1932

Abstract

Early disease diagnosis is necessary to enable timely interventions. Implementation of this vital task in the developing world is challenging owing to limited resources. Diagnostic approaches developed for resource-limited settings have often involved colorimetric tests (based on immunoassays) due to their low cost. Unfortunately, the performance/sensitivity of such simplistic tests are often limited and significantly hinder opportunities for early disease detection. A new criterion for selecting diagnostic tests in low- and middle-income countries is proposed here that is based on performance-to-cost ratio. For example, modern mass spectrometry (MS) now involves analysis of the native sample in the open laboratory environment, enabling applications in many fields, including clinical research, forensic science, environmental analysis, and agriculture. In this critical review, we summarize recent developments in chemistry that enable MS to be applied effectively in developing countries. In particular, we argue that closed automated analytical systems may not offer the analytical flexibility needed in resource-limited settings. Alternative strategies proposed here have potential to be widely accepted in low- and middle-income countries through the utilization of the open-source ambient MS platform that enables microsampling techniques such as dried blood spot to be coupled with miniature mass spectrometers in a centralized analytical platform. Consequently, costs associated with sample handling and maintenance can be reduced by >50% of the total ownership cost, permitting analytical measurements to be operated at high performance-to-cost ratios in the developing world.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-091520-085936
2021-07-27
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/anchem/14/1/annurev-anchem-091520-085936.html?itemId=/content/journals/10.1146/annurev-anchem-091520-085936&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Arevalo R Jr., Ni Z, Danell RM. 2020. Mass spectrometry and planetary exploration: a brief review and future projection. J. Mass Spectrom. 55:1e4454
    [Google Scholar]
  2. 2. 
    Goltz MN, Kim D, Racz LA. 2011. Using nanotechnology to detect nerve agents. Air Space Power J 25:256–60
    [Google Scholar]
  3. 3. 
    Leary PE, Kammrath BW, Lattman KJ, Beals GL. 2019. Deploying portable gas chromatography-mass spectrometry (GC-MS) to military users for the identification of toxic chemical agents in theater. Appl. Spectrosc. 73:8841–58
    [Google Scholar]
  4. 4. 
    The Economist 2000. Hopeless Africa. May 11. https://www.economist.com/leaders/2000/05/11/hopeless-africa
  5. 5. 
    Berhane A, Russom M, Bahta I, Hagos F, Ghirmai M, Uqubay S. 2017. Rapid diagnostic tests failing to detect Plasmodium falciparum infections in Eritrea: an investigation of reported false negative RDT results. Malaria J 16:1105
    [Google Scholar]
  6. 6. 
    Unwin VT, Ahmed R, Noviyanti R, Puspitasari AM, Utami RAS et al. 2020. Use of a highly-sensitive rapid diagnostic test to screen for malaria in pregnancy in Indonesia. Malaria J 19:128
    [Google Scholar]
  7. 7. 
    Bell L, Calder B, Hiller R, Klein A, Soares NC et al. 2018. Challenges and opportunities for biological mass spectrometry core facilities in the developing world. J. Biomol. Tech. 29:14–15
    [Google Scholar]
  8. 8. 
    Vos JD, Quinn L, Quinn L, Roos C, Pieters R et al. 2013. Experience in South Africa of combining bioanalysis and instrumental analysis of PCDD/Fs. Trends Anal. Chem. 46:189–97
    [Google Scholar]
  9. 9. 
    Bates RH 1983. The centralization of African societies. Essays on the Political Economy of Rural Africa21–58 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  10. 10. 
    MarketsandMarkets 2020. Mass spectrometry market to $6.3 billion by 2024. MarketsandMarkets Blog. Sep. 2. https://www.marketsandmarketsblog.com/mass-spectrometry-market-to-reach-6-3-billion-by-2024.html;
  11. 11. 
    Natl. Res. Found 2020. Research equipment database Natl. Res. Found. Pretoria, S. Afr: http://eqdb.nrf.ac.za/
  12. 12. 
    United Nations 2020. World economic situation and prospects Rep. United Nations New York: https://www.un.org/development/desa/dpad/wp-content/uploads/sites/45/WESP2020_FullReport.pdf
  13. 13. 
    Richard JT. 2015. Process analytical instrumentation, the challenges for in-situ characterization of complex particulate materials. Proc. Eng. 102:1714–25
    [Google Scholar]
  14. 14. 
    Cooks RG, Ouyang Z, Takats Z, Wiseman JM. 2006. Ambient mass spectrometry. Science 311:57671566–70First introduction of the concept of ambient mass spectrometry.
    [Google Scholar]
  15. 15. 
    Musteata FM, Musteata ML, Pawliszyn J. 2006. Fast in vivo microextraction: a new tool for clinical analysis. Clin. Chem. 52:4708–15
    [Google Scholar]
  16. 16. 
    Anastassiades M, Lehotay SJ, Štajnbaher D, Schenck FJ. 2003. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J. AOAC Int. 86:2412–31
    [Google Scholar]
  17. 17. 
    Van Der Gugten JG, Holmes DT. 2016. Quantitation of aldosterone in serum or plasma using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Clinical Applications of Mass Spectrometry in Biomolecular Analysis: Methods and Protocols U Garg 37–46 New York: Springer
    [Google Scholar]
  18. 18. 
    Abdel-Rehim M. 2002. Determination of ropivacaine and bupivacaine in human plasma by programmed temperature vaporiser-fast gas chromatography-mass spectrometry (PTV/Fast GC/MS) utilising in-vial liquid-liquid extraction. J. Sep. Sci. 25:4252–54
    [Google Scholar]
  19. 19. 
