1932

Abstract

Avoiding the growth of SiO has been an enduring task for the use of silicon as an electrode material in dynamic electrochemistry. This is because electrochemical assays become unstable when the SiO levels change during measurements. Moreover, the silicon electrode can be completely passivated for electron transfer if a thick layer of insulating SiO grows on the surface. As such, the field of silicon electrochemistry was mainly developed by electron-transfer studies in nonaqueous electrolytes and by applications employing SiO-passivated silicon-electrodes where no DC currents are required to cross the electrode/electrolyte interface. A solution to this challenge began by functionalizing Si–H electrodes with monolayers based on Si–O–Si linkages. These monolayers have proven very efficient to avoid SiO formation but are not stable for a long-term operation in aqueous electrolytes due to hydrolysis. It was only with the development of self-assembled monolayers based on Si–C linkages that a reliable protection against SiO formation was achieved, particularly with monolayers based on α,ω-dialkynes. This review discusses in detail how this surface chemistry achieves such protection, the electron-transfer behavior of these monolayer-modified silicon surfaces, and the new opportunities for electrochemical applications in aqueous solution.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-091619-092506
2020-06-12
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/anchem/13/1/annurev-anchem-091619-092506.html?itemId=/content/journals/10.1146/annurev-anchem-091619-092506&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Li Q, Mathur G, Homsi M, Surthi S, Misra V et al. 2002. Capacitance and conductance characterization of ferrocene-containing self-assembled monolayers on silicon surfaces for memory applications. Appl. Phys. Lett. 81:1494–96
    [Google Scholar]
  2. 2. 
    Li Q, Mathur G, Gowda S, Surthi S, Zhao Q et al. 2004. Multibit memory using self-assembly of mixed ferrocene/porphyrin monolayers on silicon. Adv. Mater. 16:133–37
    [Google Scholar]
  3. 3. 
    Roth KM, Yasseri AA, Liu Z, Dabke RB, Malinovskii V et al. 2003. Measurements of electron-transfer rates of charge-storage molecular monolayers on Si(100). Toward hybrid molecular/semiconductor information storage devices. J. Am. Chem. Soc. 125:505–17
    [Google Scholar]
  4. 4. 
    Peng W, Rupich SM, Shafiq N, Gartstein YN, Malko AV, Chabal YJ 2015. Silicon surface modification and characterization for emergent photovoltaic applications based on energy transfer. Chem. Rev. 115:12764–96
    [Google Scholar]
  5. 5. 
    Michaels P, Alam MT, Ciampi S, Rouesnel W, Parker SG et al. 2014. A robust DNA interface on a silicon electrode. Chem. Commun. 50:7878–80
    [Google Scholar]
  6. 6. 
    Choudhury MH, Ciampi S, Yang Y, Tavallaie R, Zhu Y et al. 2015. Connecting electrodes with light: one wire, many electrodes. Chem. Sci. 6:6769–76
    [Google Scholar]
  7. 7. 
    Ng CCA, Magenau A, Ngalim SH, Ciampi S, Chockalingham M et al. 2012. Using an electrical potential to reversibly switch surfaces between two states for dynamically controlling cell adhesion. Angew. Chem. Int. Ed. 51:7706–10
    [Google Scholar]
  8. 8. 
    Parker SG, Yang Y, Ciampi S, Gupta B, Kimpton K et al. 2018. A photoelectrochemical platform for the capture and release of rare single cells. Nat. Commun. 9:2288
    [Google Scholar]
  9. 9. 
    Vogel YB, Gonçales VR, Al-Obaidi L, Gooding JJ, Darwish N, Ciampi S 2018. Nanocrystal inks: photoelectrochemical printing of Cu2O nanocrystals on silicon with 2d control on polyhedral shapes. Adv. Funct. Mater. 28:1804791
    [Google Scholar]
  10. 10. 
    Aragonès AC, Darwish N, Ciampi S, Sanz F, Gooding JJ, Díez-Pérez I 2017. Single-molecule electrical contacts on silicon electrodes under ambient conditions. Nat. Commun. 8:15056
    [Google Scholar]
  11. 11. 
