1932

Abstract

Gas cluster ion beams (GCIBs) provide new opportunities for bioimaging and molecular depth profiling with secondary ion mass spectrometry (SIMS). These beams, consisting of clusters containing thousands of particles, initiate desorption of target molecules with high yield and minimal fragmentation. This review emphasizes the unique opportunities for implementing these sources, especially for bioimaging applications. Theoretical aspects of the cluster ion/solid interaction are developed to maximize conditions for successful mass spectrometry. In addition, the history of how GCIBs have become practical laboratory tools is reviewed. Special emphasis is placed on the versatility of these sources, as size, kinetic energy, and chemical composition can be varied easily to maximize lateral resolution, hopefully to less than 1 micron, and to maximize ionization efficiency. Recent examples of bioimaging applications are also presented.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061516-045249
2018-06-12
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/11/1/annurev-anchem-061516-045249.html?itemId=/content/journals/10.1146/annurev-anchem-061516-045249&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Thomson JJ 1911. Rays of positive electricity. Philos. Mag. 21:225–49
    [Google Scholar]
  2. 2.  Liebl H 1967. Ion microprobe mass analyzer. J. Appl. Phys. 38:5277
    [Google Scholar]
  3. 3.  Cooks RG, Ouyang Z, Takats Z, Wiseman JM 2006. Ambient mass spectrometry. Science 311:1566–70
    [Google Scholar]
  4. 4.  McDonnell LA, Heeren RMA 2007. Imaging mass spectrometry. Mass Spectrom. Rev. 26:606–43
    [Google Scholar]
  5. 5.  Vickerman JC, Winograd N 2015. SIMS—a precursor and partner to contemporary mass spectrometry. Int. J. Mass Spectrom. 377:568–79
    [Google Scholar]
  6. 6.  Mahoney CM 2013. Cluster Secondary Ion Mass Spectrometry: Principles and Applications Hoboken, NJ: Wiley
  7. 7.  Gillen G, Roberson S 1998. Preliminary evaluation of an SF5+ polyatomic primary ion beam for analysis of organic thin films by secondary ion mass spectrometry. Rapid Commun. Mass Spectrom. 12:1303–12
    [Google Scholar]
  8. 8.  Garrison BJ, Winograd N 1982. Ion-beam spectroscopy of solids and surfaces. Science 216:805–12
    [Google Scholar]
  9. 9.  Nakai A, Aoki T, Seki T, Matsuo J, Takaoka GH, Yamada I 2003. Modeling of surface smoothing process by cluster ion beam irradiation. Nucl. Instrum. Methods Phys. Res. B 206:842–45
    [Google Scholar]
  10. 10.  Colla TJ, Aderjan R, Kissel R, Urbassek HM 2000. Sputtering of Au (111) induced by 16-keV Au cluster bombardment: spikes, craters, late emission and fluctuations. Phys. Rev. B 62:8487–93
    [Google Scholar]
  11. 11.  Restrepo OA, Gonze X, Bertrand P, Delcorte A 2013. Computer simulations of cluster impacts: effects of the atomic masses of the projectile and target. Phys. Chem. Chem. Phys. 15:7621–27
    [Google Scholar]
  12. 12.  Maciazek D, Paruch RJ, Postawa Z, Garrison BJ 2016. Micro- and macroscopic modeling of sputter depth profiling. J. Phys. Chem. C 120:25473–80
    [Google Scholar]
  13. 13.  Vickerman JC, Briggs D, eds. 2013. TOF-SIMS: Materials Analysis by Mass Spectrometry Chichester, UK: IM Publ, 2nd ed..
