1932

Abstract

In recent years, the unique and tunable properties of microfluidically spun microfibers have led to tremendous advancements for the field of biomedical engineering, which have been applied to areas such as tissue engineering, wound dressing, and drug delivery, as well as cell encapsulation and cell seeding. In this article, we analyze the most recent advances in microfluidics and microfluidically spun microfibers, with an emphasis on biomedical applications. We explore in detail these new and innovative experiments, how microfibers are made, the experimental purpose of making microfibers, and the future work that can be done as a result of these new types of microfibers. We also focus on the applications of various materials used to fabricate microfibers, as well as their many promises and limitations.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-090420-101138
2021-07-27
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/anchem/14/1/annurev-anchem-090420-101138.html?itemId=/content/journals/10.1146/annurev-anchem-090420-101138&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Boland ED, Matthews JA, Pawlowski KJ, Simpson DG, Wnek GE, Bowlin GL. 2004. Electrospinning collagen and elastin: preliminary vascular tissue engineering. Front. Biosci. 9:1422–32
    [Google Scholar]
  2. 2. 
    Cheng J, Jun Y, Qin J, Lee SH. 2017. Electrospinning versus microfluidic spinning of functional fibers for biomedical applications. Biomaterials 114:121–43
    [Google Scholar]
  3. 3. 
    Das N, Bera T, Mukherjee A. 2012. Biomaterial hydrogels for different biomedical applications. Int. J. Pharma Bio Sci. 3:P586–95
    [Google Scholar]
  4. 4. 
    Szymanski JM, Feinberg AW. 2014. Fabrication of freestanding alginate microfibers and microstructures for tissue engineering applications. Biofabrication 6:024104
    [Google Scholar]
  5. 5. 
    Song Y, Zhang C, Wang P, Wang L, Bao C et al. 2017. Engineering bone regeneration with novel cell-laden hydrogel microfiber-injectable calcium phosphate scaffold. Mater. Sci. Eng. C 75:895–905
    [Google Scholar]
  6. 6. 
    Chen C, Chen X, Zhang H, Zhang Q, Wang L et al. 2017. Electrically-responsive core-shell hybrid microfibers for controlled drug release and cell culture. Acta Biomater 55:434–42
    [Google Scholar]
  7. 7. 
    Zuo Y, He X, Yang Y, Wei D, Sun J et al. 2016. Microfluidic-based generation of functional microfibers for biomimetic complex tissue construction. Acta Biomater 38:153–62
    [Google Scholar]
  8. 8. 
    Liu R, Kong B, Chen Y, Liu X, Mi S 2019. Formation of helical alginate microfibers using different G/M ratios of sodium alginate based on microfluidics. Sens. Actuators B Chem. 304:127069
    [Google Scholar]
  9. 9. 
    Wu F, Ju XJ, He XH, Jiang MY, Wang W et al. 2016. A novel synthetic microfiber with controllable size for cell encapsulation and culture. J. Mater. Chem. B 4:2455–65
    [Google Scholar]
  10. 10. 
    Yu Y, Fu F, Shang L, Cheng Y, Gu Z, Zhao Y. 2017. Bioinspired helical microfibers from microfluidics. Adv. Mater. 29:1605765
    [Google Scholar]
  11. 11. 
    Kang E, Jeong GS, Choi YY, Lee KH, Khademhosseini A, Lee SH. 2011. Digitally tunable physicochemical coding of material composition and topography in continuous microfibres. Nat. Mater. 10:877–83
    [Google Scholar]
  12. 12. 
    Su J, Zheng Y, Wu H. 2009. Generation of alginate microfibers with a roller-assisted microfluidic system. Lab Chip 9:996–1001
    [Google Scholar]
  13. 13. 
    Focaroli S, Mazzitelli S, Falconi M, Luca G, Nastruzzi C. 2014. Preparation and validation of low cost microfluidic chips using a shrinking approach. Lab Chip 14:4007–16
    [Google Scholar]
  14. 14. 
    Liu W, Xu Z, Sun L, Guo P, Zeng C et al. 2017. Polymerization-induced phase separation fabrication: a versatile microfluidic technique to prepare microfibers with various cross sectional shapes and structures. Chem. Eng. J. 315:25–34
    [Google Scholar]
  15. 15. 
    George A, Shah PA, Shrivastav PS. 2019. Natural biodegradable polymers based nano-formulations for drug delivery: a review. Int. J. Pharm. 561:244–64
    [Google Scholar]
  16. 16. 
    Phan S, Luscombe CK. 2019. Recent advances in the green, sustainable synthesis of semiconducting polymers. Trends Chem 1:670–81
    [Google Scholar]
  17. 17. 