    Zhang L, Laborda E, Darwish N, Noble BB, Tyrell JH et al. 2018. Electrochemical and electrostatic cleavage of alkoxyamines. J. Am. Chem. Soc. 140:766–74
    [Google Scholar]
  12. 12. 
    Zhang L, Vogel YB, Noble BB, Gonçales VR, Darwish N et al. 2016. TEMPO monolayers on Si(100) electrodes: electrostatic effects by the electrolyte and semiconductor space-charge on the electroactivity of a persistent radical. J. Am. Chem. Soc. 138:9611–19
    [Google Scholar]
  13. 13. 
    Guan B, Siampour H, Fan Z, Wang S, Kong XY et al. 2015. Nanoscale nitrogen doping in silicon by self-assembled monolayers. Sci. Rep. 5:12641
    [Google Scholar]
  14. 14. 
    Fabre B. 2016. Functionalization of oxide-free silicon surfaces with redox-active assemblies. Chem. Rev. 116:4808–49
    [Google Scholar]
  15. 15. 
    Gooding JJ, Ciampi S. 2011. The molecular level modification of surfaces: from self-assembled monolayers to complex molecular assemblies. Chem. Soc. Rev. 40:2704–18
    [Google Scholar]
  16. 16. 
    Hauquier F, Ghilane J, Fabre B, Hapiot P 2008. Conducting ferrocene monolayers on nonconducting surfaces. J. Am. Chem. Soc. 130:2748–49
    [Google Scholar]
  17. 17. 
    Aswal DK, Lenfant S, Guerin D, Yakhmi JV, Vuillaume D 2006. Self assembled monolayers on silicon for molecular electronics. Anal. Chim. Acta 568:84–108
    [Google Scholar]
  18. 18. 
    Fabre B. 2010. Ferrocene-terminated monolayers covalently bound to hydrogen-terminated silicon surfaces. Toward the development of charge storage and communication devices. Acc. Chem. Res. 43:1509–18
    [Google Scholar]
  19. 19. 
    Yablonovitch E, Allara DL, Chang CC, Gmitter T, Bright TB 1986. Unusually low surface-recombination velocity on silicon and germanium surfaces. Phys. Rev. Lett. 57:249–52
    [Google Scholar]
  20. 20. 
    Seitz O, Böcking T, Salomon A, Gooding JJ, Cahen D 2006. Importance of monolayer quality for interpreting current transport through organic molecules:alkyls on oxide-free Si. Langmuir 22:6915–22
    [Google Scholar]
  21. 21. 
    Fujishima A, Honda K. 1972. Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38
    [Google Scholar]
  22. 22. 
    Bolts JM, Bocarsly AB, Palazzotto MC, Walton EG, Lewis NS, Wrighton MS 1979. Chemically derivatized n-type silicon photoelectrodes. Stabilization to surface corrosion in aqueous electrolyte solutions and mediation of oxidation reactions by surface-attached electroactive ferrocene reagents. J. Am. Chem. Soc. 101:1378–85
    [Google Scholar]
  23. 23. 
    Wrighton MS, Austin RG, Bocarsly AB, Bolts JM, Haas O et al. 1978. Design and study of a photosensitive interface: a derivatized n-type silicon photoelectrode. J. Am. Chem. Soc. 100:1602–3
    [Google Scholar]
  24. 24. 
    Wrighton MS. 1979. Photoelectrochemical conversion of optical energy to electricity and fuels. Acc. Chem. Res. 12:303–10
    [Google Scholar]
  25. 25. 
    Gerischer H. 1975. Electrochemical photo and solar cells principles and some experiments. J. Electroanal. Chem. Interfacial Electrochem. 58:263–74
    [Google Scholar]
  26. 26. 
    Vogel YB, Gooding JJ, Ciampi S 2019. Light-addressable electrochemistry at semiconductor electrodes: redox imaging, mask-free lithography and spatially resolved chemical and biological sensing. Chem. Soc. Rev. 48:3723–39
    [Google Scholar]
  27. 27. 
    Bard AJ, Wrighton MS. 1977. Thermodynamic potential for the anodic dissolution of n‐type semiconductors: a crucial factor controlling durability and efficiency in photoelectrochemical cells and an important criterion in the selection of new electrode/electrolyte systems. J. Electrochem. Soc. 124:1706–10
    [Google Scholar]
  28. 28. 
