1932

Abstract

The relatively new field of microRNA (miR) has experienced rapid growth in methodology associated with its detection and bioanalysis as well as with its role in -omics research, clinical diagnostics, and new therapeutic strategies. The breadth of this area of research and the seemingly exponential increase in number of publications on the subject can present scientists new to the field with a daunting amount of information to evaluate. This review aims to provide a collective overview of miR detection methods by relating conventional, established techniques [such as quantitative reverse transcription polymerase chain reaction (RT-qPCR), microarray, and Northern blotting (NB)] and relatively recent advancements [such as next-generation sequencing (NGS), highly sensitive biosensors, and computational prediction of microRNA/targets] to common miR research strategies. This should guide interested readers toward a more focused study of miR research and the surrounding technology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-071114-040343
2015-07-22
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/anchem/8/1/annurev-anchem-071114-040343.html?itemId=/content/journals/10.1146/annurev-anchem-071114-040343&mimeType=html&fmt=ahah

Literature Cited

  1. Lee RC, Feinbaum RL, Ambros V. 1.  1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–54 [Google Scholar]
  2. Ambros V. 2.  2001. microRNAs: tiny regulators with great potential. Cell 107:823–26 [Google Scholar]
  3. Ha M, Kim VN. 3.  2014. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 15:509–24 [Google Scholar]
  4. Finnegan EF, Pasquinelli AE. 4.  2013. MicroRNA biogenesis: regulating the regulators. Crit. Rev. Biochem. Mol. Biol. 48:51–68 [Google Scholar]
  5. Winter J, Jung S, Keller S, Gregory RI, Diederichs S. 5.  2009. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat. Cell Biol. 11:228–34 [Google Scholar]
  6. Carthew RW, Sontheimer EJ. 6.  2009. Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–55 [Google Scholar]
  7. Kim VN, Han J, Siomi MC. 7.  2009. Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell Biol. 10:126–39 [Google Scholar]
  8. Jinek M, Doudna JA. 8.  2009. A three-dimensional view of the molecular machinery of RNA interference. Nature 457:405–12 [Google Scholar]
  9. Dong H, Lei J, Ding L, Wen Y, Ju H, Zhang X. 9.  2013. MicroRNA: function, detection, and bioanalysis. Chem. Rev. 113:6207–33 [Google Scholar]
  10. Pritchard CC, Cheng HH, Tewari M. 10.  2012. MicroRNA profiling: approaches and considerations. Nat. Rev. Genet. 13:358–69 [Google Scholar]
  11. de Planell-Saguer M, Rodicio MC. 11.  2013. Detection methods for microRNAs in clinic practice. Clin. Biochem. 46:869–78 [Google Scholar]
  12. Bernardo BC, Charchar FJ, Lin RCY, McMullen JR. 12.  2012. A microRNA guide for clinicians and basic scientists: background and experimental techniques. Heart Lung Circ. 21:131–42 [Google Scholar]
  13. Kato M, Castro NE, Natarajan R. 13.  2013. MicroRNAs: potential mediators and biomarkers of diabetic complications. Free Radic. Biol. Med. 64:85–94 [Google Scholar]
  14. Nalejska E, Mączyńska E, Lewandowska MA. 14.  2014. Prognostic and predictive biomarkers: tools in personalized oncology. Mol. Diagn. Ther. 18:273–84 [Google Scholar]
  15. Gilad S, Meiri E, Yogev Y, Benjamin S, Lebanony D. 15.  et al. 2008. Serum microRNAs are promising novel biomarkers. PLoS ONE 3:e3148 [Google Scholar]
  16. Wang J, Zhang K-Y, Liu S-M, Sen S. 16.  2014. Tumor-associated circulating microRNAs as biomarkers of cancer. Molecules 19:1912–38 [Google Scholar]