  14. 14.  Russo MF, Garrison BJ 2006. Mesoscale energy deposition footprint model for kiloelectronvolt cluster bombardment of solids. Anal. Chem. 78:7206–10
    [Google Scholar]
  15. 15.  Brenes DA, Postawa Z, Wucher A, Blenkinsopp P, Garrison BJ, Winograd N 2011. Fluid flow and effusive desorption: dominant mechanisms of energy dissipation after energetic cluster bombardment of molecular solids. J. Phys. Chem. Lett. 2:2009–14
    [Google Scholar]
  16. 16.  Czerwinski B, Rzeznik L, Paruch R, Garrison BJ, Postawa Z 2009. Molecular dynamics computer simulations of 5 keV C60 bombardment of benzene crystal. Vacuum 83:S95–98
    [Google Scholar]
  17. 17.  Russo MF, Postawa Z, Garrison BJ 2009. A computational investigation of C60 depth profiling of Ag: molecular dynamics of multiple impact events. J. Phys. Chem. C 113:3270–6
    [Google Scholar]
  18. 18.  Brenes DA, Postawa Z, Wucher A, Blenkinsopp P, Garrison BJ, Winograd N 2013. An experimental and theoretical view of energetic C60 cluster bombardment onto molecular solids. Surf. Interface Anal. 45:50–53
    [Google Scholar]
  19. 19.  Maciazek D, Kanski M, Gaza L, Garrison BJ, Postawa Z 2016. Computer modeling of angular emission from Ag(100) and Mo(100) surfaces due to Arn cluster bombardment. J. Vac. Sci. Technol. B 34:03H114
    [Google Scholar]
  20. 20.  Rzeznik L, Paruch R, Garrison BJ, Postawa Z 2011. Erosion of Ag surface by continuous irradiation with slow, large Ar clusters. Nucl. Instrum. Methods Phys. B 269:1586–90
    [Google Scholar]
  21. 21.  Anders C, Urbassek HM, Johnson RE 2004. Linearity and additivity in cluster-induced sputtering: a molecular-dynamics study of van der Waals bonded systems. Phys. Rev. B 70:6
    [Google Scholar]
  22. 22.  Yang L, Seah MP, Gilmore IS 2012. Sputtering yields for gold using argon gas cluster ion beams. J. Phys. Chem. C 116:23735–41
    [Google Scholar]
  23. 23.  Rading D, Moellers R, Cramer HG, Niehuis E 2013. Dual beam depth profiling of polymer materials: comparison of C60 and Ar cluster ion beams for sputtering. Surf. Interface Anal. 45:171–74
    [Google Scholar]
  24. 24.  Seah MP 2013. Universal equation for argon gas cluster sputtering yields. J. Phys. Chem. C 117:12622–32
    [Google Scholar]
  25. 25.  Paruch RJ, Postawa Z, Garrison BJ 2015. Seduction of finding universality in sputtering yields due to cluster bombardment of solids. Acc. Chem. Res. 48:2529–36
    [Google Scholar]
  26. 26.  Rabbani S, Barber AM, Fletcher JS, Lockyer NP, Vickerman JC 2011. TOF-SIMS with argon gas cluster ion beams: a comparison with C60+. Anal. Chem. 83:3793–800
    [Google Scholar]
  27. 27.  Delcorte A, Garrison BJ, Hamraoui K 2009. Dynamics of molecular impacts on soft materials: from fullerenes to organic nanodrops. Anal. Chem. 81:6676–86
    [Google Scholar]
  28. 28.  Palka G, Kanski M, Maciazek D, Garrison BJ, Postawa Z 2015. Computer simulations of material ejection during C60 and Arm bombardment of octane and β-carotene. Nucl. Instrum. Methods Phys. Res. B 352:202–5
    [Google Scholar]
  29. 29.  Gnaser H, Ichiki K, Matsuo J 2013. Sputtered ion emission under size-selected Arn+ cluster ion bombardment. Surf. Interface Anal. 45:138–42
    [Google Scholar]
