middlemiss DS, Blanc F, Lee YL, Morgan D, Grey CP 2015. Joint experimental and computational 17O and 1H solid state NMR study of Ba2In2O4(OH)2 structure and dynamics. Chem. Mater. 27:3861–73
    [Google Scholar]
  103. 103.  Cadars S, Allix M, Brouwer DH, Shayib R, Suchomel M et al. 2014. Long- and short-range constraints for the structure determination of layered silicates with stacking disorder. Chem. Mater. 26:6994–7008
    [Google Scholar]
  104. 104.  Stebbins JF, McCarty RJ, Palke AC 2017. Solid-state NMR and short-range order in crystalline oxides and silicates: a new tool in paramagnetic resonances. Acta Crystallogr. C 73:128–36
    [Google Scholar]
  105. 105.  Seymour ID, Middlemiss DS, Halat DM, Trease NM, Pell AJ, Grey CP 2016. Characterizing oxygen local environments in paramagnetic battery materials via 17O NMR and DFT calculations. J. Am. Chem. Soc. 138:9405–8
    [Google Scholar]
  106. 106.  Pienack N, Bensch W 2011. In-situ monitoring of the formation of crystalline solids. Angew. Chem. Int. Ed. 50:2014–34
    [Google Scholar]
  107. 107.  Hunger M, Horvath T 1995. A new MAS NMR Probe for in situ investigations of hydrocarbon conversion on solid catalysts under continuous-flow conditions. J. Chem. Soc. Chem. Commun. 0:1423–24
    [Google Scholar]
  108. 108.  Xu M, Harris KDM, Thomas JM, Vaughan DEW 2007. Probing the evolution of adsorption on nanoporous solids by in situ solid-state NMR spectroscopy. ChemPhysChem 8:1311–13
    [Google Scholar]
  109. 109.  Hunger M, Wang W 2006. Characterization of solid catalysts in the functioning state by nuclear magnetic resonance spectroscopy. Adv. Catal. 50:149–225
    [Google Scholar]
  110. 110.  Zheng A, Huang SJ, Wang Q, Zhang H, Deng F, Liu SB 2013. Progress in development and application of solid-state NMR for solid acid catalysis. Chin. J. Catal. 34:436–91
    [Google Scholar]
  111. 111.  Blanc F, Leskes M, Grey CP 2013. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors and fuel cells. Acc. Chem. Res. 46:1952–63
    [Google Scholar]
  112. 112.  Hughes CE, Williams PA, Keast VL, Charalampopoulos VG, Edwards-Gau GR, Harris KDM 2015. New in situ solid-state NMR techniques for probing the evolution of crystallization processes: pre-nucleation, nucleation and growth. Faraday Discuss 179:115–40
    [Google Scholar]
  113. 113.  Hughes CE, Harris KDM 2008. A technique for in situ monitoring of crystallization from solution by solid-state 13C CPMAS NMR spectroscopy. J. Phys. Chem. A. 112:6808–10
    [Google Scholar]
  114. 114.  Hughes CE, Harris KDM 2010. Direct observation of a transient polymorph during crystallization. Chem. Commun. 46:4982–84
    [Google Scholar]
  115. 115.  Hughes CE, Williams PA, Harris KDM 2014. “CLASSIC NMR”: an in-situ NMR strategy for mapping the time-evolution of crystallization processes by combined liquid-state and solid-state measurements. Angew. Chem. Int. Ed. 53:8939–43
    [Google Scholar]
  116. 116.  Harris KDM, Hughes CE, Williams PA 2015. Monitoring the evolution of crystallization processes by in-situ solid-state NMR spectroscopy. Solid State Nucl. Magn. Reson. 65:107–13
    [Google Scholar]
  117. 117.  Hunger M 2008. In situ flow MAS NMR spectroscopy: state of the art applications in heterogeneous catalysis. Prog. Nucl. Magn. Reson. Spectrosc. 53:105–27
    [Google Scholar]
  118. 118.  Ivanova II, Kolyagin YG 2010. Impact of in situ MAS NMR techniques to the understanding of the mechanisms of zeolite catalysed reaction. Chem. Soc. Rev. 39:5018–50
    [Google Scholar]
  119. 119.  Wang W, Hunger M 2008. Reactivity of surface alkoxy species on acidic zeolite catalysts. Acc. Chem. Res. 41:895–904
    [Google Scholar]
  120. 120.  Derouane EG, He H, Derouane-Abd Hamid SB, Lambert D, Ivanova I 2000. In situ MAS NMR spectroscopy study of catalytic reaction mechanisms. J. Mol. Catal. A 158:5–17
    [Google Scholar]
  121. 121.  Zhang W, Xu S, Han X, Bao X 2012. In situ solid-state NMR for heterogeneous catalysis: a joint experimental and theoretical approach. Chem. Soc. Rev. 41:192–210