    Abdel-Rehim M, Hassan Z, Blomberg L, Hassan M. 2003. On-line derivatization utilizing solid-phase microextraction (SPME) for determination of busulphan in plasma using gas chromatography-mass spectrometry (GC-MS). Ther. Drug Monit. 25:3400–6
    [Google Scholar]
  20. 20. 
    Van Der Gugten G, DeMarco ML, Chen LYC, Chin A, Carruthers M et al. 2018. Resolution of spurious immunonephelometric IgG subclass measurement discrepancies by LC-MS/MS. Clin. Chem. 64:4735–42
    [Google Scholar]
  21. 21. 
    Capati A, Ijare OB, Bezabeh T. 2017. Diagnostic applications of nuclear magnetic resonance–based urinary metabolomics. Magn. Reson. Insights 10: https://doi.org/10.1177/1178623X17694346
    [Crossref] [Google Scholar]
  22. 22. 
    Markley JL, Brüschweiler R, Edison AS, Eghbalnia HR, Powers R et al. 2017. The future of NMR-based metabolomics. Curr. Opin. Biotechnol. 43:34–40
    [Google Scholar]
  23. 23. 
    Pan Am. Health Organ 2017. Access to comprehensive, equitable, and quality health services Pan Am. Health Organ. Geneva: https://www.paho.org/salud-en-las-americas-2017/?p=43
  24. 24. 
    Tolan NV. 2017. Direct-to-consumer testing: a new paradigm for point-of-care testing. J. Near-Patient Test. Technol. 16:3108–11
    [Google Scholar]
  25. 25. 
    Nayak S, Blumenfeld NR, Laksanasopin T, Sia SK. 2017. Point-of-care diagnostics: recent developments in a connected age. Anal. Chem. 89:1102–23
    [Google Scholar]
  26. 26. 
    Takáts Z, Wiseman JM, Gologan B, Cooks RG 2004. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306:5695471–73First introduction of the concept of DESI.
    [Google Scholar]
  27. 27. 
    Feider CL, Krieger A, DeHoog RJ, Eberlin LS. 2019. Ambient ionization mass spectrometry: recent developments and applications. Anal. Chem. 91:74266–90
    [Google Scholar]
  28. 28. 
    Kuo TH, Dutkiewicz EP, Pei J, Hsu CC 2020. Ambient ionization mass spectrometry today and tomorrow: embracing challenges and opportunities. Anal. Chem. 92:32353–63
    [Google Scholar]
  29. 29. 
    Laskin J, Heath BS, Roach PJ, Cazares L, Semmes OJ. 2012. Tissue imaging using nanospray desorption electrospray ionization mass spectrometry. Anal. Chem. 84:1141–48
    [Google Scholar]
  30. 30. 
    Feider CL, Macias LA, Brodbelt JS, Eberlin LS. 2020. Double bond characterization of free fatty acids directly from biological tissues by ultraviolet photodissociation. Anal. Chem. 92:128386–95
    [Google Scholar]
  31. 31. 
    Zhang J, Feider CL, Nagi C, Yu W, Carter SA et al. 2017. Detection of metastatic breast and thyroid cancer in lymph nodes by desorption electrospray ionization mass spectrometry imaging. J. Am. Soc. Mass Spectrom. 28:61166–74
    [Google Scholar]
  32. 32. 
    Van Berkel GJ, Sanchez AD, Quirke JME. 2002. Thin-layer chromatography and electrospray mass spectrometry coupled using a surface sampling probe. Anal. Chem. 74:246216–23
    [Google Scholar]
  33. 33. 
    Tang F, Guo C, Ma X, Zhang J, Su Y et al. 2018. Rapid in situ profiling of lipid C═C location isomers in tissue using ambient mass spectrometry with photochemical reactions. Anal. Chem. 90:95612–19
    [Google Scholar]
  34. 34. 
    Roach PJ, Laskin J, Laskin A. 2010. Nanospray desorption electrospray ionization: an ambient method for liquid-extraction surface sampling in mass spectrometry. Analyst 135:92233–36
    [Google Scholar]
  35. 35. 
    Nguyen SN, Kyle JE, Dautel SE, Sontag R, Luders T et al. 2019. Lipid coverage in nanospray desorption electrospray ionization mass spectrometry imaging of mouse lung tissues. Anal. Chem. 91:1811629–35
    [Google Scholar]
  36. 36. 
    Cody RB, Laramée JA, Durst HD. 2005. Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal. Chem. 77:82297–302First introduction of plasma-based ambient ionization.
    [Google Scholar]
  37. 37. 
    Block E, Dane AJ, Thomas S, Cody RB 2010. Applications of direct analysis in real time mass spectrometry (DART-MS) in Allium chemistry. 2-Propenesulfenic and 2-propenesulfinic acids, diallyl trisulfane S-oxide, and other reactive sulfur compounds from crushed garlic and other alliums. J. Agric. Food Chem. 58:84617–25
    [Google Scholar]
  38. 38. 
    Jastrzembski JA, Bee MY, Sacks GL. 2017. Trace-level volatile quantitation by direct analysis in real time mass spectrometry following headspace extraction: optimization and validation in grapes. J. Agric. Food Chem. 65:429353–59
    [Google Scholar]
  39. 39. 
    Li H, Hitchins VM, Wickramasekara S. 2016. Rapid detection of bacterial endotoxins in ophthalmic viscosurgical device materials by direct analysis in real time mass spectrometry. Anal. Chim. Acta 943:98–105
    [Google Scholar]
  40. 40. 