    Gerischer H. 1977. On the stability of semiconductor electrodes against photodecomposition. J. Electroanal. Chem. Interfacial Electrochem. 82:133–43
    [Google Scholar]
  29. 29. 
    Gerischer H, Mindt W. 1968. The mechanisms of the decomposition of semiconductors by electrochemical oxidation and reduction. Electrochim. Acta 13:1329–41
    [Google Scholar]
  30. 30. 
    Legg KD, Ellis AB, Bolts JM, Wrighton MS 1977. n-Type Si-based photoelectrochemical cell: New liquid junction photocell using a nonaqueous ferricenium/ferrocene electrolyte. PNAS 74:4116–20
    [Google Scholar]
  31. 31. 
    Bocarsly AB, Walton EG, Bradley MG, Wrighton MS 1979. Two-electron oxidations at illuminated N-type semiconducting silicon electrodes: use of chemically derivatized photoelectrodes. J. Electroanal. Chem. Interfacial Electrochem. 100:283–306
    [Google Scholar]
  32. 32. 
    Wrighton MS, Bolts JM, Bocarsly AB, Palazzotto MC, Walton EG 1978. Stabilization of n‐type semiconductors to photoanodic dissolution: II–VI and III–V compound semiconductors and recent results for n‐type silicon. J. Vac. Sci. Technol. 15:1429–35
    [Google Scholar]
  33. 33. 
    Santangelo PG, Miskelly GM, Lewis NS 1988. Cyclic voltammetry at semiconductor photoelectrodes. 1. Ideal surface-attached redox couples with ideal semiconductor behavior. J. Phys. Chem. 92:6359–67
    [Google Scholar]
  34. 34. 
    Nakato Y, Ohnishi T, Tsubomura H 1975. Photo-electrochemical behaviors of semiconductor electrodes coated with thin metal films. Chem. Lett. 4:883–86
    [Google Scholar]
  35. 35. 
    Fan FRF, Hope GA, Bard AJ 1982. Semiconductor electrodes: XLVI. Stabilization of n‐silicon electrodes in aqueous solution photoelectrochemical cells by formation of platinum silicide layers. J. Electrochem. Soc. 129:1647–49
    [Google Scholar]
  36. 36. 
    Fan FRF, Keil RG, Bard AJ 1983. Semiconductor electrodes. 48. Photooxidation of halides and water on n-silicon protected with silicide layers. J. Am. Chem. Soc. 105:220–24
    [Google Scholar]
  37. 37. 
    Fan FRF, Shea TV, Bard AJ 1984. Semiconductor electrodes: LIV. Effect of redox couple, doping level, and metal type on the electrochemical and photoelectrochemical behavior of silicide‐coated n‐type silicon photoelectrodes. J. Electrochem. Soc. 131:828–33
    [Google Scholar]
  38. 38. 
    Bergveld P. 1970. Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans. Biomed. Eng. 17:70–71
    [Google Scholar]
  39. 39. 
    Bergveld P. 1972. Development, operation, and application of the ion-sensitive field-effect transistor as a tool for electrophysiology. IEEE Trans. Biomed. Eng. 19:342–51
    [Google Scholar]
  40. 40. 
    Fung CD, Cheung PW, Ko WH 1986. A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor. IEEE Trans. Electron Devices 33:8–18
    [Google Scholar]
  41. 41. 
    Hafeman D, Parce J, McConnell H 1988. Light-addressable potentiometric sensor for biochemical systems. Science 240:1182–85
    [Google Scholar]
  42. 42. 
    Yoshinobu T, Miyamoto K-I, Werner CF, Poghossian A, Wagner T, Schöning MJ 2017. Light-addressable potentiometric sensors for quantitative spatial imaging of chemical species. Annu. Rev. Anal. Chem. 10:225–46
    [Google Scholar]
  43. 43. 
    Owicki JC, Bousse LJ, Hafeman DG, Kirk GL, Olson JD et al. 1994. The light-addressable potentiometric sensor: principles and biological applications. Annu. Rev. Biophys. Biomol. Struct. 23:87–114
    [Google Scholar]
  44. 44. 
    Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W et al. 2011. An integrated semiconductor device enabling non-optical genome sequencing. Nature 475:348–52
    [Google Scholar]
  45. 45. 
    Toumazou C, Shepherd LM, Reed SC, Chen GI, Patel A et al. 2013. Simultaneous DNA amplification and detection using a pH-sensing semiconductor system. Nat. Methods 10:641–46
    [Google Scholar]
  46. 46. 
    Jun JJ, Steinmetz NA, Siegle JH, Denman DJ, Bauza M et al. 2017. Fully integrated silicon probes for high-density recording of neural activity. Nature 551:232–36
    [Google Scholar]
  47. 47. 
    Voelker M, Fromherz P. 2005. Signal transmission from individual mammalian nerve cell to field-effect transistor. Small 1:206–10
    [Google Scholar]
  48. 48. 
    Kamahori M, Ishige Y, Shimoda M 2007. A novel enzyme immunoassay based on potentiometric measurement of molecular adsorption events by an extended-gate field-effect transistor sensor. Biosens. Bioelectron. 22:3080–85
    [Google Scholar]
  49. 49. 
    Wang WU, Chen C, Lin K, Fang Y, Lieber CM 2005. Label-free detection of small-molecule–protein interactions by using nanowire nanosensors. PNAS 102:3208–12
    [Google Scholar]
  50. 50. 
    Odijk M, van der Wouden EJ, Olthuis W, Ferrari MD, Tolner EA et al. 2015. Microfabricated solid-state ion-selective electrode probe for measuring potassium in the living rodent brain: compatibility with DC-EEG recordings to study spreading depression. Sens. Actuators B Chem. 207:945–53
    [Google Scholar]
  51. 51. 
    Kuang Z, Kim SN, Crookes-Goodson WJ, Farmer BL, Naik RR 2010. Biomimetic chemosensor: designing peptide recognition elements for surface functionalization of carbon nanotube field effect transistors. ACS Nano 4:452–58
    [Google Scholar]
  52. 52. 
    So H-M, Won K, Kim YH, Kim B-K, Ryu BH et al. 2005. Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements. J. Am. Chem. Soc. 127:11906–7
    [Google Scholar]
  53. 53. 
    Tarasov A, Gray DW, Tsai M-Y, Shields N, Montrose A et al. 2016. A potentiometric biosensor for rapid on-site disease diagnostics. Biosens. Bioelectron. 79:669–78
    [Google Scholar]
  54. 54. 
    Patolsky F, Zheng G, Hayden O, Lakadamyali M, Zhuang X, Lieber CM 2004. Electrical detection of single viruses. PNAS 101:14017–22
    [Google Scholar]
  55. 55. 
    Cui Y, Wei Q, Park H, Lieber CM 2001. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293:1289–92
    [Google Scholar]
  56. 56. 
    Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM 2005. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 23:1294–301
    [Google Scholar]
  57. 57. 
    Hahm J, Lieber CM. 2004. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett 4:51–54
    [Google Scholar]
  58. 58. 
    Thakur B, Zhou G, Chang J, Pu H, Jin B et al. 2018. Rapid detection of single E. coli bacteria using a graphene-based field-effect transistor device. Biosens. Bioelectron. 110:16–22
    [Google Scholar]
  59. 59. 
    Miyamoto K, Itabashi A, Wagner T, Schöning MJ, Yoshinobu T 2014. High-speed chemical imaging inside a microfluidic channel. Sens. Actuators B Chem. 194:521–27
    [Google Scholar]
  60. 60. 
    Qintao Z, Ping W, Parak WJ, George M, Zhang G 2001. A novel design of multi-light LAPS based on digital compensation of frequency domain. Sens. Actuators B Chem. 73:152–56
    [Google Scholar]
  61. 61. 
    Wagner T, Vornholt W, Werner CF, Yoshinobu T, Miyamoto K-I et al. 2016. Light-addressable potentiometric sensor (LAPS) combined with magnetic beads for pharmaceutical screening. Phys. Med. 1:2–7
    [Google Scholar]
  62. 62. 