    Bandara GC, Heist CA, Remcho VT. 2018. Patterned polycaprolactone-filled glass microfiber microfluidic devices for total protein content analysis. Talanta 176:589–94
    [Google Scholar]
  18. 18. 
    Yeh J, Ling Y, Karp JM, Gantz J, Chandawarkar A et al. 2006. Micromolding of shape-controlled, harvestable cell-laden hydrogels. Biomaterials 27:5391–98
    [Google Scholar]
  19. 19. 
    Kantak C, Zhu Q, Beyer S, Bansal T, Trau D. 2012. Utilizing microfluidics to synthesize polyethylene glycol microbeads for Förster resonance energy transfer based glucose sensing. Biomicrofluidics 6:022006
    [Google Scholar]
  20. 20. 
    Nie M, Takeuchi S. 2017. Microfluidics based synthesis of coiled hydrogel microfibers with flexible shape and dimension control. Sens. Actuators B Chem. 246:358–62
    [Google Scholar]
  21. 21. 
    Hu X, Tian M, Sun B, Qu L, Zhu S, Zhang X. 2018. Hydrodynamic alignment and microfluidic spinning of strength-reinforced calcium alginate microfibers. Mater. Lett. 230:148–51
    [Google Scholar]
  22. 22. 
    Sharifi F, Patel BB, Dzuilko AK, Montazami R, Sakaguchi DS, Hashemi N. 2016. Polycaprolactone microfibrous scaffolds to navigate neural stem cells. Biomacromolecules 17:3287–97
    [Google Scholar]
  23. 23. 
    Wu J, Hong Y. 2016. Enhancing cell infiltration of electrospun fibrous scaffolds in tissue regeneration. Bioact. Mater. 1:56–64
    [Google Scholar]
  24. 24. 
    Zhang J, Wang L, Zhu M, Wang L, Xiao N, Kong D 2014. Wet-spun poly(ε-caprolactone) microfiber scaffolds for oriented growth and infiltration of smooth muscle cells. Mater. Lett. 132:59–62
    [Google Scholar]
  25. 25. 
    Mandal BB, Kundu SC. 2010. Biospinning by silkworms: silk fiber matrices for tissue engineering applications. Acta Biomater 6:360–71
    [Google Scholar]
  26. 26. 
    Yuan X, Mak AFT, Kwok KW, Yung BKO, Yao K. 2001. Characterization of poly(l-lactic acid) fibers produced by melt spinning. J. Appl. Polymer Sci. 81:251–60
    [Google Scholar]
  27. 27. 
    Nunes JK, Sadlej K, Tam JI, Stone HA. 2012. Control of the length of microfibers. Lab Chip 12:2301–4
    [Google Scholar]
  28. 28. 
    Gatemala H, Tongsakul D, Naranaruemol S, Panchompoo J, Ekgasit S, Wongravee K. 2019. Synthesis of silver microfibers with ultrahigh aspect ratio by galvanic replacement reaction. Mater. Chem. Phys. 237:121872
    [Google Scholar]
  29. 29. 
    Sharifi F, Bai Z, Montazami R, Hashemi N. 2016. Mechanical and physical properties of poly(vinyl alcohol) microfibers fabricated by a microfluidic approach. RSC Adv 6:55343–53
    [Google Scholar]
  30. 30. 
    Boyd DA, Shields AR, Howell PB, Ligler FS. 2013. Design and fabrication of uniquely shaped thiol-ene microfibers using a two-stage hydrodynamic focusing design. Lab Chip 13:3105–10
    [Google Scholar]
  31. 31. 
    Sharifi F, Kurteshi D, Hashemi N. 2016. Designing highly structured polycaprolactone fibers using microfluidics. J. Mech. Behav. Biomed. Mater. 61:530–40
    [Google Scholar]
  32. 32. 
    Haynl C, Hofmann E, Pawar K, Förster S, Scheibel T. 2016. Microfluidics-produced collagen fibers show extraordinary mechanical properties. Nano Lett 16:5917–22
    [Google Scholar]
  33. 33. 
    Yang CY, Chiu CT, Chang YP, Wang YJ. 2009. Fabrication of porous gelatin microfibers using an aqueous wet spinning process. Artif. Cells Blood Substit. Biotechnol. 37:173–76
    [Google Scholar]
  34. 34. 
    Wang CY, Sartika D, Wang DH, Hong PD, Cherng JH et al. 2019. Wet-spinning-based molding process of gelatin for tissue regeneration. J. Vis. Exp. 145:e58932
    [Google Scholar]
  35. 35. 
    Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A. 2010. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31:5536–44
    [Google Scholar]
  36. 36. 