  17. Seven M, Karatas OF, Duz MB, Ozen M. 17.  2014. The role of miRNAs in cancer: from pathogenesis to therapeutic implications. Future Oncol. 10:1027–48 [Google Scholar]
  18. Bartels CL, Tsongalis GJ. 18.  2009. MicroRNAs: novel biomarkers for human cancer. Clin. Chem. 55:623–31 [Google Scholar]
  19. Price C, Chen J. 19.  2014. MicroRNAs in cancer biology and therapy: current status and perspectives. Genes Dis. 1:1–11 [Google Scholar]
  20. Hogan DJ, Vincent TM, Fish S, Marcusson EG, Bhat B. 20.  et al. 2014. Anti-miRs competitively inhibit microRNAs in Argonaute complexes. PLoS ONE 9:e100951 [Google Scholar]
  21. Rossi S, Calin GA. 21.  2013. Bioinformatics, non-coding RNAs and its possible application in personalized medicine. Adv. Exp. Med. Biol. 774:21–37 [Google Scholar]
  22. Ebhardt HA, Fedynak A, Fahlman RP. 22.  2010. Naturally occurring variations in sequence length creates microRNA isoforms that differ in argonaute effector complex specificity. Silence 1:12 [Google Scholar]
  23. Starega-Roslan J, Krol J, Koscianska E, Kozlowski P, Szlachcic WJ. 23.  et al. 2011. Structural basis of microRNA length variety. Nucleic Acids Res. 39:257–68 [Google Scholar]
  24. Koscianska E, Starega-Roslan J, Sznajder LJ, Olejniczak M, Galka-Marciniak P, Krzyzosiak WJ. 24.  2011. Northern blotting analysis of microRNAs, their precursors and RNA interference triggers. BMC Mol. Biol. 12:14 [Google Scholar]
  25. Johnson BN, Mutharasan R. 25.  2014. Biosensor-based microRNA detection: techniques, design, performance, and challenges. Analyst 139:1576–88 [Google Scholar]
  26. Kim SW, Li Z, Moore PS, Monaghan AP, Chang Y. 26.  et al. 2010. A sensitive non-radioactive northern blot method to detect small RNAs. Nucleic Acids Res. 38:e98 [Google Scholar]
  27. Pall GS, Codony-Servat C, Byrne J, Ritchie L, Hamilton A. 27.  2007. Carbodiimide-mediated cross-linking of RNA to nylon membranes improves the detection of siRNA, miRNA and piRNA by northern blot. Nucleic Acids Res. 35:e60 [Google Scholar]
  28. Ramkissoon SH, Mainwaring LA, Sloand EM, Young NS, Kajigaya S. 28.  2006. Nonisotopic detection of microRNA using digoxigenin labeled RNA probes. Mol. Cell. Probes 20:1–4 [Google Scholar]
  29. Válóczi A, Hornyik C, Varga N, Burgyán J, Kauppinen S, Havelda Z. 29.  2004. Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res. 32:e175 [Google Scholar]
  30. Wang DZ, Yang DB. 30.  2010. Northern blotting and its variants for detecting expression and analyzing tissue distribution of miRNAs BT—microRNA expression detection methods. MicroRNA Expression Detection Methods83–100 Berlin, Heidelberg: Springer [Google Scholar]
  31. Wu W, Gong P, Li J, Yang J, Zhang G. 31.  et al. 2014. Simple and nonradioactive detection of microRNAs using digoxigenin (DIG)-labeled probes with high sensitivity. RNA 20:580–84 [Google Scholar]
  32. Nilsen TW. 32.  2014. Splinted ligation method to detect small RNAs. Cold Spring Harb. Protoc. 2014793–97
  33. Maroney PA, Chamnongpol S, Souret F, Nilsen TW. 33.  2007. A rapid, quantitative assay for direct detection of microRNAs and other small RNAs using splinted ligation. RNA 13:930–36 [Google Scholar]
  34. Tam S, de Borja R, Tsao M-S, McPherson JD. 34.  2014. Robust global microRNA expression profiling using next-generation sequencing technologies. Lab. Investig. 94:350–58 [Google Scholar]
  35. Yin JQ, Zhao RC, Morris KV. 35.  2008. Profiling microRNA expression with microarrays. Trends Biotechnol. 26:70–76 [Google Scholar]