    Ciampi S, Harper JB, Gooding JJ 2010. Wet chemical routes to the assembly of organic monolayers on silicon surfaces via the formation of Si–C bonds: surface preparation, passivation and functionalization. Chem. Soc. Rev. 39:2158–83
    [Google Scholar]
  63. 63. 
    Veerbeek J, Huskens J. 2017. Applications of monolayer-functionalized H-terminated silicon surfaces: a review. Small Methods 1:1700072
    [Google Scholar]
  64. 64. 
    Linford MR, Chidsey CED. 1993. Alkyl monolayers covalently bonded to silicon surfaces. J. Am. Chem. Soc. 115:12631–32
    [Google Scholar]
  65. 65. 
    Linford MR, Fenter P, Eisenberger PM, Chidsey CED 1995. Alkyl monolayers on silicon prepared from 1-alkenes and hydrogen-terminated silicon. J. Am. Chem. Soc. 117:3145–55
    [Google Scholar]
  66. 66. 
    Sieval AB, Demirel AL, Nissink JWM, Linford MR, van der Maas JH et al. 1998. Highly stable Si−C linked functionalized monolayers on the silicon (100) surface. Langmuir 14:1759–68
    [Google Scholar]
  67. 67. 
    Scheres L, Giesbers M, Zuilhof H 2010. Self-assembly of organic monolayers onto hydrogen-terminated silicon: 1-alkynes are better than 1-alkenes. Langmuir 26:10924–29
    [Google Scholar]
  68. 68. 
    Scheres L, Giesbers M, Zuilhof H 2010. Organic monolayers onto oxide-free silicon with improved surface coverage: alkynes versus alkenes. Langmuir 26:4790–95
    [Google Scholar]
  69. 69. 
    Ahmad SAA, Ciampi S, Parker SG, Gonçales VR, Gooding JJ 2019. Forming ferrocenyl self-assembled monolayers on Si(100) electrodes with different alkyl chain lengths for electron transfer studies. ChemElectroChem 6:211–20
    [Google Scholar]
  70. 70. 
    Ciampi S, Eggers PK, Le Saux G, James M, Harper JB, Gooding JJ 2009. Silicon (100) electrodes resistant to oxidation in aqueous solutions: an unexpected benefit of surface acetylene moieties. Langmuir 25:2530–39
    [Google Scholar]
  71. 71. 
    Huck LA, Buriak JM. 2012. UV-initiated hydrosilylation on hydrogen-terminated silicon (111): rate coefficient increase of two orders of magnitude in the presence of aromatic electron acceptors. Langmuir 28:16285–93
    [Google Scholar]
  72. 72. 
    Puniredd SR, Assad O, Haick H 2008. Highly stable organic modification of Si(111) surfaces: towards reacting Si with further functionalities while preserving the desirable chemical properties of full Si−C atop site terminations. J. Am. Chem. Soc. 130:9184–85
    [Google Scholar]
  73. 73. 
    Puniredd SR, Assad O, Haick H 2008. Highly stable organic monolayers for reacting silicon with further functionalities: the effect of the C−C bond nearest the silicon surface. J. Am. Chem. Soc. 130:13727–34
    [Google Scholar]
  74. 74. 
    Bansal A, Li X, Lauermann I, Lewis NS, Yi SI, Weinberg WH 1996. Alkylation of Si surfaces using a two-step halogenation/Grignard route. J. Am. Chem. Soc. 118:7225–26
    [Google Scholar]
  75. 75. 
    Boukherroub R, Morin S, Bensebaa F, Wayner DDM 1999. New synthetic routes to alkyl monolayers on the Si(111) surface. Langmuir 15:3831–35
    [Google Scholar]
  76. 76. 
    Allongue P, de Villeneuve CH, Cherouvrier G, Cortès R, Bernard MC 2003. Phenyl layers on H–Si(111) by electrochemical reduction of diazonium salts: monolayer versus multilayer formation. J. Electroanal. Chem. 550–551:161–74
    [Google Scholar]
  77. 77. 
    de Villeneuve CH, Pinson J, Bernard MC, Allongue P 1997. Electrochemical formation of close-packed phenyl layers on Si(111). J. Phys. Chem. B 101:2415–20
    [Google Scholar]
  78. 78. 