    Kim H, Yang GH, Kim G. 2019. Three-dimensional gelatin/PVA scaffold with nanofibrillated collagen surface for applications in hard-tissue regeneration. Int. J. Biol. Macromol. 135:21–28
    [Google Scholar]
  37. 37. 
    Yamada M, Seki M. 2018. Multiphase microfluidic processes to produce alginate-based microparticles and fibers. J. Chem. Eng. Jpn. 51:318–30
    [Google Scholar]
  38. 38. 
    Bai Z, Mendoza Reyes JM, Montazami R, Hashemi N 2014. On-chip development of hydrogel microfibers from round to square/ribbon shape. J. Mater. Chem. A 2:4878–84
    [Google Scholar]
  39. 39. 
    Angelozzi M, Miotto M, Penolazzi L, Mazzitelli S, Keane T et al. 2015. Composite ECM–alginate microfibers produced by microfluidics as scaffolds with biomineralization potential. Mater. Sci. Eng. C 56:141–53
    [Google Scholar]
  40. 40. 
    Liu M, Zhou Z, Chai Y, Zhang S, Wu X et al. 2017. Synthesis of cell composite alginate microfibers by microfluidics with the application potential of small diameter vascular grafts. Biofabrication 9:025030
    [Google Scholar]
  41. 41. 
    Wang X, Li X, Dai X, Zhang X, Zhang J et al. 2018. Coaxial extrusion bioprinted shell-core hydrogel microfibers mimic glioma microenvironment and enhance the drug resistance of cancer cells. Colloids Surf. B Biointerfaces 171:291–99
    [Google Scholar]
  42. 42. 
    Cuadros TR, Skurtys O, Aguilera JM. 2012. Mechanical properties of calcium alginate fibers produced with a microfluidic device. Carbohydr. Polymers 89:1198–206
    [Google Scholar]
  43. 43. 
    Nakajima S, Kawano R, Onoe H. 2017. Stimuli-responsive hydrogel microfibers with controlled anisotropic shrinkage and cross-sectional geometries. Soft Matter 13:3710–19
    [Google Scholar]
  44. 44. 
    Ahn SY, Mun CH, Lee SH. 2015. Microfluidic spinning of fibrous alginate carrier having highly enhanced drug loading capability and delayed release profile. RSC Adv 5:15172–81
    [Google Scholar]
  45. 45. 
    Wang Q, Hu X, Du Y, Kennedy JF. 2010. Alginate/starch blend fibers and their properties for drug controlled release. Carbohydr. Polymers 82:842–47
    [Google Scholar]
  46. 46. 
    Chen P, Chen D, Li S, Ou X, Liu B-F. 2019. Microfluidics towards single cell resolution protein analysis. Trends Anal. Chem. 117:2–12
    [Google Scholar]
  47. 47. 
    Tian Y, Zhu P, Tang X, Zhou C, Wang J et al. 2017. Large-scale water collection of bioinspired cavity-microfibers. Nat. Commun. 8:1080
    [Google Scholar]
  48. 48. 
    Liu Y, Yang N, Li X, Li J, Pei W et al. 2020. Water harvesting of bioinspired microfibers with rough spindle-knots from microfluidics. Small 16:9e1901819
    [Google Scholar]
  49. 49. 
    Tian Y, Wang J, Wang L 2018. Microfluidic fabrication of bioinspired cavity-microfibers for 3D scaffolds. ACS Appl. Mater. Interfaces 10:29219–26
    [Google Scholar]
  50. 50. 
    Majd SA, Khorasgani MR, Moshtaghian SJ, Talebi A, Khezri M. 2016. Application of Chitosan/PVA Nano fiber as a potential wound dressing for streptozotocin-induced diabetic rats. Int. J. Biol. Macromol. 92:1162–68
    [Google Scholar]
  51. 51. 
    Li M, Chen J, Shi M, Zhang H, Ma PX, Guo B. 2019. Electroactive anti-oxidant polyurethane elastomers with shape memory property as non-adherent wound dressing to enhance wound healing. Chem. Eng. J. 375:121999
    [Google Scholar]
  52. 52. 
    Vuerstaek JDD, Vainas T, Wuite J, Nelemans P, Neumann MHA, Veraart JCJM. 2006. State-of-the-art treatment of chronic leg ulcers: a randomized controlled trial comparing vacuum-assisted closure (V.A.C.) with modern wound dressings. J. Vasc. Surg. 44:1029–37
    [Google Scholar]
  53. 53. 
    Ambekar RS, Kandasubramanian B. 2019. Advancements in nanofibers for wound dressing: A review. Eur. Polymer J. 117:304–36
    [Google Scholar]
  54. 54. 