    Sisco E, Robinson EL, Burns A, Mead R. 2019. What's in the bag? Analysis of exterior drug packaging by TD-DART-MS to predict the contents. Forensic Sci. Int. 304:109939
    [Google Scholar]
  41. 41. 
    Vasiljevic T, Pawliszyn J. 2019. Direct analysis in real time (DART) and solid-phase microextraction (SPME) transmission mode (TM): a suitable platform for analysis of prohibited substances in small volumes. Anal. Methods 11:303882–89
    [Google Scholar]
  42. 42. 
    Hsieh HY, Li LH, Hsu RY, Kao WF, Huang YC, Hsu CC. 2017. Quantification of endogenous cholesterol in human serum on paper using direct analysis in real time mass spectrometry. Anal. Chem. 89:116146–52
    [Google Scholar]
  43. 43. 
    Wang C, Zhu H, Cai Z, Song F, Liu Z, Liu S. 2013. Newborn screening of phenylketonuria using direct analysis in real time (DART) mass spectrometry. Anal. Bioanal. Chem. 405:103159–64
    [Google Scholar]
  44. 44. 
    Nemes P, Hoover WJ, Keire DA. 2013. High-throughput differentiation of heparin from other glycosaminoglycans by pyrolysis mass spectrometry. Anal. Chem. 85:157405–12
    [Google Scholar]
  45. 45. 
    Jones CM, Fernández FM. 2013. Transmission mode direct analysis in real time mass spectrometry for fast untargeted metabolic fingerprinting. Rapid Commun. Mass Spectrom. 27:121311–18
    [Google Scholar]
  46. 46. 
    Na N, Zhao M, Zhang S, Yang C, Zhang X 2007. Development of a dielectric barrier discharge ion source for ambient mass spectrometry. J. Am. Soc. Mass Spectrom. 18:101859–62
    [Google Scholar]
  47. 47. 
    Harper JD, Charipar NA, Mulligan CC, Zhang X, Cooks RG, Ouyang Z. 2008. Low-temperature plasma probe for ambient desorption ionization. Anal. Chem. 80:239097–104
    [Google Scholar]
  48. 48. 
    Smoluch M, Mielczarek P, Silberring J. 2016. Plasma-based ambient ionization mass spectrometry in bioanalytical sciences. Mass Spectrom. Rev. 35:122–34
    [Google Scholar]
  49. 49. 
    Gyr L, Wolf JC, Franzke J, Zenobi R. 2018. Mechanistic understanding leads to increased ionization efficiency and selectivity in dielectric barrier discharge ionization mass spectrometry: a case study with perfluorinated compounds. Anal. Chem. 90:42725–31
    [Google Scholar]
  50. 50. 
    Hagenhoff S, Franzke J, Hayen H. 2017. Determination of peroxide explosive TATP and related compounds by dielectric barrier discharge ionization-mass spectrometry (DBDI-MS). Anal. Chem. 89:74210–15
    [Google Scholar]
  51. 51. 
    Wolf JC, Schaer M, Siegenthaler P, Zenobi R. 2015. Direct quantification of chemical warfare agents and related compounds at low ppt levels: comparing active capillary dielectric barrier discharge plasma ionization and secondary electrospray ionization mass spectrometry. Anal. Chem. 87:1723–29
    [Google Scholar]
  52. 52. 
    Wiley JS, Shelley JT, Cooks RG. 2013. Handheld low-temperature plasma probe for portable “point-and-shoot” ambient ionization mass spectrometry. Anal. Chem. 85:146545–52
    [Google Scholar]
  53. 53. 
    Garcia-Reyes JF, Harper JD, Salazar GA, Charipar NA, Ouyang Z, Cooks RG. 2011. Detection of explosives and related compounds by low-temperature plasma ambient ionization mass spectrometry. Anal. Chem. 83:31084–92
    [Google Scholar]
  54. 54. 
    Gamboa-Becerra R, Montero-Vargas JM, Martínez-Jarquín S, Gálvez-Ponce E, Moreno-Pedraza A, Winkler R. 2017. Rapid classification of coffee products by data mining models from direct electrospray and plasma-based mass spectrometry analyses. Food Anal. Methods 10:51359–68
    [Google Scholar]
  55. 55. 
    Wang H, Liu J, Cooks RG, Ouyang Z 2010. Paper spray for direct analysis of complex mixtures using mass spectrometry. Angew. Chem. Int. Ed. 49:5877–80Introduced paper spray as the first substrate-based ambient ionization method that eliminated the need for nebulizer gases.
    [Google Scholar]
  56. 56. 
    Liu J, Wang H, Manicke NE, Lin JM, Cooks RG, Ouyang Z. 2010. Development, characterization, and application of paper spray ionization. Anal. Chem. 82:62463–71
    [Google Scholar]
  57. 57. 
    Damon DE, Davis KM, Moreira CR, Capone P, Cruttenden R, Badu-Tawiah AK. 2016. Direct biofluid analysis using hydrophobic paper spray mass spectrometry. Anal. Chem. 88:31878–84
    [Google Scholar]
  58. 58. 
    Bambauer TP, Maurer HH, Weber AA, Hannig M, Pütz N et al. 2019. Evaluation of novel organosilane modifications of paper spray mass spectrometry substrates for analyzing polar compounds. Talanta 204:677–84
    [Google Scholar]
  59. 59. 