    Buriak JM. 2002. Organometallic chemistry on silicon and germanium surfaces. Chem. Rev. 102:1271–308
    [Google Scholar]
  79. 79. 
    Sung MM, Kluth GJ, Yauw OW, Maboudian R 1997. Thermal behavior of alkyl monolayers on silicon surfaces. Langmuir 13:6164–68
    [Google Scholar]
  80. 80. 
    Morita M, Ohmi T, Hasegawa E, Kawakami M, Ohwada M 1990. Growth of native oxide on a silicon surface. J. Appl. Phys. 68:1272–81
    [Google Scholar]
  81. 81. 
    Yu J, Losic D, Marshall M, Böcking T, Gooding JJ, Shapter JG 2006. Preparation and characterisation of an aligned carbon nanotube array on the silicon (100) surface. Soft Matter 2:1081–88
    [Google Scholar]
  82. 82. 
    Laser D, Bard AJ. 1976. Semiconductor electrodes. IV. Electrochemical behavior of n- and p-type silicon electrodes in acetonitrile solutions. J. Phys. Chem. 80:459–66
    [Google Scholar]
  83. 83. 
    Lewis NS. 1984. Photoeffects at the semiconductor/liquid interface. Annu. Rev. Mater. Sci. 14:95–117
    [Google Scholar]
  84. 84. 
    Allongue P, de Villeneuve CH, Pinson J, Ozanam F, Chazalviel JN, Wallart X 1998. Organic monolayers on Si(111) by electrochemical method. Electrochim. Acta 43:2791–98
    [Google Scholar]
  85. 85. 
    Gonçales VR, Wu Y, Gupta B, Parker SG, Yang Y et al. 2016. Stability of chemically passivated silicon electrodes in aqueous solutions: interplay between bias voltage and hydration of the electrolyte. J. Phys. Chem. C 120:15941–48
    [Google Scholar]
  86. 86. 
    Ciampi S, Böcking T, Kilian KA, James M, Harper JB, Gooding JJ 2007. Functionalization of acetylene-terminated monolayers on Si(100) surfaces: a click chemistry approach. Langmuir 23:9320–29
    [Google Scholar]
  87. 87. 
    Smalley JF, Feldberg SW, Chidsey CED, Linford MR, Newton MD, Liu Y-P 1995. The kinetics of electron transfer through ferrocene-terminated alkanethiol monolayers on gold. J. Phys. Chem. 99:13141–49
    [Google Scholar]
  88. 88. 
    Ciampi S, Choudhury MH, Ahmad SABA, Darwish N, Brun AL, Gooding JJ 2015. The impact of surface coverage on the kinetics of electron transfer through redox monolayers on a silicon electrode surface. Electrochim. Acta 186:216–22
    [Google Scholar]
  89. 89. 
    Chidsey CED, Bertozzi CR, Putvinski TM, Mujsce AM 1990. Coadsorption of ferrocene-terminated and unsubstituted alkanethiols on gold: electroactive self-assembled monolayers. J. Am. Chem. Soc. 112:4301–6
    [Google Scholar]
  90. 90. 
    Blauch DN, Saveant JM. 1992. Dynamics of electron hopping in assemblies of redox centers. Percolation and diffusion. J. Am. Chem. Soc. 114:3323–32
    [Google Scholar]
  91. 91. 
    Riveros G, Meneses S, Escobar S, Garín C, Chornik B 2010. Electron transfer rates of alkyl-ferrocene molecules forming incomplete monolayer on silicon electrodes. J. Chil. Chem. Soc. 55:61–66
    [Google Scholar]
  92. 92. 
    Yang Y, Ciampi S, Gooding JJ 2017. Coupled thermodynamic and kinetic changes in the electrochemistry of ferrocenyl monolayers induced by light. Langmuir 33:2497–503
    [Google Scholar]
  93. 93. 
    Vogel YB, Molina A, Gonzalez J, Ciampi S 2019. Quantitative analysis of cyclic voltammetry of redox monolayers adsorbed on semiconductors: isolating electrode kinetics, lateral interactions, and diode currents. Anal. Chem. 91:5929–37
    [Google Scholar]
  94. 94. 
