1932

Abstract

Live-cell single-molecule fluorescence imaging has become a powerful analytical tool to investigate cellular processes that are not accessible to conventional biochemical approaches. This has greatly enriched our understanding of the behaviors of single biomolecules in their native environments and their roles in cellular events. Here, we review recent advances in fluorescence-based single-molecule bioimaging of proteins in living cells. We begin with practical considerations of the design of single-molecule fluorescence imaging experiments such as the choice of imaging modalities, fluorescent probes, and labeling methods. We then describe analytical observables from single-molecule data and the associated molecular parameters along with examples of live-cell single-molecule studies. Lastly, we discuss computational algorithms developed for single-molecule data analysis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-091619-094308
2020-06-12
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/anchem/13/1/annurev-anchem-091619-094308.html?itemId=/content/journals/10.1146/annurev-anchem-091619-094308&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Higgins DA, Park SC, Tran-Ba KH, Ito T 2015. Single-molecule investigations of morphology and mass transport dynamics in nanostructured materials. Annu. Rev. Anal. Chem. 8:193–216
    [Google Scholar]
  2. 2. 
    Liu Z, Lavis LD, Betzig E 2015. Imaging live-cell dynamics and structure at the single-molecule level. Mol. Cell 58:644–59
    [Google Scholar]
  3. 3. 
    Shao SP, Xue BX, Sun YJ 2018. Intranucleus single-molecule imaging in living cells. Biophys. J. 115:181–89
    [Google Scholar]
  4. 4. 
    Kulzer F, Xia T, Orrit M 2010. Single molecules as optical nanoprobes for soft and complex matter. Angew. Chem. Int. Ed. 49:854–66
    [Google Scholar]
  5. 5. 
    Peterson EM, Harris JM. 2018. Identification of individual immobilized DNA molecules by their hybridization kinetics using single-molecule fluorescence imaging. Anal. Chem. 90:5007–14
    [Google Scholar]
  6. 6. 
    Li N, Zhao R, Sun Y, Ye Z, He K, Fang X 2017. Single-molecule imaging and tracking of molecular dynamics in living cells. Natl. Sci. Rev. 4:739–60
    [Google Scholar]
  7. 7. 
    Li N, Yang Y, He KM, Zhang FY, Zhao LB et al. 2016. Single-molecule imaging reveals the activation dynamics of intracellular protein Smad3 on cell membrane. Sci. Rep. 6:13
    [Google Scholar]
  8. 8. 
    Jaqaman K, Loerke D, Mettlen M, Kuwata H, Grinstein S et al. 2008. Robust single-particle tracking in live-cell time-lapse sequences. Nat. Methods 5:695–702
    [Google Scholar]
  9. 9. 
    Sako Y, Hiroshima M, Pack C-G, Okamoto K, Hibino K, Yamamoto A 2012. Live cell single-molecule detection in systems biology. Wiley Interdiscip. Rev. Syst. Biol. Med. 4:183–92
    [Google Scholar]
  10. 10. 
    Sako Y, Minoguchi S, Yanagida T 2000. Single-molecule imaging of EGFR signalling on the surface of living cells. Nat. Cell Biol. 2:168–72
    [Google Scholar]
  11. 11. 
    Zhao R, Li N, Xu J, Li W, Fang X 2018. Quantitative single-molecule study of TGF-β/Smad signaling. Acta Biochim. Biophys. Sin. 50:51–59
    [Google Scholar]
  12. 12. 
    von Diezmann A, Shechtman Y, Moerner WE 2017. Three-dimensional localization of single molecules for super resolution imaging and single-particle tracking. Chem. Rev. 117:7244–75
    [Google Scholar]
  13. 13. 
    Stehbens S, Pemble H, Murrow L, Wittmann T 2012. Imaging intracellular protein dynamics by spinning disk confocal microscopy. Imaging and Spectroscopic Analysis of Living Cells: Optical and Spectroscopic Techniques PM Conn 293–313 San Diego, CA: Elsevier
    [Google Scholar]
  14. 14. 
    Martin RM, Rino J, Carvalho C, Kirchhausen T, Carmo-Fonseca M 2013. Live-cell visualization of pre-mRNA splicing with single-molecule sensitivity. Cell Rep 4:1144–55
    [Google Scholar]
  15. 15. 
    Thompson NL, Pearce KH, Hsieh HV 1993. Total internal-reflection fluorescence microscopy: application to substrate-supported planar membranes. Eur. Biophys. J. Biophys. Lett. 22:367–78
    [Google Scholar]
  16. 16. 
    Sako Y, Uyemura T. 2002. Total internal reflection fluorescence microscopy for single-molecule imaging in living cells. Cell Struct. Funct. 27:357–65
    [Google Scholar]
  17. 17. 
    Ulbrich MH, Isacoff EY. 2007. Subunit counting in membrane-bound proteins. Nat. Methods 4:319–21
    [Google Scholar]
  18. 18. 
    Zhang W, Jiang Y, Wang Q, Ma X, Xiao Z et al. 2009. Single-molecule imaging reveals transforming growth factor-β-induced type II receptor dimerization. PNAS 106:15679–83
    [Google Scholar]
  19. 19. 