    Cai J, Ye D, Wu Y, Fan L, Yu H 2019. Injectable alginate fibrous hydrogel with a three-dimensional network structure fabricated by microfluidic spinning. Compos. Commun. 15:1–5
    [Google Scholar]
  55. 55. 
    Park D, Yong IS, Cho KJ, Cheng J, Jung Y et al. 2017. The use of microfluidic spinning fiber as an ophthalmology suture showing the good anastomotic strength control. Sci. Rep. 7:16264
    [Google Scholar]
  56. 56. 
    Chan HF, Ma S, Leong KW. 2016. Can microfluidics address biomanufacturing challenges in drug/gene/cell therapies?. Regen. Biomater. 3:87–98
    [Google Scholar]
  57. 57. 
    Gu Z, Chen X. 2018. Towards enhancing skin drug delivery. Adv. Drug Deliv. Rev. 127:1–2
    [Google Scholar]
  58. 58. 
    Sun T, Li X, Shi Q, Wang H, Huang Q, Fukuda T. 2018. Microfluidic spun alginate hydrogel microfibers and their application in tissue engineering. Gels 4:38
    [Google Scholar]
  59. 59. 
    Zhang X, Jia C, Qiao X, Liu T, Sun K. 2017. Silk fibroin microfibers and chitosan modified poly(glycerol sebacate) composite scaffolds for skin tissue engineering. Polymer Testing 62:88–95
    [Google Scholar]
  60. 60. 
    Agnello S, Gasperini L, Reis RL, Mano JF, Pitarresi G et al. 2016. Microfluidic production of hyaluronic acid derivative microfibers to control drug release. Mater. Lett. 182:309–13
    [Google Scholar]
  61. 61. 
    Acar H, Çinar S, Thunga M, Kessler MR, Hashemi N, Montazami R. 2014. Study of physically transient insulating materials as a potential platform for transient electronics and bioelectronics. Adv. Funct. Mater. 24:4135–43
    [Google Scholar]
  62. 62. 
    Moebus K, Siepmann J, Bodmeier R. 2009. Alginate–poloxamer microparticles for controlled drug delivery to mucosal tissue. Eur. J. Pharm. Biopharm. 72:42–53
    [Google Scholar]
  63. 63. 
    Liu C, Zheng W, Xie R, Liu Y, Liang Z et al. 2019. Microfluidic fabrication of water-in-water droplets encapsulated in hydrogel microfibers. Chin. Chem. Lett. 30:457–60
    [Google Scholar]
  64. 64. 
    He XH, Wang W, Deng K, Xie R, Ju XJ et al. 2015. Microfluidic fabrication of chitosan microfibers with controllable internals from tubular to peapod-like structures. RSC Adv 5:928–36
    [Google Scholar]
  65. 65. 
    Sill TJ, von Recum HA. 2008. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29:1989–2006
    [Google Scholar]
  66. 66. 
    Li S, Cui Z, Li D, Yue G, Liu J et al. 2019. Hierarchically structured electrospinning nanofibers for catalysis and energy storage. Compos. Commun. 13:1–11
    [Google Scholar]
  67. 67. 
    Abd Elrahman AA, Mansour FR 2019. Targeted magnetic iron oxide nanoparticles: Preparation, functionalization and biomedical application. J. Drug Deliv. Sci. Technol. 52:702–12
    [Google Scholar]
  68. 68. 
    Amani A, Begdelo JM, Yaghoubi H, Motallebinia S. 2019. Multifunctional magnetic nanoparticles for controlled release of anticancer drug, breast cancer cell targeting, MRI/fluorescence imaging, and anticancer drug delivery. J. Drug Deliv. Sci. Technol. 49:534–46
    [Google Scholar]
  69. 69. 
    Lin YS, Huang KS, Yang CH, Wang CY, Yang YS et al. 2012. Microfluidic synthesis of microfibers for magnetic-responsive controlled drug release and cell culture. PLOS ONE 7:e33184
    [Google Scholar]
  70. 70. 
    Sechi D, Greer B, Johnson J, Hashemi N 2013. Three-dimensional paper-based microfluidic device for assays of protein and glucose in urine. Anal. Chem. 85:10733–37
    [Google Scholar]
  71. 71. 
    Garcia CG, Kiick KL. 2019. Methods for producing microstructured hydrogels for targeted applications in biology. Acta Biomater 84:34–48
    [Google Scholar]
  72. 72. 
    Tian C, Tu Q, Liu W, Wang J. 2019. Recent advances in microfluidic technologies for organ-on-a-chip. Trends Anal. Chem. 117:146–56
    [Google Scholar]
  73. 73. 