    Yang Y, Ciampi S, Choudhury MH, Gooding JJ 2016. Light activated electrochemistry: light intensity and pH dependence on electrochemical performance of anthraquinone derivatized silicon. J. Phys. Chem. C 120:2874–82
    [Google Scholar]
  95. 95. 
    Vogel YB, Zhang L, Darwish N, Gonçales VR, Le Brun A et al. 2017. Reproducible flaws unveil electrostatic aspects of semiconductor electrochemistry. Nat. Commun. 8:2066
    [Google Scholar]
  96. 96. 
    Wu Y, Kashi MB, Yang Y, Gonçales VR, Ciampi S et al. 2016. Light-activated electrochemistry on alkyne-terminated Si(100) surfaces towards solution-based redox probes. Electrochim. Acta 213:540–46
    [Google Scholar]
  97. 97. 
    Holmlin RE, Haag R, Chabinyc ML, Ismagilov RF, Cohen AE et al. 2001. Electron transport through thin organic films in metal-insulator-metal junctions based on self-assembled monolayers. J. Am. Chem. Soc. 123:5075–85
    [Google Scholar]
  98. 98. 
    Rampi MA, Whitesides GM. 2002. A versatile experimental approach for understanding electron transport through organic materials. Chem. Phys. 281:373–91
    [Google Scholar]
  99. 99. 
    Hauquier F, Pastorin G, Hapiot P, Prato M, Bianco A, Fabre B 2006. Carbon nanotube-functionalized silicon surfaces with efficient redox communication. Chem. Commun. 43:4536–38
    [Google Scholar]
  100. 100. 
    Le Saux G, Ciampi S, Gaus K, Gooding JJ 2009. Electrochemical behavior of gold colloidal alkyl modified silicon surfaces. ACS Appl. Mater. Interfaces 1:2477–83
    [Google Scholar]
  101. 101. 
    Su L, Gao F, Mao L 2006. Electrochemical properties of carbon nanotube (CNT) film electrodes prepared by controllable adsorption of CNTs onto an alkanethiol monolayer self-assembled on gold electrodes. Anal. Chem. 78:2651–57
    [Google Scholar]
  102. 102. 
    Yu J, Shapter JG, Quinton JS, Johnston MR, Beattie DA 2007. Direct attachment of well-aligned single-walled carbon nanotube architectures to silicon (100) surfaces: a simple approach for device assembly. Phys. Chem. Chem. Phys. 9:510–20
    [Google Scholar]
  103. 103. 
    Zhao J, Bradbury CR, Huclova S, Potapova I, Carrara M, Fermín DJ 2005. Nanoparticle-mediated electron transfer across ultrathin self-assembled films. J. Phys. Chem. B 109:22985–94
    [Google Scholar]
  104. 104. 
    Chazalviel J-N, Allongue P. 2011. On the origin of the efficient nanoparticle mediated electron transfer across a self-assembled monolayer. J. Am. Chem. Soc. 133:762–64
    [Google Scholar]
  105. 105. 
    Gooding JJ, Alam MT, Barfidokht A, Carter L 2014. Nanoparticle mediated electron transfer across organic layers: from current understanding to applications. J. Braz. Chem. Soc. 25:418–26
    [Google Scholar]
  106. 106. 
    Bethell D, Brust M, Schiffrin DJ, Kiely C 1996. From monolayers to nanostructured materials: an organic chemist's view of self-assembly. J. Electroanal. Chem. 409:137–43
    [Google Scholar]
  107. 107. 
    Brust M, Bethell D, Kiely CJ, Schiffrin DJ 1998. Self-assembled gold nanoparticle thin films with nonmetallic optical and electronic properties. Langmuir 14:5425–29
    [Google Scholar]
  108. 108. 
    Shein JB, Lai LMH, Eggers PK, Paddon-Row MN, Gooding JJ 2009. Formation of efficient electron transfer pathways by adsorbing gold nanoparticles to self-assembled monolayer modified electrodes. Langmuir 25:11121–28
    [Google Scholar]
  109. 109. 
    Zhao J, Bradbury CR, Fermín DJ 2008. Long-range electronic communication between metal nanoparticles and electrode surfaces separated by polyelectrolyte multilayer films. J. Phys. Chem. C 112:6832–41
    [Google Scholar]
  110. 110. 