  36. Castoldi M, Schmidt S, Benes V, Noerholm M, Kulozik AE. 36.  et al. 2006. A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids (LNA). RNA 12:913–20 [Google Scholar]
  37. Beuvink I, Kolb FA, Budach W, Garnier A, Lange J. 37.  et al. 2007. A novel microarray approach reveals new tissue-specific signatures of known and predicted mammalian microRNAs. Nucleic Acids Res. 35:e52 [Google Scholar]
  38. Li W, Ruan K. 38.  2009. MicroRNA detection by microarray. Anal. Bioanal. Chem. 394:1117–24 [Google Scholar]
  39. Wang H, Ach RA, Curry B. 39.  2007. Direct and sensitive miRNA profiling from low-input total RNA. RNA 13:151–59 [Google Scholar]
  40. Ach RA, Wang H, Curry B. 40.  2008. Measuring microRNAs: comparisons of microarray and quantitative PCR measurements, and of different total RNA prep methods. BMC Biotechnol. 8:69 [Google Scholar]
  41. Git A, Dvinge H, Salmon-Divon M, Osborne M, Kutter C. 41.  et al. 2010. Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA 16:991–1006 [Google Scholar]
  42. Pradervand S, Weber J, Lemoine F, Consales F, Paillusson A. 42.  et al. 2010. Concordance among digital gene expression, microarrays, and qPCR when measuring differential expression of microRNAs. Biotechniques 48:219–22 [Google Scholar]
  43. Sato F, Tsuchiya S, Terasawa K, Tsujimoto G. 43.  2009. Intra-platform repeatability and inter-platform comparability of microRNA microarray technology. PLoS ONE 4:e5540 [Google Scholar]
  44. Baker M. 44.  2010. MicroRNA profiling: separating signal from noise. Nat. Methods 7:687–92 [Google Scholar]
  45. Lee JM, Cho H, Jung Y. 45.  2010. Fabrication of a structure-specific RNA binder for array detection of label-free microRNA. Angew. Chem. Int. Ed. Engl. 49:8662–65 [Google Scholar]
  46. Duan D, Zheng KX, Shen Y, Cao R, Jiang L. 46.  et al. 2011. Label-free high-throughput microRNA expression profiling from total RNA. Nucleic Acids Res. 39:e154 [Google Scholar]
  47. Shen Y, Zheng KX, Duan D, Jiang L, Li J. 47.  2012. Label-free microRNA profiling not biased by 3′ end 2′-O-methylation. Anal. Chem. 84:6361–65 [Google Scholar]
  48. Nelson PT, Baldwin DA, Scearce LM, Oberholtzer JC, Tobias JW, Mourelatos Z. 48.  2004. Microarray-based, high-throughput gene expression profiling of microRNAs. Nat. Methods 1:155–61 [Google Scholar]
  49. Ueno T, Funatsu T. 49.  2014. Label-free quantification of microRNAs using ligase-assisted sandwich hybridization on a DNA microarray. PLoS ONE 9:e90920 [Google Scholar]
  50. Castoldi M, Collier P, Nolan T, Benes V. 50.  2013. Expression profiling of microRNAs by quantitative real-time PCR: the good, the bad, and the ugly. PCR Technology307–22 Boca Raton, FL: CRC Press [Google Scholar]
  51. Goswami RS, Waldron L, Machado J, Cervigne NK, Xu W. 51.  et al. 2010. Optimization and analysis of a quantitative real-time PCR-based technique to determine microRNA expression in formalin-fixed paraffin-embedded samples. BMC Biotechnol. 10:47 [Google Scholar]
  52. Meng W, McElroy JP, Volinia S, Palatini J, Warner S. 52.  et al. 2013. Comparison of microRNA deep sequencing of matched formalin-fixed paraffin-embedded and fresh frozen cancer tissues. PLoS ONE 8:e64393 [Google Scholar]
  53. Becker C, Hammerle-Fickinger A, Riedmaier I, Pfaffl MW. 53.  2010. mRNA and microRNA quality control for RT-qPCR analysis. Methods 50:237–43 [Google Scholar]
  54. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH. 54.  et al. 2005. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 33:e179 [Google Scholar]
  55. Kumar P, Johnston BH, Kazakov SA. 55.  2011. miR-ID: a novel, circularization-based platform for detection of microRNAs. RNA 17:365–80 [Google Scholar]