    Zheng Y, Wu Z, Lin J-M, Lin L 2020. Imitation of drug metabolism in cell co-culture microcapsule model using a microfluidic chip platform coupled to mass spectrometry. Chin. Chem. Lett. 31:2451–54
    [Google Scholar]
  74. 74. 
    Bein A, Shin W, Jalili-Firoozinezhad S, Park MH, Sontheimer-Phelps A et al. 2018. Microfluidic organ-on-a-chip models of human intestine. Cell. Mol. Gastroenterol. Hepatol. 5:659–68
    [Google Scholar]
  75. 75. 
    Pemathilaka RL, Caplin JD, Aykar SS, Montazami R, Hashemi NN. 2019. Placenta-on-a-chip: in vitro study of caffeine transport across placental barrier using liquid chromatography mass spectrometry. Glob. Chall. 3:1800112
    [Google Scholar]
  76. 76. 
    Caplin JD, Granados NG, James MR, Montazami R, Hashemi N. 2015. Microfluidic organ-on-a-chip technology for advancement of drug development and toxicology. Adv. Healthcare Mater. 4:1426–50
    [Google Scholar]
  77. 77. 
    Jia L, Han F, Yang H, Turnbull G, Wang J et al. 2019. Microfluidic fabrication of biomimetic helical hydrogel microfibers for blood-vessel-on-a-chip applications. Adv. Healthc. Mater. 8:e1900435
    [Google Scholar]
  78. 78. 
    Hashemi N, Lackore JM, Sharifi F, Goodrich PJ, Winchell ML, Hashemi N. 2016. A paper-based microbial fuel cell operating under continuous flow condition. Technology 4:98–103
    [Google Scholar]
  79. 79. 
    Sharifi F, Sooriyarachchi AC, Altural H, Montazami R, Rylander MN, Hashemi N. 2016. Fiber based approaches as medicine delivery systems. ACS Biomater. Sci. Eng. 2:1411–31
    [Google Scholar]
  80. 80. 
    Gao Y, Jin X 2019. Dual crosslinked methacrylated alginate hydrogel micron fibers and tissue constructs for cell biology. Mar. Drugs 17:557
    [Google Scholar]
  81. 81. 
    Ranjan VD, Zeng P, Li B, Zhang Y. 2020. In vitro cell culture in hollow microfibers with porous structures. Biomater. Sci. 8:2175–88
    [Google Scholar]
  82. 82. 
    Hwang CM, Khademhosseini A, Park Y, Sun K, Lee S-H. 2008. Microfluidic chip-based fabrication of PLGA microfiber scaffolds for tissue engineering. Langmuir 24:6845–51
    [Google Scholar]
  83. 83. 
    Liu H, Wang Y, Chen W, Yu Y, Jiang L, Qin J. 2019. A microfluidic strategy to fabricate ultra-thin polyelectrolyte hollow microfibers as 3D cellular carriers. Mater. Sci. Eng. C Mater. Appl. Biol. 104:109705
    [Google Scholar]
  84. 84. 
    Zhang X, Weng L, Liu Q, Li D, Deng B. 2019. Facile fabrication and characterization on alginate microfibres with grooved structure via microfluidic spinning. R. Soc. Open Sci. 6:181928
    [Google Scholar]
  85. 85. 
    Lee BR, Lee KH, Kang E, Kim D-S, Lee S-H. 2011. Microfluidic wet spinning of chitosan-alginate microfibers and encapsulation of HepG2 cells in fibers. Biomicrofluidics 5:22208
    [Google Scholar]
  86. 86. 
    Yajima Y, Lee CN, Yamada M, Utoh R, Seki M. 2018. Development of a perfusable 3D liver cell cultivation system via bundling-up assembly of cell-laden microfibers. J. Biosci. Bioeng. 126:111–18
    [Google Scholar]
  87. 87. 
    Raof NA, Padgen MR, Gracias AR, Bergkvist M, Xie Y. 2011. One-dimensional self-assembly of mouse embryonic stem cells using an array of hydrogel microstrands. Biomaterials 32:4498–505
    [Google Scholar]
  88. 88. 
    Kobayashi A, Yamakoshi K, Yajima Y, Utoh R, Yamada M, Seki M. 2013. Preparation of stripe-patterned heterogeneous hydrogel sheets using microfluidic devices for high-density coculture of hepatocytes and fibroblasts. J. Biosci. Bioeng. 116:761–67
    [Google Scholar]
  89. 89. 
    McNamara MC, Sharifi F, Okuzono J, Montazami R, Hashemi NN. 2019. Microfluidic manufacturing of alginate fibers with encapsulated astrocyte cells. ACS Appl. Bio Mater. 2:1603–13
    [Google Scholar]
  90. 90. 