    Rossini EL, Kulyk DS, Ansu-Gyeabourh E, Sahraeian T, Pezza HR, Badu-Tawiah AK. 2020. Direct analysis of doping agents in raw urine using hydrophobic paper spray mass spectrometry. J. Am. Soc. Mass Spectrom. 31:61212–22
    [Google Scholar]
  60. 60. 
    Pei JL. 2015. Hydrophobic paper spray mass spectrometry to detect illicit drugs. Presented at State Science Day Columbus, Ohio: May 16
    [Google Scholar]
  61. 61. 
    Davis KM, Badu-Tawiah AK. 2017. Direct and efficient dehydrogenation of tetrahydroquinolines and primary amines using corona discharge generated on ambient hydrophobic paper substrate. J. Am. Soc. Mass Spectrom. 28:4647–54
    [Google Scholar]
  62. 62. 
    Capone PC, Badu-Tawiah AK. 2016. Thread spray mass spectrometry for direct analysis of capsaicinoids in evidentiary garments Presented at the 64th American Society of Mass Spectrometry Conference San Antonio, Texas: June 5–9
  63. 63. 
    Swiner DJ, Jackson S, Durisek GR, Walsh BK, Kouatli Y, Badu-Tawiah AK. 2019. Microsampling with cotton thread: storage and ultra-sensitive analysis by thread spray mass spectrometry. Anal. Chim. Acta 1082:98–105
    [Google Scholar]
  64. 64. 
    Jackson S, Swiner DJ, Capone PC, Badu-Tawiah AK. 2018. Thread spray mass spectrometry for direct analysis of capsaicinoids in pepper products. Anal. Chim. Acta 1023:81–88
    [Google Scholar]
  65. 65. 
    Jackson S, Frey BS, Bates MN, Swiner DJ, Badu-Tawiah AK. 2020. Direct differentiation of whole blood for forensic serology analysis by thread spray mass spectrometry. Analyst 145:165615–23
    [Google Scholar]
  66. 66. 
    Morato NM, Pirro V, Fedick PW, Cooks RG. 2019. Quantitative swab touch spray mass spectrometry for oral fluid drug testing. Anal. Chem. 91:117450–57
    [Google Scholar]
  67. 67. 
    Fedick PW, Bain RM. 2017. Swab touch spray mass spectrometry for rapid analysis of organic gunshot residue from human hand and various surfaces using commercial and fieldable mass spectrometry systems. Forensic Chem 5:53–57
    [Google Scholar]
  68. 68. 
    Kerian KS, Jarmusch AK, Cooks RG. 2014. Touch spray mass spectrometry for in situ analysis of complex samples. Analyst 139:112714–20
    [Google Scholar]
  69. 69. 
    Khaled A, Gómez-Ríos GA, Pawliszyn J 2020. Optimization of coated blade spray for rapid screening and quantitation of 105 veterinary drugs in biological tissue samples. Anal. Chem. 92:85937–43
    [Google Scholar]
  70. 70. 
    World Health Organ 2012. Annex 3. Collection, storage and shipment of specimens for laboratory diagnosis and interpretation of results. Surveillance guidelines for measles, rubella and congenital rubella syndrome in the WHO European Region Rep., World Health Organ. Geneva: https://www.ncbi.nlm.nih.gov/books/NBK143256/?report=reader#_NBK143256_pubdet_
  71. 71. 
    Lei BUW, Prow TW. 2019. A review of microsampling techniques and their social impact. Biomed. Microdevices 21:481
    [Google Scholar]
  72. 72. 
    Freeman JD, Rosman LM, Ratcliff JD, Strickland PT, Graham DR, Silbergeld EK. 2018. State of the science in dried blood spots. Clin. Chem. 64:4656–79
    [Google Scholar]
  73. 73. 
    Bang IC. 1913. Der Blutzucker Wiesbaden, Ger: Bergmann
  74. 74. 
    Chapman OD. 1924. The complement-fixation test for syphilis: use of patient's whole blood dried on filter paper. Arch. Derm. Syphilol. 9:5607–11
    [Google Scholar]
  75. 75. 
    Guthrie R, Susi A 1963. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics 32:3338–43Applied the absorptive-based dried blood spot method for large-scale screening of newborns.
    [Google Scholar]
  76. 76. 
    Wilhelm AJ, den Burger JCG, Swart EL. 2014. Therapeutic drug monitoring by dried blood spot: progress to date and future directions. Clin. Pharmacokinet. 53:11961–73
    [Google Scholar]
  77. 77. 
    Antunes MV, Charão MF, Linden R. 2016. Dried blood spots analysis with mass spectrometry: potentials and pitfalls in therapeutic drug monitoring. Clin. Biochem. 49:131035–46
    [Google Scholar]
  78. 78. 
    Lehmann S, Picas A, Tiers L, Vialaret J, Hirtz C. 2017. Clinical perspectives of dried blood spot protein quantification using mass spectrometry methods. Crit. Rev. Clin. Lab. Sci. 54:3173–84
    [Google Scholar]
  79. 79. 
    Frey BS, Damon DE, Badu-Tawiah AK. 2020. Emerging trends in paper spray mass spectrometry: microsampling, storage, direct analysis, and applications. Mass Spectrom. Rev. 39:4336–70
    [Google Scholar]
  80. 80. 
    Chambers AG, Percy AJ, Hardie DB, Borchers CH. 2013. Comparison of proteins in whole blood and dried blood spot samples by LC/MS/MS. J. Am. Soc. Mass Spectrom. 24:91338–45
    [Google Scholar]
  81. 81. 
    Wilhelm AJ, den Burger JCG, Swart EL. 2014. Therapeutic drug monitoring by dried blood spot: progress to date and future directions. Clin. Pharmacokinet. 53:961–73
    [Google Scholar]
  82. 82. 