  56. Chugh P, Dittmer DP. 56.  2012. Potential pitfalls in microRNA profiling. Wiley Interdiscip. Rev. RNA 3:601–16 [Google Scholar]
  57. Benes V, Castoldi M. 57.  2010. Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available. Methods 50:244–49 [Google Scholar]
  58. Meyer SU, Kaiser S, Wagner C, Thirion C, Pfaffl MW. 58.  2012. Profound effect of profiling platform and normalization strategy on detection of differentially expressed microRNAs—a comparative study. PLoS ONE 7:e38946 [Google Scholar]
  59. Kang T, Kim H, Lee JM, Lee H, Choi YS. 59.  et al. 2014. Ultra-specific zeptomole microRNA detection by plasmonic nanowire interstice sensor with bi-temperature hybridization. Small 10:4200–6 [Google Scholar]
  60. Lee JM, Jung Y. 60.  2011. Two-temperature hybridization for microarray detection of label-free microRNAs with attomole detection and superior specificity. Angew. Chem. Int. Ed. Engl. 50:12487–90 [Google Scholar]
  61. Degliangeli F, Pompa PP, Fiammengo R. 61.  2014. Nanotechnology-based strategies for the detection and quantification of microRNA. Chemistry 20:9476–92 [Google Scholar]
  62. Hamidi-Asl E, Palchetti I, Hasheminejad E, Mascini M. 62.  2013. A review on the electrochemical biosensors for determination of microRNAs. Talanta 115:74–83 [Google Scholar]
  63. Jamali AA, Pourhassan-Moghaddam M, Dolatabadi JEN, Omidi Y. 63.  2014. Nanomaterials on the road to microRNA detection with optical and electrochemical nanobiosensors. TrAC-Trends Anal. Chem. 55:24–42 [Google Scholar]
  64. Zhang L, Lv D, Su W, Liu Y, Chen Y, Xiang R. 64.  2013. Detection of cancer biomarkers with nanotechnology. Am. J. Biochem. Biotechnol. 9:71–89 [Google Scholar]
  65. Lautner G, Gyurcsányi RE. 65.  2014. Electrochemical detection of microRNAs. Electroanalysis 26:1224–35 [Google Scholar]
  66. Park JY, Park SM. 66.  2009. DNA hybridization sensors based on electrochemical impedance spectroscopy as a detection tool. Sensors 9:9513–32 [Google Scholar]
  67. Deng H, Shen W, Ren Y, Gao Z. 67.  2014. A highly sensitive microRNA biosensor based on hybridized microRNA-guided deposition of polyaniline. Biosens. Bioelectron. 60:195–200 [Google Scholar]
  68. Gao Z, Deng H, Shen W, Ren Y. 68.  2013. A label-free biosensor for electrochemical detection of femtomolar microRNAs. Anal. Chem. 85:1624–30 [Google Scholar]
  69. Karkare S, Bhatnagar D. 69.  2006. Promising nucleic acid analogs and mimics: characteristic features and applications of PNA, LNA, and morpholino. Appl. Microbiol. Biotechnol. 71:5575–86 [Google Scholar]
  70. Ren Y, Deng H, Shen W, Gao Z. 70.  2013. A highly sensitive and selective electrochemical biosensor for direct detection of microRNAs in serum. Anal. Chem. 85:4784–89 [Google Scholar]
  71. Gao Z, Peng Y. 71.  2011. A highly sensitive and specific biosensor for ligation- and PCR-free detection of MicroRNAs. Biosens. Bioelectron. 26:3768–73 [Google Scholar]
  72. Ge Z, Lin M, Wang P, Pei H, Yan J. 72.  et al. 2014. Hybridization chain reaction amplification of microRNA detection with a tetrahedral DNA nanostructure-based electrochemical biosensor. Anal. Chem. 86:2124–30 [Google Scholar]
  73. Lin M, Wen Y, Li L, Pei H, Liu G. 73.  et al. 2014. Target-responsive, DNA nanostructure-based E-DNA sensor for microRNA analysis. Anal. Chem. 86:2285–88 [Google Scholar]
  74. Wen Y, Pei H, Shen Y, Xi J, Lin M. 74.  et al. 2012. DNA nanostructure-based interfacial engineering for PCR-free ultrasensitive electrochemical analysis of microRNA. Sci. Rep. 2:867 [Google Scholar]