    Yeh CH, Lin PW, Lin YC. 2010. Chitosan microfiber fabrication using a microfluidic chip and its application to cell cultures. Microfluidics Nanofluidics 8:115–21
    [Google Scholar]
  91. 91. 
    Chung BG, Lee KH, Khademhosseini A, Lee SH. 2012. Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering. Lab Chip 12:45–59
    [Google Scholar]
  92. 92. 
    Lee NM, Erisken C, Iskratsch T, Sheetz M, Levine WN, Lu HH. 2017. Polymer fiber-based models of connective tissue repair and healing. Biomaterials 112:303–12
    [Google Scholar]
  93. 93. 
    Edmondson R, Broglie JJ, Adcock AF, Yang L 2014. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev. Technol. 12:207–18
    [Google Scholar]
  94. 94. 
    Leong MF, Lu HF, Lim TC, Narayanan K, Gao S et al. 2016. Alginate microfiber system for expansion and direct differentiation of human embryonic stem cells. Tissue Eng. C Methods 22:884–94
    [Google Scholar]
  95. 95. 
    Singh A, Peppas NA. 2014. Hydrogels and scaffolds for immunomodulation. Adv. Mater. 26:6530–41
    [Google Scholar]
  96. 96. 
    Jun Y, Kim MJ, Hwang YH, Jeon EA, Kang AR et al. 2013. Microfluidics-generated pancreatic islet microfibers for enhanced immunoprotection. Biomaterials 34:8122–30
    [Google Scholar]
  97. 97. 
    Cheng Y, Zheng F, Lu J, Shang L, Xie Z et al. 2014. Bioinspired multicompartmental microfibers from microfluidics. Adv. Mater. 26:5184–90
    [Google Scholar]
  98. 98. 
    Sharifi F, Patel BB, McNamara MC, Meis PJ, Roghair MN et al. 2019. Photo-cross-linked poly(ethylene glycol) diacrylate hydrogels: spherical microparticles to bow tie-shaped microfibers. ACS Appl. Mater. Interfaces 11:18797–807
    [Google Scholar]
  99. 99. 
    Kurashina Y, Sato R, Onoe H. 2019. Microfiber-shaped building-block tissues with endothelial networks for constructing macroscopic tissue assembly. APL Bioeng 3:046101
    [Google Scholar]
  100. 100. 
    Villarreal-Gómez L, Vera-Graziano R, Vega-Ríos M, Pinedacamacho J, Almanza H et al. 2014. Biocompatibility evaluation of electrospun scaffolds of poly (l-lactide) with pure and grafted hydroxyapatite. J. Mex. Chem. Soc. 2014:435–43
    [Google Scholar]
  101. 101. 
    Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A 2015. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 73:254–71
    [Google Scholar]
  102. 102. 
    Buchwald T, Kozielski M, Szybowicz M. 2012. Determination of collagen fibers arrangement in bone tissue by using transformations of Raman spectra maps. Spectroscopy 27:107–17
    [Google Scholar]
  103. 103. 
    Liu H, Wang Y, Yu Y, Chen W, Jiang L, Qin J. 2019. Simple fabrication of inner chitosan-coated alginate hollow microfiber with higher stability. J. Biomed. Mater. Res. B Appl. Biomater. 107:2527–36
    [Google Scholar]
  104. 104. 
    Yu Y, Shang L, Guo J, Wang J, Zhao Y 2018. Design of capillary microfluidics for spinning cell-laden microfibers. Nat. Protoc. 13:2557–79
    [Google Scholar]
  105. 105. 
    Wang G, Jia L, Han F, Wang J, Yu L et al. 2019. Microfluidics-based fabrication of cell-laden hydrogel microfibers for potential applications in tissue engineering. Molecules 24:1633
    [Google Scholar]
  106. 106. 
    Mitchell GR, Tojeira A. 2013. Role of anisotropy in tissue engineering. Proc. Eng. 59:117–25
    [Google Scholar]
  107. 107. 
    Cheng Y, Yu Y, Fu F, Wang J, Shang L et al. 2016. Controlled fabrication of bioactive microfibers for creating tissue constructs using microfluidic techniques. ACS Appl. Mater. Interfaces 8:1080–86
    [Google Scholar]
  108. 108. 
    Louis F, Kitano S, Mano JF, Matsusaki M. 2019. 3D collagen microfibers stimulate the functionality of preadipocytes and maintain the phenotype of mature adipocytes for long term cultures. Acta Biomater 84:194–207
    [Google Scholar]
  109. 109. 
    Slukvin II, Vodyanik MA, Thomson JA, Gumenyuk ME, Choi ED. 2006. Directed differentiation of human embryonic stem cells into functional dendritic cells through the myeloid pathway. J. Immunol. 176:2924–32
    [Google Scholar]
  110. 110. 