  30. 30.  Winograd N 2013. Molecular depth profiling. Surf. Interface Anal. 45:3–8
    [Google Scholar]
  31. 31.  Benninghoven A 1973. Surface investigation of solids by the statical method of secondary ion mass spectrometry (SIMS). Surf. Sci. 35:427–57
    [Google Scholar]
  32. 32.  Cornett DS, Lee TD, Mahoney JF 1994. Matrix-free desorption of biomolecules using massive cluster impact. Rapid Commun. Mass Spectrom. 8:996–1000
    [Google Scholar]
  33. 33.  Gillen G, King L, Freibaum B, Lareau R, Bennett J, Chmara F 2001. Negative cesium sputter ion source for generating cluster primary ion beams for secondary ion mass spectrometry analysis. J. Vac. Sci. Technol. A 19:568–75
    [Google Scholar]
  34. 34.  Weibel D, Wong S, Lockyer N, Blenkinsopp P, Hill R, Vickerman JC 2003. A C60 primary ion beam system for time of flight secondary ion mass spectrometry: its development and secondary ion yield characteristics. Anal. Chem. 75:1754–64
    [Google Scholar]
  35. 35.  Cheng J, Winograd N 2005. Depth profiling of peptide films with TOF-SIMS and a C60 probe. Anal. Chem. 77:3651–59
    [Google Scholar]
  36. 36.  Cheng J, Wucher A, Winograd N 2006. Molecular depth profiling with cluster ion beams. J. Phys. Chem. B 110:8329–36
    [Google Scholar]
  37. 37.  Wucher A, Winograd N 2010. Molecular sputter depth profiling using carbon cluster beams. Anal. Bioanal. Chem. 396:105–14
    [Google Scholar]
  38. 38.  Northby JA, Jiang T, Takaoka GH, Yamada I, Brown WL, Sosnowski M 1993. A method and apparatus for surface modification by gas-cluster ion impact. Nucl. Instrum. Methods Phys. Res. B 74:336–40
    [Google Scholar]
  39. 39.  Yamada I, Matsuo J, Insepov Z, Takeuchi D, Akizuki M, Toyoda N 1996. Surface processing by gas cluster ion beams at the atomic (molecular) level. J. Vac. Sci. Technol. A 14:781–85
    [Google Scholar]
  40. 40.  Toyoda N, Matsuo J, Aoki T, Yamada I, Fenner DB 2002. Secondary ion mass spectrometry with gas cluster ion beams. Nucl. Instrum. Methods Phys. Res. B 190:860–84
    [Google Scholar]
  41. 41.  Hanazono K, Tokiguchi K, Kataoka I 2014. Development of compact gas cluster ion beam (GCIB) equipment and ultra-surface smoothing Presented at Int. Conf. Ion Implant. Tech., 20th, Portland, OR. https://doi.org/10.1109/IIT.2014.6939978
    [Crossref]
  42. 42.  Angerer TB, Blenkinsopp P, Fletcher JS 2015. High energy gas cluster ions for organic and biological analysis by time-of-flight secondary ion mass spectrometry. Int. J. Mass Spectrom. 377:591–98
    [Google Scholar]
  43. 43.  Kayser S, Rading D, Moellers R, Kollmer F, Niehuis E 2013. Surface spectrometry using large argon clusters. Surf. Interface Anal. 45:131–33
    [Google Scholar]
  44. 44.  Lee JLS, Ninomiya S, Matsuo J, Gilmore IS, Seah MP, Shard AG 2010. Organic depth profiling of a nanostructured delta layer reference material using large argon cluster ions. Anal. Chem. 82:98–105
    [Google Scholar]
  45. 45.  Shard AG, Havelund R, Seah MP, Spencer SJ, Gilmore IS et al. 2012. Argon cluster ion beams for organic depth profiling: results from a VAMAS interlaboratory study. Anal. Chem. 84:7865–73
    [Google Scholar]