    Denniff P, Parry S, Dopson W, Spooner N. 2015. Quantitative bioanalysis of paracetamol in rats using volumetric absorptive microsampling (VAMS). J. Pharm. Biomed. Anal. 108:61–69
    [Google Scholar]
  83. 83. 
    Nys G, Kok MGM, Servais AC, Fillet M. 2017. Beyond dried blood spot: current microsampling techniques in the context of biomedical applications. Trends Anal. Chem. 97:326–32
    [Google Scholar]
  84. 84. 
    Bills BJ, Manicke NE. 2016. Development of a prototype blood fractionation cartridge for plasma analysis by paper spray mass spectrometry. Clin. Mass Spectrom. 2:18–24
    [Google Scholar]
  85. 85. 
    Kim JH, Woenker T, Adamec J, Regnier FE. 2013. Simple, miniaturized blood plasma extraction method. Anal. Chem. 85:2311501–508
    [Google Scholar]
  86. 86. 
    Yao YN, Di D, Yuan ZC, Wu L, Hu B. 2020. Schirmer paper noninvasive microsampling for direct mass spectrometry analysis of human tears. Anal. Chem. 92:96207–12
    [Google Scholar]
  87. 87. 
    Hubel A, Spindler R, Skubitz APN. 2014. Storage of human biospecimens: selection of the optimal storage temperature. Biopreserv. Biobank. 12:3165–75
    [Google Scholar]
  88. 88. 
    Chaigneau C, Cabioch T, Beaumont K, Betsou F. 2007. Serum biobank certification and the establishment of quality controls for biological fluids: examples of serum biomarker stability after temperature variation. Clin. Chem. Lab. Med. 45:101390–95
    [Google Scholar]
  89. 89. 
    Evans MJ, Livesey JH, Ellis MJ, Yandle TG. 2001. Effect of anticoagulants and storage temperatures on stability of plasma and serum hormones. Clin. Biochem. 34:2107–12
    [Google Scholar]
  90. 90. 
    Grüner N, Stambouli O, Ross RS. 2015. Dried blood spots—preparing and processing for use in immunoassays and in molecular techniques. J. Vis. Exp. 97:e52619
    [Google Scholar]
  91. 91. 
    Olshan AF. 2007. Meeting report: the use of newborn blood spots in environmental research: opportunities and challenges. Environ. Health Perspect. 115:121767–79
    [Google Scholar]
  92. 92. 
    World Health Organ 2015. A WHO external quality assurance scheme for malaria nucleic acid amplification testing: 8–9 June 2015, London, United Kingdom: meeting report Rep., World Health Organ. Geneva: https://apps.who.int/iris/handle/10665/325862
  93. 93. 
    Damon DE, Yin M, Allen DM, Maher YS, Tanny CJ et al. 2018. Dried blood spheroids for dry-state room temperature stabilization of microliter blood samples. Anal. Chem. 90:159353–58Developed the first adsorptive-based dried blood spheroid microsampling platform for stabilization of labile compounds without cold storage.
    [Google Scholar]
  94. 94. 
    Wang K, Zhang S, Marzolf B, Troisch P, Brightman A et al. 2009. Circulating microRNAs, potential biomarkers for drug-induced liver injury. PNAS 106:114402–7
    [Google Scholar]
  95. 95. 
    Mejía-Salazar JR, Cruz KR, Materón Vásques EM, Novais de Oliveira O Jr 2020. Microfluidic point-of-care devices: new trends and future prospects for ehealth diagnostics. Sensors 20:71951
    [Google Scholar]
  96. 96. 
    Gale BK, Jafek AR, Lambert CJ, Goenner BL, Moghimifam H et al. 2018. A review of current methods in microfluidic device fabrication and future commercialization prospects. Inventions 3:360
    [Google Scholar]
  97. 97. 
    Convery N, Gadegaard N. 2019. 30 years of microfluidics. Micro Nano Eng 2:76–91
    [Google Scholar]
  98. 98. 
    Ho CMB, Ng SH, Li KHH, Yoon YJ. 2015. 3D printed microfluidics for biological applications. Lab Chip 15:183627–37
    [Google Scholar]
  99. 99. 
    Weisgrab G, Ovsianikov A, Costa F. 2019. Functional 3D printing for microfluidic chips. Adv. Mater. Technol. 4:101900275
    [Google Scholar]
  100. 100. 
    Lee UN, Su X, Guckenberger DJ, Dostie AM, Zhang T et al. 2018. Fundamentals of rapid injection molding for microfluidic cell-based assays. Lab Chip 18:3496–504
    [Google Scholar]
  101. 101. 
    Ma X, Li R, Jin Z, Fan Y, Zhou X, Zhang Y 2020. Injection molding and characterization of PMMA-based microfluidic devices. Microsyst. Technol. 26:41317–24
    [Google Scholar]
  102. 102. 
    Xia Y, Whitesides GM. 1998. Soft lithography. Annu. Rev. Mater. Sci. 28:153–84
    [Google Scholar]
  103. 103. 
    Strong EB, Schultz SA, Martinez AW, Martinez NW. 2019. Fabrication of miniaturized paper-based microfluidic devices (microPADs). Sci. Rep. 9:17
    [Google Scholar]
  104. 104. 
    Junaid A, Mashaghi A, Hankemeier T, Vulto P. 2017. An end-user perspective on organ-on-a-chip: assays and usability aspects. Curr. Opin. Biomed. Eng. 1:15–22
    [Google Scholar]
  105. 105. 