    Zhang SC, Wernig M, Duncan ID, Brüstle O, Thomson JA. 2001. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat. Biotechnol. 19:1129–33
    [Google Scholar]
  111. 111. 
    Song C-G, Zhang Y-Z, Wu H-N, Cao X-L, Guo C-J et al. 2018. Stem cells: a promising candidate to treat neurological disorders. Neural Regen. Res. 13:1294–304
    [Google Scholar]
  112. 112. 
    Lee MR, Kwon KW, Jung H, Kim HN, Suh KY et al. 2010. Direct differentiation of human embryonic stem cells into selective neurons on nanoscale ridge/groove pattern arrays. Biomaterials 31:4360–66
    [Google Scholar]
  113. 113. 
    Liu Z, Hu Z. 2018. Aligned contiguous microfiber platform enhances neural differentiation of embryonic stem cells. Sci. Rep. 8:6087
    [Google Scholar]
  114. 114. 
    Lu HF, Narayanan K, Lim S-X, Gao S, Leong MF, Wan ACA. 2012. A 3D microfibrous scaffold for long-term human pluripotent stem cell self-renewal under chemically defined conditions. Biomaterials 33:2419–30
    [Google Scholar]
  115. 115. 
    Zhang YS, Arneri A, Bersini S, Shin S-R, Zhu K et al. 2016. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 110:45–59
    [Google Scholar]
  116. 116. 
    Majidi SS, Slemming-Adamsen P, Hanif M, Zhang Z, Wang Z, Chen M 2018. Wet electrospun alginate/gelatin hydrogel nanofibers for 3D cell culture. Int. J. Biol. Macromol. 118:1648–54
    [Google Scholar]
  117. 117. 
    Kim M, Kim G. 2015. 3D multi-layered fibrous cellulose structure using an electrohydrodynamic process for tissue engineering. J. Colloid Interface Sci. 457:180–87
    [Google Scholar]
  118. 118. 
    Asthana A, Lee KH, Shin S-J, Perumal J, Butler L et al. 2011. Bromo-oxidation reaction in enzyme-entrapped alginate hollow microfibers. Biomicrofluidics 5:24117
    [Google Scholar]
  119. 119. 
    Nguyen TPT, Tran BM, Lee NY. 2018. Microfluidic approach for the fabrication of cell-laden hollow fibers for endothelial barrier research. J. Mater. Chem. B 6:6057–66
    [Google Scholar]
  120. 120. 
    Yu Y, Wei W, Wang Y, Xu C, Guo Y, Qin J. 2016. Simple spinning of heterogeneous hollow microfibers on chip. Adv. Mater. 28:6649–55
    [Google Scholar]
  121. 121. 
    Meng Z-J, Wang W, Xie R, Ju X-J, Liu Z, Chu L-Y. 2016. Microfluidic generation of hollow Ca-alginate microfibers. Lab Chip 16:2673–81
    [Google Scholar]
  122. 122. 
    Jiang M-Y, Ju X-J, Deng K, Fan X-X, He X-H et al. 2016. The microfluidic synthesis of composite hollow microfibers for K+-responsive controlled release based on a host-guest system. J. Mater. Chem. B 4:3925–35
    [Google Scholar]
  123. 123. 
    Murguía-Flores DA, Bonilla-Ríos J, Canales-Fiscal MR, Sánchez-Fernández A. 2016. Protein adsorption through chitosan-alginate membranes for potential applications. Chem. Central J. 10:26
    [Google Scholar]
  124. 124. 
    Khanmohammadi M, Nemati S, Ai J, Khademi F 2019. Multipotency expression of human adipose stem cells in filament-like alginate and gelatin derivative hydrogel fabricated through visible light-initiated crosslinking. Mater. Sci. Eng. C 103:109808
    [Google Scholar]
  125. 125. 
    Del Valle JL, Díaz A, Puiggalí J. 2017. Hydrogels for biomedical applications: cellulose, chitosan, and protein/peptide derivatives. Gels 3:27
    [Google Scholar]
  126. 126. 
    Syafri E, Jamaluddin, Wahono, S, Irwan A, Asrofi M et al. 2019. Characterization and properties of cellulose microfibers from water hyacinth filled sago starch biocomposites. Int. J. Biol. Macromol. 137:119–25
    [Google Scholar]
  127. 127. 
    Jankowska I, Ławniczak P, Pogorzelec-Glaser K, Łapiński A, Pankiewicz R, Tritt-Goc J. 2020. Cellulose microfibers surface treated with imidazole as new proton conductors. Mater. Chem. Phys. 239:122056
    [Google Scholar]
  128. 128. 