    Zhao J, Wasem M, Bradbury CR, Fermín DJ 2008. Charge transfer across self-assembled nanoscale metal−insulator−metal heterostructures. J. Phys. Chem. C 112:7284–89
    [Google Scholar]
  111. 111. 
    Kashi MB, Silva SM, Yang Y, Gonçales VR, Parker SG et al. 2017. Light-activated electrochemistry without surface-bound redox species. Electrochim. Acta 251:250–55
    [Google Scholar]
  112. 112. 
    Ferapontova EE. 2018. DNA electrochemistry and electrochemical sensors for nucleic acids. Annu. Rev. Anal. Chem. 11:197–218
    [Google Scholar]
  113. 113. 
    Liu N, Wei F, Liu L, Lai HSS, Yu H et al. 2015. Optically-controlled digital electrodeposition of thin-film metals for fabrication of nano-devices. Opt. Mater. Express 5:838–48
    [Google Scholar]
  114. 114. 
    Chow BY, Emig CJ, Jacobson JM 2009. Photoelectrochemical synthesis of DNA microarrays. PNAS 106:15219–24
    [Google Scholar]
  115. 115. 
    Zhirnov V, Zadegan RM, Sandhu GS, Church GM, Hughes WL 2016. Nucleic acid memory. Nat. Mater. 15:366–70
    [Google Scholar]
  116. 116. 
    Zarei L, Tavallaie R, Choudhury MH, Parker SG, Bakthavathsalam P et al. 2018. DNA-hybridization detection on Si(100) surfaces using light-activated electrochemistry: a comparative study between bovine serum albumin and hexaethylene glycol as antifouling layers. Langmuir 34:14817–24
    [Google Scholar]
  117. 117. 
    Kilian KA, Böcking T, Ilyas S, Gaus K, Jessup W et al. 2007. Forming antifouling organic multilayers on porous silicon rugate filters towards in vivo/ex vivo biophotonic devices. Adv. Funct. Mater. 17:2884–90
    [Google Scholar]
  118. 118. 
    Yoneyama H, Kitayama M. 1986. Photocatalytic deposition of light-localized polypyrrole film pattern on n-type silicon wafers. Chem. Lett. 15:657–60
    [Google Scholar]
  119. 119. 
    Yoneyama H, Kawai K, Kuwabata S 1988. Light‐localized deposition of electroconductive polymers on n‐type silicon by utilizing semiconductor photocatalysis. J. Electrochem. Soc. 135:1699–702
    [Google Scholar]
  120. 120. 
    Vogel YB, Gonçales VR, Gooding JJ, Ciampi S 2018. Electrochemical microscopy based on spatial light modulators: a projection system to spatially address electrochemical reactions at semiconductors. J. Electrochem. Soc. 165:H3085–92
    [Google Scholar]
  121. 121. 
    Li P, Liu N, Yu H, Wang F, Liu L et al. 2016. Silver nanostructures synthesis via optically induced electrochemical deposition. Sci. Rep. 6:28035
    [Google Scholar]
  122. 122. 
    Liu N, Li M, Liu L, Yang Y, Mai J et al. 2018. Single-step fabrication of electrodes with controlled nanostructured surface roughness using optically-induced electrodeposition. J. Micromech. Microeng. 28:025011
    [Google Scholar]
  123. 123. 
    Ciampi S, James M, Le Saux G, Gaus K, Justin Gooding J 2012. Electrochemical “switching” of Si(100) modular assemblies. J. Am. Chem. Soc. 134:844–47
    [Google Scholar]
  124. 124. 
    Lian J, Yang Y, Wang W, Parker SG, Gonçales VR et al. 2019. Amorphous silicon on indium tin oxide: a transparent electrode for simultaneous light activated electrochemistry and optical microscopy. Chem. Commun. 55:123–26
    [Google Scholar]
  125. 125. 
    Yang Y, Cuartero M, Gonçales VR, Gooding JJ, Bakker E 2018. Light-addressable ion sensing for real-time monitoring of extracellular potassium. Angew. Chem. Int. Ed. 57:16801–5
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-091619-092506
Loading
/content/journals/10.1146/annurev-anchem-091619-092506
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error