    Martinez AW, Phillips ST, Butte MJ, Whitesides GM. 2007. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew. Chem. Int. Ed. 46:81318–20Developed the first paper-based microfluidic device utilizing colorimetric signal transduction.
    [Google Scholar]
  106. 106. 
    Wang Y, Ge L, Wang P, Yan M, Ge S et al. 2013. Photoelectrochemical lab-on-paper device equipped with a porous Au-paper electrode and fluidic delay-switch for sensitive detection of DNA hybridization. Lab Chip 13:193945–55
    [Google Scholar]
  107. 107. 
    Lan WJ, Maxwell EJ, Parolo C, Bwambok DK, Subramaniam AB, Whitesides GM. 2013. Paper-based electroanalytical devices with an integrated, stable reference electrode. Lab Chip 13:204103–8
    [Google Scholar]
  108. 108. 
    Fedick PW, Fatigante WL, Lawton ZE, O'Leary AE, Hall SE et al. 2018. A low-cost, simplified platform of interchangeable, ambient ionization sources for rapid, forensic evidence screening on portable mass spectrometric instrumentation. Instruments 2:25
    [Google Scholar]
  109. 109. 
    Arena A, Donato N, Saitta G, Bonavita A, Rizzo G, Neri G. 2010. Flexible ethanol sensors on glossy paper substrates operating at room temperature. Sens. Actuators B Chem. 145:1488–94
    [Google Scholar]
  110. 110. 
    Ge L, Wang S, Song X, Ge S, Yu J 2012. 3D origami-based multifunction-integrated immunodevice: low-cost and multiplexed sandwich chemiluminescence immunoassay on microfluidic paper-based analytical device. Lab Chip 12:173150–58
    [Google Scholar]
  111. 111. 
    Delaney JL, Hogan CF, Tian J, Shen W. 2011. Electrogenerated chemiluminescence detection in paper-based microfluidic sensors. Anal. Chem. 83:41300–6
    [Google Scholar]
  112. 112. 
    Damon DE, Maher YS, Yin M, Jjunju FPM, Young IS et al. 2016. 2D wax-printed paper substrates with extended solvent supply capabilities allow enhanced ion signal in paper spray ionization. Analyst 141:123866–73
    [Google Scholar]
  113. 113. 
    Chen S, Wan Q, Badu-Tawiah AK 2016. Mass spectrometry for paper-based immunoassays: toward on-demand diagnosis. J. Am. Chem. Soc. 138:206356–59Enabled the coupling of a paper-based microfluidic device to mass spectrometry for sensitive disease diagnosis.
    [Google Scholar]
  114. 114. 
    Pedde RD, Li H, Borchers CH, Akbari M. 2017. Microfluidic-mass spectrometry interfaces for translational proteomics. Trends Biotechnol 35:10954–70
    [Google Scholar]
  115. 115. 
    Liu W, Lin JM. 2016. Online monitoring of lactate efflux by multi-channel microfluidic chip-mass spectrometry for rapid drug evaluation. ACS Sens 1:4344–47
    [Google Scholar]
  116. 116. 
    Chen Q, Wu J, Zhang Y, Lin JM. 2012. Qualitative and quantitative analysis of tumor cell metabolism via stable isotope labeling assisted microfluidic chip electrospray ionization mass spectrometry. Anal. Chem. 84:31695–701
    [Google Scholar]
  117. 117. 
    Ransohoff JR, Melanson SEF. 2019. What's new in point-of-care testing?. Point Care 18:392–98
    [Google Scholar]
  118. 118. 
    Diaz JA, Giese CF, Gentry WR. 2001. Sub-miniature ExB sector-field mass spectrometer. J. Am. Soc. Mass Spectrom. 12:6619–32
    [Google Scholar]
  119. 119. 
    Shimma S, Nagao H, Aoki J, Takahashi K, Miki S, Toyoda M. 2010. Miniaturized high-resolution time-of-flight mass spectrometer MULTUM-S II with an infinite flight path. Anal. Chem. 82:208456–63
    [Google Scholar]
  120. 120. 
    Ecelberger SA, Cornish TJ, Collins BF, Lewis DL, Bryden WA. 2004. Suitcase TOF: a man-portable time-of-flight mass spectrometer. Johns Hopkins. APL Tech. Digest 25:114–19
    [Google Scholar]
  121. 121. 
    Cheung K, Velasquez-Garcia LF, Akinwande AI 2010. Chip-scale quadrupole mass filters for portable mass spectrometry. J. Microelectromech. Syst. 19:3469–83
    [Google Scholar]
  122. 122. 
    Geear M, Syms RRA, Wright S, Holmes AS. 2005. Monolithic MEMS quadrupole mass spectrometers by deep silicon etching. J. Microelectromech. Syst. 14:51156–66
    [Google Scholar]
  123. 123. 
    Malcolm A, Wright S, Syms RRA, Moseley RW, O'Prey S et al. 2011. Miniature mass spectrometer for liquid chromatography applications. Rapid Commun. Mass Spectrom. 25:213281–88
    [Google Scholar]
  124. 124. 
    Landry DMW, Kim W, Amsden JJ, Di Dona ST, Choi H et al. 2018. Effects of magnetic and electric field uniformity on coded aperture imaging quality in a cycloidal mass analyzer. J. Am. Soc. Mass Spectrom. 29:2352–59
    [Google Scholar]
  125. 125. 
    Ouyang Z, Cooks RG. 2009. Miniature mass spectrometers. Annu. Rev. Anal. Chem. 2:187–214
    [Google Scholar]
  126. 126. 