  46. 46.  Shard AG, Havelund R, Spencer SJ, Gilmore IS, Alexander MR et al. 2015. Measuring compositions in organic depth profiling: results from a VAMAS interlaboratory study. J. Phys. Chem. B 119:10784–97
    [Google Scholar]
  47. 47.  Shard AG, Foster R, Gilmore IS, Lee JLS, Ray S, Yang L 2011. VAMAS interlaboratory study on organic depth profiling. Part I: preliminary report. Surf. Interface Anal. 43:510–13
    [Google Scholar]
  48. 48.  Shen K, Wucher A, Winograd N 2015. Molecular depth profiling with argon gas cluster ion beams. J. Phys. Chem. C 119:15316–24
    [Google Scholar]
  49. 49.  Schwieters J, Cramer HG, Heller T, Jurgens U, Niehuis E et al. 1991. High mass resolution surface imaging with a time-of-flight secondary ion mass-spectroscopy scanning microprobe. J. Vac. Sci. Technol. A 9:2864–71
    [Google Scholar]
  50. 50.  Lu C, Wucher A, Winograd N 2013. Investigations of molecular depth profiling with dual beam sputtering. Surf. Interface Anal. 45:175–77
    [Google Scholar]
  51. 51.  Baryshev SV, Becker NG, Zinovev AV, Tripa CE, Veryovkin IV 2013. Dual-beam versus single-beam depth profiling: same sample in same instrument. Rapid Commun. Mass Spectrom. 27:2828–32
    [Google Scholar]
  52. 52.  Niehuis E, Moellers R, Rading D, Bruener P 2014. Dual beam depth profiling of organic materials: assessment of capabilities and limitations. Surf. Interface Anal. 46:70–73
    [Google Scholar]
  53. 53.  Piehowski PD, Carado AJ, Kurczy ME, Ostrowski SG, Heien ML et al. 2008. MS/MS methodology to improve subcellular mapping of cholesterol using TOF-SIMS. Anal. Chem. 80:8662–67
    [Google Scholar]
  54. 54.  Carado A, Passarelli MK, Kozole J, Wingate JE, Winograd N, Loboda AV 2008. C60 secondary ion mass spectrometry with a hybrid-quadrupole orthogonal time-of-flight mass spectrometer. Anal. Chem. 80:7921–29
    [Google Scholar]
  55. 55.  Carado A, Kozole J, Passarelli M, Winograd N, Loboda A, Wingate J 2008. Cluster SIMS with a hybrid quadrupole time-of-flight mass spectrometer. Appl. Surf. Sci. 255:1610–13
    [Google Scholar]
  56. 56.  Hill R, Blenkinsopp P, Thompson S, Vickerman J, Fletcher JS 2011. A new time-of-flight SIMS instrument for 3D imaging and analysis. Surf. Interface Anal. 43:506–9
    [Google Scholar]
  57. 57.  Smith DF, Robinson EW, Tolmachev AV, Heeren RMA, Paša-Tolić L 2011. C60 secondary ion Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 83:9552–56
    [Google Scholar]
  58. 58. Natl. Phys. Lab. 2016. Secondary ion mass spectrometry (SIMS) Natl. Phys. Lab., Middlesex, UK. http://www.npl.co.uk/content-categories/research/introduction-to-secondary-ion-mass-spectrometry-sims
    [Google Scholar]
  59. 59.  Makarov A, Denisov E, Kholomeev A, Baischun W, Lange O et al. 2006. Performance evaluation of a hybrid linear ion trap/orbitrap mass spectrometer. Anal. Chem. 78:2113–20
    [Google Scholar]
  60. 60.  Yamada I, Matsuo J, Toyoda N, Aoki T, Seki T 2015. Progress and applications of cluster ion beam technology. Curr. Opin. Solid State Mat. Sci. 19:12–18
    [Google Scholar]
  61. 61.  Toyoda N, Matsuo J, Aoki T, Yamada I, Fenner DB 2003. Secondary ion mass spectrometry with gas cluster ion beams. Appl. Surf. Sci. 203:214–18
    [Google Scholar]