    [Google Scholar]
  122. 122.  Gay ID 1984. A magic-angle spinner for vacuum-sealed samples. J. Magn. Reson. 58:413–20
    [Google Scholar]
  123. 123.  Anderson MW, Klinowski J 1989. Direct observation of shape selectivity in zeolite ZSM-5 by magic-angle-spinning NMR. Nature 339:200–3
    [Google Scholar]
  124. 124.  Carpenter TA, Klinowski J, Tilak D, Tennakoon B, Smith CJ, Edwards DC 1986. Sealed capsules for convenient acquisition of variable-temperature controlled-atmosphere magic-angle-spinning NMR spectra of solids. J. Magn. Reson. 68:561–63
    [Google Scholar]
  125. 125.  Haw JF, Richardson BR, Oshiro IS, Lazo ND, Speed JA 1989. Reactions of propene on Zeolite HY catalyst studied by in situ variable-temperature solid-state nuclear magnetic resonance spectroscopy. J. Am. Chem. Soc. 111:2052–58
    [Google Scholar]
  126. 126.  Richardson BR, Lazo ND, Schettler PD, White JL, Haw JF 1990. Reactions of butadiene in zeolite catalysts by in situ variable-temperature solid-state nuclear magnetic resonance spectrometry. J. Am. Chem. Soc. 112:2886–91
    [Google Scholar]
  127. 127.  Munson EJ, Ferguson DB, Kheir AA, Haw JF 1992. Applications of a new CAVERN design to the study of reactions on catalysts using in situ solid-state NMR. J. Catal. 136:504–9
    [Google Scholar]
  128. 128.  Xu T, Haw JF 1997. The development and applications of CAVERN methods for in situ NMR studies of reactions on solid acids. Top. Catal. 4:109–18
    [Google Scholar]
  129. 129.  Munson EJ, Murray DK, Haw JF 1993. Shallow-bed CAVERN design for in situ solid-state NMR studies of catalytic reactions. J. Catal. 141:733–36
    [Google Scholar]
  130. 130.  Zhang WP, Ma D, Liu XC, Liu XM, Bao XH 1999. Perfluorotributylamine as a probe molecule for distinguishing internal and external acidic sites in zeolites by high-resolution 1H MAS NMR spectroscopy. Chem. Commun. 12:1091–92
    [Google Scholar]
  131. 131.  Ma D, Shu YY, Zhang WP, Han XW, Xu YD, Bao XH 2000. In situ 1H MAS NMR spectroscopic observation of proton species on a Mo-modified HZSM-5 zeolite catalyst for the dehydroaromatization of methane. Angew. Chem. Int. Ed. 39:2928–31
    [Google Scholar]
  132. 132.  Xu M, Harris KDM, Thomas JM 2008. Mapping the evolution of adsorption of water in nanoporous silica by in situ solid-state 1H NMR spectroscopy. J. Am. Chem. Soc. 130:5880–82
    [Google Scholar]
  133. 133.  Haddix GW, Reimer JA, Bell AT 1987. A nuclear magnetic resonance probe for in situ studies of adsorbed species on catalysts. J. Catal. 106:111–15
    [Google Scholar]
  134. 134.  Haddix GW, Reimer JA, Bell AT 1987. Characterization of H2 adsorbed on γ-Mo2N by NMR spectroscopy. J. Catal. 108:50–54
    [Google Scholar]
  135. 135.  Hunger M, Seiler M, Horvath T 1999. A technique for simultaneous in situ MAS NMR and on-line gas chromatographic studies of hydrocarbon conversions on solid catalysts under flow conditions. Catal. Lett. 57:199–204
    [Google Scholar]
  136. 136.  Goguen P, Haw JF 1996. An in situ NMR probe with reagent flow and magic angle spinning. J. Catal. 161:870–72
    [Google Scholar]
  137. 137.  Hunger M, Horvath T 1997. Conversion of propan-2-ol on zeolites LaNaY and HY investigated by gas chromatography and in situ MAS NMR spectroscopy under continuous-flow conditions. J. Catal. 167:187–97
    [Google Scholar]
  138. 138.  Hunger M, Wang W 2004. Formation of cyclic compounds and carbenium ions by conversion of methanol on weakly dealuminated zeolite H-ZSM-5 investigated via novel in situ CF MAS NMR/UV-Vis technique. Chem. Commun.584–85
    [Google Scholar]
  139. 139.  Griffin JM, Forse AC, Grey CP 2016. Solid-state NMR studies of supercapacitors. Solid State Nucl. Magn. Reson. 74:16–35
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-061417-125852
Loading
/content/journals/10.1146/annurev-anchem-061417-125852
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error