  75. Chapman EJ, Prokhnevsky AI, Gopinath K, Dolja VV, Carrington JC. 75.  2004. Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step. Genes Dev. 18:1179–86 [Google Scholar]
  76. Ramnani P, Gao Y, Ozsoz M, Mulchandani A. 76.  2013. Electronic detection of microRNA at attomolar level with high specificity. Anal. Chem. 85:8061–4 [Google Scholar]
  77. Kilic T, Nur Topkaya S, Ozsoz M. 77.  2013. A new insight into electrochemical microRNA detection: a molecular caliper, p19 protein. Biosens. Bioelectron. 48:165–71 [Google Scholar]
  78. Labib M, Khan N, Ghobadloo SM, Cheng J, Pezacki JP, Berezovski MV. 78.  2013. Three-mode electrochemical sensing of ultralow microRNA levels. J. Am. Chem. Soc. 135:3027–38 [Google Scholar]
  79. Wanunu M, Dadosh T, Ray V, Jin J, McReynolds L, Drndic M. 79.  2010. Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nat. Nanotechnol. 5:807–14 [Google Scholar]
  80. Khan N, Cheng J, Pezacki JP, Berezovski MV. 80.  2011. Quantitative analysis of microRNA in blood serum with protein-facilitated affinity capillary electrophoresis. Anal. Chem. 83:6196–201 [Google Scholar]
  81. Yan Y, Zhao D, Yuan T, Hu J, Zhang D. 81.  et al. 2013. A simple and highly sensitive electrochemical biosensor for microRNA detection using target-assisted isothermal exponential amplification reaction. Electroanalysis 25:2354–59 [Google Scholar]
  82. Yu Y, Chen Z, Shi L, Yang F, Pan J. 82.  et al. 2014. Ultrasensitive electrochemical detection of microRNA based on an arched probe mediated isothermal exponential amplification. Anal. Chem. 86:8200–5 [Google Scholar]
  83. Wu X, Chai Y, Yuan R, Zhuo Y, Chen Y. 83.  2014. Dual signal amplification strategy for enzyme-free electrochemical detection of microRNAs. Sens. Actuators B 203:296–302 [Google Scholar]
  84. Yin H, Zhou Y, Chen C, Zhu L, Ai S. 84.  2012. An electrochemical signal “off-on” sensing platform for microRNA detection. Analyst 137:1389–95 [Google Scholar]
  85. Zhang J, Cui D. 85.  2013. Nanoparticle-based optical detection of microRNA. Nano Biomed. Eng. 5:1–10 [Google Scholar]
  86. Jiang L, Shen Y, Zheng K, Li J. 86.  2014. Rapid and multiplex microRNA detection on graphically encoded silica suspension array. Biosens. Bioelectron. 61:222–26 [Google Scholar]
  87. Liu W, Zhou X, Xing D. 87.  2014. Rapid and reliable microRNA detection by stacking hybridization on electrochemiluminescent chip system. Biosens. Bioelectron. 58:388–94 [Google Scholar]
  88. Liu T, Chen X, Hong CY, Xu XP, Yang HH. 88.  2014. Label-free and ultrasensitive electrochemiluminescence detection of microRNA based on long-range self-assembled DNA nanostructures. Microchim. Acta 181:731–36 [Google Scholar]
  89. Zhang P, Wu X, Chai Y, Yuan R. 89.  2014. An electrochemiluminescent microRNA biosensor based on hybridization chain reaction coupled with hemin as the signal enhancer. Analyst 139:2748–53 [Google Scholar]
  90. Dong H, Hao K, Tian Y, Jin S, Lu H. 90.  et al. 2014. Label-free and ultrasensitive microRNA detection based on novel molecular beacon binding readout and target recycling amplification. Biosens. Bioelectron. 53:377–83 [Google Scholar]
  91. Degliangeli F, Kshirsagar P, Brunetti V, Pompa PP, Fiammengo R. 91.  2014. Absolute and direct microRNA quantification using DNA-gold nanoparticle probes. J. Am. Chem. Soc. 136:2264–67 [Google Scholar]
  92. Qavi AJ, Kindt JT, Gleeson MA, Bailey RC. 92.  2011. Anti-DNA:RNA antibodies and silicon photonic microring resonators: increased sensitivity for multiplexed microRNA detection. Anal. Chem. 83:5949–56 [Google Scholar]