    Malcolm A, Wright S, Syms RRA, Dash N, Schwab MA, Finlay A. 2010. Miniature mass spectrometer systems based on a microengineered quadrupole filter. Anal. Chem. 82:51751–58
    [Google Scholar]
  127. 127. 
    Wright S, Malcolm A, Wright C, O'Prey S, Crichton E et al. 2015. A microelectromechanical systems-enabled, miniature triple quadrupole mass spectrometer. Anal. Chem. 87:63115–22
    [Google Scholar]
  128. 128. 
    Ouyang Z, Noll RJ, Cooks RG. 2009. Handheld miniature ion trap mass spectrometers. Anal. Chem. 81:72421–25
    [Google Scholar]
  129. 129. 
    Paul W, Steinwedel H. 1953. Notizen: ein neues Massenspektrometer ohne Magnetfeld. Z. Naturforsch. A 8:7448–50
    [Google Scholar]
  130. 130. 
    Pau S, Pai CS, Low YL, Moxom J, Reilly PTA et al. 2006. Microfabricated quadrupole ion trap for mass spectrometer applications. Phys. Rev. Lett. 96:12120801
    [Google Scholar]
  131. 131. 
    Patterson GE, Guymon AJ, Riter LS, Everly M, Griep-Raming J et al. 2002. Miniature cylindrical ion trap mass spectrometer. Anal. Chem. 74:246145–53
    [Google Scholar]
  132. 132. 
    Chaudhary A, van Amerom FHW, Short RT. 2014. Experimental evaluation of micro-ion trap mass spectrometer geometries. Int. J. Mass Spectrom. 371:17–27
    [Google Scholar]
  133. 133. 
    Wang M, Quist HE, Hansen BJ, Peng Y, Zhang Z et al. 2011. Performance of a halo ion trap mass analyzer with exit slits for axial ejection. J. Am. Soc. Mass Spectrom. 22:2369–78
    [Google Scholar]
  134. 134. 
    Austin DE, Wang M, Tolley SE, Maas JD, Hawkins AR et al. 2007. Halo ion trap mass spectrometer. Anal. Chem. 79:72927–32
    [Google Scholar]
  135. 135. 
    Lammert SA, Plass WR, Thompson CV, Wise MB. 2001. Design, optimization and initial performance of a toroidal Rf ion trap mass spectrometer. Int. J. Mass Spectrom. 212:125–40
    [Google Scholar]
  136. 136. 
    Taylor N, Austin DE. 2012. A simplified toroidal ion trap mass analyzer. Int. J. Mass Spectrom. 321–322:25–32
    [Google Scholar]
  137. 137. 
    Ouyang Z, Wu G, Song Y, Li H, Plass WR, Cooks RG. 2004. Rectilinear ion trap: concepts, calculations, and analytical performance of a new mass analyzer. Anal. Chem. 76:164595–605
    [Google Scholar]
  138. 138. 
    Fico M, Yu M, Ouyang Z, Cooks RG, Chappell WJ. 2007. Miniaturization and geometry optimization of a polymer-based rectilinear ion trap. Anal. Chem. 79:218076–82
    [Google Scholar]
  139. 139. 
    Shi W, Lu X, Zhang J, Zhao J, Yang L et al. 2019. Comparison of membrane inlet and capillary introduction miniature mass spectrometry for liquid analysis. Polymers 11:3567
    [Google Scholar]
  140. 140. 
    Gao L, Cooks RG, Ouyang Z. 2008. Breaking the pumping speed barrier in mass spectrometry: discontinuous atmospheric pressure interface. Anal. Chem. 80:114026–32
    [Google Scholar]
  141. 141. 
    Zhai Y, Feng Y, Wei Y, Wang Y, Xu W. 2015. Development of a miniature mass spectrometer with continuous atmospheric pressure interface. Analyst 140:103406–14
    [Google Scholar]
  142. 142. 
    Li L, Chen TC, Ren Y, Hendricks PI, Cooks RG, Ouyang Z. 2014. Mini 12, miniature mass spectrometer for clinical and other applications—introduction and characterization. Anal. Chem. 86:62909–16
    [Google Scholar]
  143. 143. 
    Pu F, Alfaro CM, Pirro V, Xie Z, Ouyang Z, Cooks RG. 2019. Rapid determination of isocitrate dehydrogenase mutation status of human gliomas by extraction nanoelectrospray using a miniature mass spectrometer. Anal. Bioanal Chem. 411:81503–8
    [Google Scholar]
  144. 144. 
    Bernier MC, Li F, Musselman B, Newton PN, Fernández FM. 2016. Fingerprinting of falsified artemisinin combination therapies via direct analysis in real time coupled to a compact single quadrupole mass spectrometer. Anal. Methods 8:366616–24
    [Google Scholar]
  145. 145. 
    Fatigante WL, Mukta S, Lawton ZE, Bruno AM, Traub A et al. 2020. Filter cone spray ionization coupled to a portable MS system: application to on-site forensic evidence and environmental sample analysis. J. Am. Soc. Mass Spectrom. 31:2336–46
    [Google Scholar]
  146. 146. 
    Fedick PW, Pu F, Morato NM, Cooks RG. 2020. Identification and confirmation of fentanyls on paper using portable surface enhanced Raman spectroscopy and paper spray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 31:3735–41
    [Google Scholar]
  147. 147. 
    Gómez-Ríos GA, Vasiljevic T, Gionfriddo E, Yu M, Pawliszyn J 2017. Towards on-site analysis of complex matrices by solid-phase microextraction-transmission mode coupled to a portable mass spectrometer via direct analysis in real time. Analyst 142:162928–35
    [Google Scholar]
  148. 148. 