  62. 62.  Tian H, Maciazek D, Postawa Z, Garrison BJ, Winograd N 2016. CO2 Cluster ion beam, an alternative projectile for secondary ion mass spectrometry. J. Am. Soc. Mass Spectrom. 27:1476–82
    [Google Scholar]
  63. 63.  Wu KJ, Odom RW 1996. Matrix-enhanced secondary ion mass spectrometry: a method for molecular analysis of solid surfaces. Anal. Chem. 68:873–82
    [Google Scholar]
  64. 64.  Rabbani SSN, Razo IB, Kohn T, Lockyer NP, Vickerman JC 2015. Enhancing ion yields in time-of-flight-secondary ion mass spectrometry: a comparative study of argon and water cluster primary beams. Anal. Chem. 87:2367–74
    [Google Scholar]
  65. 65.  Razo IB, Sheraz S, Henderson A, Lockyer NP, Vickerman JC 2014. Comparing C60+ and (H2O)n+ clusters for mouse brain tissue analysis. Surf. Interface Anal. 46:136–39
    [Google Scholar]
  66. 66.  Sheraz S, Barber A, Fletcher JS, Lockyer NP, Vickerman JC 2013. Enhancing secondary ion yields in time of flight-secondary ion mass spectrometry using water cluster primary beams. Anal. Chem. 85:5654–58
    [Google Scholar]
  67. 67.  Wucher A, Tian H, Winograd N 2014. A mixed cluster ion beam to enhance the ionization efficiency in molecular secondary ion mass spectrometry. Rapid Commun. Mass Spectrom. 28:396–400
    [Google Scholar]
  68. 68.  Tian H, Wucher A, Winograd N 2016. Dynamic reactive ionization with cluster secondary ion mass spectrometry. J. Am. Soc. Mass Spectrom. 27:285–92
    [Google Scholar]
  69. 69.  Tian H, Wucher A, Winograd N 2016. Reduce the matrix effect in biological tissue imaging using dynamic reactive ionization and gas cluster ion beams. Biointerphases 11:02A320
    [Google Scholar]
  70. 70.  Tian H, Wucher A, Winograd N 2016. Reducing the matrix effect in organic cluster SIMS using dynamic reactive ionization. J. Am. Soc. Mass Spectrom. 27:2014–24
    [Google Scholar]
  71. 71.  Tian H, Wucher A, Winograd N 2014. Molecular imaging of biological tissue using gas cluster ions. Surf. Interface Anal. 46:115–17
    [Google Scholar]
  72. 72.  Schiller J, Suss R, Fuchs B, Muller M, Zschornig O, Arnold K 2007. MALDI-TOF MS in lipidomics. Front. Biosci. 12:2568–79
    [Google Scholar]
  73. 73.  Manicke NE, Wiseman JM, Ifa DR, Cooks RG 2008. Desorption electrospray ionization (DESI) mass spectrometry and tandem mass spectrometry (MS/MS) of phospholipids and sphingolipids: ionization, adduct formation, and fragmentation. J. Am. Soc. Mass Spectrom. 19:531–43
    [Google Scholar]
  74. 74.  Shon HK, Yoon S, Moon JH, Lee TG 2016. Improved mass resolution and mass accuracy in TOF-SIMS spectra and images using argon gas cluster ion beams. Biointerphases 11:02A321
    [Google Scholar]
  75. 75.  Angerer TB, Magnusson Y, Landberg G, Fletcher JS 2016. Lipid heterogeneity resulting from fatty acid processing in the human breast cancer microenvironment identified by GCIB-ToF-SIMS imaging. Anal. Chem. 88:11946–54
    [Google Scholar]
  76. 76.  Angerer TB, Pour MD, Malmberg P, Fletcher JS 2015. Improved molecular imaging in rodent brain with time-of-flight-secondary ion mass spectrometry using gas cluster ion beams and reactive vapor exposure. Anal. Chem. 87:4305–13
    [Google Scholar]