    Mbarki K, Boumbimba RM, Sayari A, Elleuch B. 2019. Influence of microfibers length on PDLA/cellulose microfibers biocomposites crystallinity and properties. Polymer Bull 76:1061–79
    [Google Scholar]
  129. 129. 
    Ratajczak K, Stobiecka M. 2020. High-performance modified cellulose paper-based biosensors for medical diagnostics and early cancer screening: a concise review. Carbohydr. Polymers 229:115463
    [Google Scholar]
  130. 130. 
    Lee KH, Shin SJ, Kim CB, Kim JK, Cho YW et al. 2010. Microfluidic synthesis of pure chitosan microfibers for bio-artificial liver chip. Lab Chip 10:1328–34
    [Google Scholar]
  131. 131. 
    Abdel-Mohsen AM, Jancar J, Massoud D, Fohlerova Z, Elhadidy H et al. 2016. Novel chitin/chitosan-glucan wound dressing: isolation, characterization, antibacterial activity and wound healing properties. Int. J. Pharm. 510:86–99
    [Google Scholar]
  132. 132. 
    Kim M, Choe Y, Kim G. 2019. Injectable hierarchical micro/nanofibrous collagen-based scaffolds. Chem. Eng. J. 365:220–30
    [Google Scholar]
  133. 133. 
    Hong SG, Kim GH. 2013. Mechanically improved electrospun PCL biocomposites reinforced with a collagen coating process: preparation, physical properties, and cellular activity. Bioprocess Biosyst. Eng. 36:205–14
    [Google Scholar]
  134. 134. 
    Şelaru A, Drăguşin D-M, Olăret E, Serafim A, Steinmüller-Nethl D et al. 2019. Fabrication and biocompatibility evaluation of nanodiamonds-gelatin electrospun materials designed for prospective tissue regeneration applications. Materials 12:2933
    [Google Scholar]
  135. 135. 
    Liu W, Zhong Z, Hu N, Zhou Y, Maggio L et al. 2018. Coaxial extrusion bioprinting of 3D microfibrous constructs with cell-favorable gelatin methacryloyl microenvironments. Biofabrication 10:024102
    [Google Scholar]
  136. 136. 
    Sajkiewicz P, Kolbuk D. 2014. Electrospinning of gelatin for tissue engineering-molecular conformation as one of the overlooked problems. J. Biomater. Sci. Polymer Ed. 25:2009–22
    [Google Scholar]
  137. 137. 
    Zhang Y, Ouyang H, Chwee TL, Ramakrishna S, Huang ZM. 2005. Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J. Biomed. Mater. Res. B Appl. Biomater. 72:156–65
    [Google Scholar]
  138. 138. 
    Kahn CJF, Ziani K, Zhang YM, Liu J, Tran N et al. 2013. Mechanical properties evolution of a PLGA-PLCL composite scaffold for ligament tissue engineering under static and cyclic traction-torsion in vitro culture conditions. J. Biomater. Sci. Polymer Ed. 24:899–911
    [Google Scholar]
  139. 139. 
    Keun Kwon I, Kidoaki S, Matsuda T. 2005. Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential. Biomaterials 26:3929–39
    [Google Scholar]
  140. 140. 
    Park D, Lee SH. 2015. Fabrication of elastic and strong poly(l-lactic-co-ε-caprolactone) microfiber using spinning microfluidic chip and its biomedical applications Paper presented at MicroTAS 2015 - 19th International Conference on Miniaturized Systems for Chemistry and Life Sciences Gyeongju, Korea:Oct. 25–29
  141. 141. 
    Hajiali F, Tajbakhsh S, Shojaei A. 2018. Fabrication and properties of polycaprolactone composites containing calcium phosphate-based ceramics and bioactive glasses in bone tissue engineering: a review. Polymer Rev 58:164–207
    [Google Scholar]
  142. 142. 
    Ganji M, Docter M, Le Grice SFJ, Abbondanzieri EA 2016. DNA binding proteins explore multiple local configurations during docking via rapid rebinding. Nucleic Acids Res 44:8376–84
    [Google Scholar]
  143. 143. 
    Hatakeyama H, Akita H, Harashima H. 2013. The polyethyleneglycol dilemma: advantage and disadvantage of PEGylation of liposomes for systemic genes and nucleic acids delivery to tumors. Biol. Pharm. Bull. 36:892–99
    [Google Scholar]
  144. 144. 
    Gentile P, Chiono V, Carmagnola I, Hatton PV. 2014. An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int. J. Mol. Sci. 15:3640–59
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-090420-101138
Loading
/content/journals/10.1146/annurev-anchem-090420-101138
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error