    Pu F, Zhang W, Bateman KP, Liu Y, Helmy R, Ouyang Z. 2017. Using miniature MS system with automatic blood sampler for preclinical pharmacokinetics study. Bioanalysis 9:211633–41
    [Google Scholar]
  149. 149. 
    Chiang S, Zhang W, Farnsworth C, Zhu Y, Lee K, Ouyang Z 2020. Targeted quantification of peptides using miniature mass spectrometry. J. Proteome Res. 19:52043–52Demonstrated targeted quantification of trypsin-digested mouse liver peptides using a miniature mass spectrometer.
    [Google Scholar]
  150. 150. 
    Gilliland WM, Mellors JS, Ramsey JM. 2017. Coupling microchip electrospray ionization devices with high pressure mass spectrometry. Anal. Chem. 89:2413320–25
    [Google Scholar]
  151. 151. 
    Blokland MH, Gerssen A, Zoontjes PW, Pawliszyn J, Nielen MWF. 2020. Potential of recent ambient ionization techniques for future food contaminant analysis using (trans)portable mass spectrometry. Food Anal. Methods 13:3706–17
    [Google Scholar]
  152. 152. 
    Guo X, Bai H, Lv Y, Xi G, Li J et al. 2018. Rapid identification of regulated organic chemical compounds in toys using ambient ionization and a miniature mass spectrometry system. Talanta 180:182–92
    [Google Scholar]
  153. 153. 
    Fotso Fotso A, Mediannikov O, Diatta G, Almeras L, Flaudrops C et al. 2014. MALDI-TOF mass spectrometry detection of pathogens in vectors: the Borrelia crocidurae/Ornithodoros sonrai paradigm. PLOS Negl. Trop. Dis. 8:7e2984
    [Google Scholar]
  154. 154. 
    Raouf M, Ghazal T, Kassem M, Agamya A, Amer A. 2020. Surveillance of surgical-site infections and antimicrobial resistance patterns in a tertiary hospital in Alexandria, Egypt. J. Infect. Dev. Ctries. 14:03277–83
    [Google Scholar]
  155. 155. 
    Ntshangase S, Mdanda S, Singh SD, Naicker T, Kruger HG et al. 2019. Mass spectrometry imaging demonstrates the regional brain distribution patterns of three first-line antiretroviral drugs. ACS Omega 4:2521169–77
    [Google Scholar]
  156. 156. 
    Hartenbach FARR, Velasquez É, Nogueira FCS, Domont GB, Ferreira E, Colombo APV. 2020. Proteomic analysis of whole saliva in chronic periodontitis. J. Proteom. 213:103602
    [Google Scholar]
  157. 157. 
    Silva LE, Souza RC, Kitano ES, Monteiro LF, Iwai LK, Forti FL. 2019. Proteomic and interactome approaches reveal PAK4, PHB-2, and 14–3–3η as targets of overactivated Cdc42 in cellular responses to genomic instability. J. Proteome Res. 18:103597–614
    [Google Scholar]
  158. 158. 
    Adeola HA, Blackburn JM, Rebbeck TR, Zerbini LF. 2017. Emerging proteomics biomarkers and prostate cancer burden in Africa. Oncotarget 8:2337991–8007
    [Google Scholar]
  159. 159. 
    Al-wajeeh AS, Salhimi SM, Al-Mansoub MA, Khalid IA, Harvey TM et al. 2020. Comparative proteomic analysis of different stages of breast cancer tissues using ultra high performance liquid chromatography tandem mass spectrometer. PLOS ONE 15:1e0227404
    [Google Scholar]
  160. 160. 
    Koriem KMM. 2017. A lipidomic concept in infectious diseases. Asian Pac. J. Trop. Biomed. 7:3265–74
    [Google Scholar]
  161. 161. 
    Fernández FM, Cody RB, Green MD, Hampton CY, McGready R et al. 2006. Characterization of solid counterfeit drug samples by desorption electrospray ionization and direct-analysis-in-real-time coupled to time-of-flight mass spectrometry. ChemMedChem 1:7702–5
    [Google Scholar]
  162. 162. 
    Mendes T, Pereira I, de Lima L, Morais C, Neves A et al. 2020. Paper spray ionization mass spectrometry as a potential tool for early diagnosis of cervical cancer. J. Am. Soc. Mass Spectrom. 31:81665–72
    [Google Scholar]
  163. 163. 
    Fernandes AMAP, Vendramini PH, Galaverna R, Schwab NV, Alberici LC et al. 2016. Direct visualization of neurotransmitters in rat brain slices by desorption electrospray ionization mass spectrometry imaging (DESI-MS). J. Am. Soc. Mass Spectrom. 27:121944–51
    [Google Scholar]
  164. 164. 
    Rockwood A. 2015. The future of clinical mass spectrometry Am. Assoc. Clinical Chem. Feb. 1. https://www.aacc.org/cln/articles/2015/february/future-of-mass-spec
  165. 165. 
    Stone JA, Fitzgerald RL. 2018. Liquid chromatography-mass spectrometry education for clinical laboratory scientists. Clin. Lab. Med. 38:3527–37
    [Google Scholar]
  166. 166. 
    Ortiz-Ospina E, Roser M. 2017. Financing healthcare. OurWorldInData https://ourworldindata.org/financing-healthcare
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-091520-085936
Loading
/content/journals/10.1146/annurev-anchem-091520-085936
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error