  93. Zhang D, Yan Y, Cheng W, Zhang W, Li Y, Ju H. 93.  2013. Streptavidin-enhanced surface plasmon resonance biosensor for highly sensitive and specific detection of microRNA. Microchim. Acta 180:397–403 [Google Scholar]
  94. He YC, Yin BC, Jiang L, Ye BC. 94.  2014. The rapid detection of microRNA based on p19-enhanced fluorescence polarization. Chem. Commun. 50:6236–39 [Google Scholar]
  95. Arata H, Komatsu H, Hosokawa K, Maeda M. 95.  2012. Rapid and sensitive microRNA detection with laminar flow-assisted dendritic amplification on power-free microfluidic chip. PLoS ONE 7:e48329 [Google Scholar]
  96. Gao X, Xu H, Baloda M, Gurung AS, Xu LP. 96.  et al. 2014. Visual detection of microRNA with lateral flow nucleic acid biosensor. Biosens. Bioelectron. 54:578–84 [Google Scholar]
  97. Tran HV, Piro B, Reisberg S, Huy Nguyen L, Dung Nguyen T. 97.  et al. 2014. An electrochemical ELISA-like immunosensor for miRNAs detection based on screen-printed gold electrodes modified with reduced graphene oxide and carbon nanotubes. Biosens. Bioelectron. 62:25–30 [Google Scholar]
  98. Cao H, Liu S, Tu W, Bao J, Dai Z. 98.  2014. A carbon nanotube/quantum dot based photoelectrochemical biosensing platform for the direct detection of microRNAs. Chem. Commun.
  99. Zhang GJ, Chua JH, Chee RE, Agarwal A, Wong SM. 99.  2009. Label-free direct detection of MiRNAs with silicon nanowire biosensors. Biosens. Bioelectron. 24:2504–8 [Google Scholar]
  100. Haque F, Li J, Wu HC, Liang XJ, Guo P. 100.  2013. Solid-state and biological nanopore for real-time sensing of single chemical and sequencing of DNA. Nano Today 8:56–74 [Google Scholar]
  101. Zhang X, Wang Y, Fricke BL, Gu LQ. 101.  2014. Programming nanopore ion flow for encoded multiplex microRNA detection. ACS Nano 8:3444–50 [Google Scholar]
  102. Arefian E, Kiani J, Soleimani M, Shariati SA, Aghaee-Bakhtiari SH. 102.  et al. 2011. Analysis of microRNA signatures using size-coded ligation-mediated PCR. Nucleic Acids Res. 39:e80 [Google Scholar]
  103. Geiss GK, Bumgarner RE, Birditt B, Dahl T, Dowidar N. 103.  et al. 2008. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat. Biotechnol. 26:317–25 [Google Scholar]
  104. van Rooij E. 104.  2011. The art of microRNA research. Circ. Res. 108:219–34 [Google Scholar]
  105. van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C. 105.  2014. Ten years of next-generation sequencing technology. Trends Genet. 30:418–26 [Google Scholar]
  106. Metzker ML. 106.  2010. Sequencing technologies—the next generation. Nat. Rev. Genet. 11:31–46 [Google Scholar]
  107. Marin RM, Sulc M, Vanicek J. 107.  2013. Searching the coding region for microRNA targets. RNA 19:467–74 [Google Scholar]
  108. Reczko M, Maragkakis M, Alexiou P, Grosse I, Hatzigeorgiou AG. 108.  2012. Functional microRNA targets in protein coding sequences. Bioinformatics 28:771–76 [Google Scholar]
  109. Peterson SM, Thompson JA, Ufkin ML, Sathyanarayana P, Liaw L, Congdon CB. 109.  2014. Common features of microRNA target prediction tools. Front. Genet. 5:23 [Google Scholar]
  110. Ritchie W, Rasko JE, Flamant S. 110.  2013. MicroRNA target prediction and validation. Adv. Exp. Med. Biol. 774:39–53 [Google Scholar]
  111. Tarang S, Weston MD. 111.  2014. Macros in microRNA target identification: a comparative analysis of in silico, in vitro, and in vivo approaches to microRNA target identification. RNA Biol. 11:324–33 [Google Scholar]
/content/journals/10.1146/annurev-anchem-071114-040343
Loading
/content/journals/10.1146/annurev-anchem-071114-040343
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error