  77. 77.  Nakano S, Yokoyama Y, Aoyagi S, Himi N, Fletcher JS et al. 2016. Evaluation of biomolecular distributions in rat brain tissues by means of ToF-SIMS using a continuous beam of Ar clusters. Biointerphases 11:02A307
    [Google Scholar]
  78. 78.  Phan NTN, Fletcher JS, Ewing AG 2015. Lipid structural effects of oral administration of methylphenidate in Drosophila brain by secondary ion mass spectrometry imaging. Anal. Chem. 87:4063–71
    [Google Scholar]
  79. 79.  Phan NTN, Munem M, Ewing AG, Fletcher JS 2017. MS/MS analysis and imaging of lipids across Drosophila brain using secondary ion mass spectrometry. Anal. Bioanal. Chem. 409:3923–32
    [Google Scholar]
  80. 80.  Tian H, Sparvero LJ, Amoscato AA, Bloom A, Bayir H et al. 2017. Gas cluster ion beam time-of-flight secondary ion mass spectrometry high-resolution imaging of cardiolipin speciation in the brain: identification of molecular losses after traumatic injury. Anal. Chem. 89:4611–19
    [Google Scholar]
  81. 81.  Kagan VE, Bayır HA, Belikova NA, Kapralov O, Tyurina YY et al. 2009. Cytochrome c/cardiolipin relations in mitochondria: a kiss of death. Free Radic. Biol. Med. 46:1439–53
    [Google Scholar]
  82. 82.  Knochenmuss R 2016. The coupled chemical and physical dynamics model of MALDI. Annu. Rev. Anal. Chem. 9:365–85
    [Google Scholar]
  83. 83.  Sparvero LJ, Amoscato AA, Fink AB, Anthonymuthu T, New LA et al. 2016. Imaging mass spectrometry reveals loss of polyunsaturated cardiolipins in the cortical contusion, hippocampus, and thalamus after traumatic brain injury. J. Neurochem. 139:659–75
    [Google Scholar]
  84. 84.  Fletcher JS, Lockyer NP, Vaidyanathan S, Vickerman JC 2007. TOF-SIMS 3D biomolecular imaging of Xenopus laevis oocytes using buckminsterfullerene (C60) primary ions. Anal. Chem. 79:2199–206
    [Google Scholar]
  85. 85.  Brison J, Robinson MA, Benoit DSW, Muramoto S, Stayton PS, Castner DG 2013. TOF-SIMS 3D imaging of native and non-native species within HeLa cells. Anal. Chem. 85:10869–77
    [Google Scholar]
  86. 86.  Bloom AN, Tian H, Schoen C, Winograd N 2017. Label-free visualization of nilotinib-functionalized gold nanoparticles within single mammalian cells by C60-SIMS imaging. Anal. Bioanal. Chem. 409:3067–76
    [Google Scholar]
  87. 87.  Wucher A, Cheng J, Zheng L, Winograd N 2009. Three-dimensional depth profiling of molecular structures. Anal. Bioanal. Chem. 393:1835–42
    [Google Scholar]
  88. 88.  Wucher A, Cheng J, Winograd N 2007. Protocols for three-dimensional molecular imaging using mass spectrometry. Anal. Chem. 79:5529–39
    [Google Scholar]
  89. 89.  Péresse T, Elie N, Touboul D, Pham VC, Dumontet V et al. 2017. Dual beam depth profiling and imaging with argon and bismuth clusters of prenylated stilbenes on glandular trichomes of Macaranga vedeliana. . Anal. Chem. 89:9247–52
    [Google Scholar]
  90. 90.  Masaki N, Ishizaki I, Hayasaka T, Fisher GL, Sanada N et al. 2015. Three-dimensional image of cleavage bodies in nuclei is configured using gas cluster ion beam with time-of-flight secondary ion mass spectrometry. Sci. Rep. 5:10000
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-061516-045249
Loading
/content/journals/10.1146/annurev-anchem-061516-045249
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error