    Cocucci E, Aguet F, Boulant S, Kirchhausen T 2012. The first five seconds in the life of a clathrin-coated pit. Cell 150:495–507
    [Google Scholar]
  20. 20. 
    He K, Yan X, Li N, Dang S, Xu L et al. 2015. Internalization of the TGF-β type I receptor into caveolin-1 and EEA1 double-positive early endosomes. Cell Res 25:738–52
    [Google Scholar]
  21. 21. 
    Zhang M, Zhang Z, He K, Wu J, Li N et al. 2018. Quantitative characterization of the membrane dynamics of newly delivered TGF-β receptors by single-molecule imaging. Anal. Chem. 90:4282–87
    [Google Scholar]
  22. 22. 
    Konopka CA, Bednarek SY. 2008. Variable-angle epifluorescence microscopy: a new way to look at protein dynamics in the plant cell cortex. Plant J 53:186–96
    [Google Scholar]
  23. 23. 
    Tokunaga M, Imamoto N, Sakata-Sogawa K 2008. Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat. Methods 5:159–61
    [Google Scholar]
  24. 24. 
    Luo W, Xia T, Xu L, Chen Y-G, Fang X 2014. Visualization of the post-Golgi vesicle-mediated transportation of TGF-β receptor II by quasi-TIRFM. J. Biophoton. 7:788–98
    [Google Scholar]
  25. 25. 
    Gao R, Asano SM, Upadhyayula S, Pisarev I, Milkie DE et al. 2019. Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution. Science 363:eaau8302
    [Google Scholar]
  26. 26. 
    Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer EHK 2004. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305:1007–9
    [Google Scholar]
  27. 27. 
    Liu T-L, Upadhyayula S, Milkie DE, Singh V, Wang K et al. 2018. Observing the cell in its native state: imaging subcellular dynamics in multicellular organisms. Science 360:eaaq1392
    [Google Scholar]
  28. 28. 
    Gao L, Shao L, Higgins CD, Poulton JS, Peifer M et al. 2012. Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens. Cell 151:1370–85
    [Google Scholar]
  29. 29. 
    Planchon TA, Gao L, Milkie DE, Davidson MW, Galbraith JA et al. 2011. Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat. Methods 8:417–423
    [Google Scholar]
  30. 30. 
    Chen B-C, Legant WR, Wang K, Shao L, Milkie DE et al. 2014. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346:eaaq1392
    [Google Scholar]
  31. 31. 
    Patterson G, Davidson M, Manley S, Lippincott-Schwartz J 2010. Superresolution imaging using single-molecule localization. Annu. Rev. Phys. Chem. 61:345–67
    [Google Scholar]
  32. 32. 
    Klein T, Proppert S, Sauer M 2014. Eight years of single-molecule localization microscopy. Histochem. Cell Biol. 141:561–75
    [Google Scholar]
  33. 33. 
    Gu L, Li Y, Zhang S, Xue Y, Li W et al. 2019. Molecular resolution imaging by repetitive optical selective exposure. Nat. Methods 16:1114–18
    [Google Scholar]
  34. 34. 
    Hell SW, Wichmann J. 1994. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19:780–82
    [Google Scholar]
  35. 35. 
    Bretschneider S, Eggeling C, Hell SW 2007. Breaking the diffraction barrier in fluorescence microscopy by optical shelving. Phys. Rev. Lett. 98:218103
    [Google Scholar]
  36. 36. 
    Hofmann M, Eggeling C, Jakobs S, Hell SW 2005. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. PNAS 102:17565–69
    [Google Scholar]
  37. 37. 
    Gustafsson MGL. 2005. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. PNAS 102:13081–86
    [Google Scholar]
  38. 38. 
    Shroff H, Galbraith CG, Galbraith JA, Betzig E 2008. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat. Methods 5:417–23
    [Google Scholar]
  39. 39. 
    Rust MJ, Bates M, Zhuang X 2006. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3:793–95
    [Google Scholar]
  40. 40. 
    Kim D-H, Zhou K, Kim D-K, Park S, Noh J et al. 2015. Analysis of interactions between the epidermal growth factor receptor and soluble ligands on the basis of single-molecule diffusivity in the membrane of living cells. Angew. Chem. Int. Ed. 54:7028–32
    [Google Scholar]
  41. 41. 
    Balzarotti F, Eilers Y, Gwosch KC, Gynna AH, Westphal V et al. 2017. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 355:606–12
    [Google Scholar]
  42. 42. 
    Deich J, Judd EM, McAdams HH, Moerner WE 2004. Visualization of the movement of single histidine kinase molecules in live Caulobacter cells. PNAS 101:15921–26
    [Google Scholar]
  43. 43. 
    Lommerse PHM, Snaar-Jagaiska BE, Spaink HP, Schmidt T 2005. Single-molecule diffusion measurements of H-Ras at the plasma membrane of live cells reveal microdomain localization upon activation. J. Cell Sci. 118:1799–809
    [Google Scholar]
  44. 44. 
    Yu J, Xiao J, Ren XJ, Lao KQ, Xie XS 2006. Probing gene expression in live cells, one protein molecule at a time. Science 311:1600–3
    [Google Scholar]
  45. 45. 
    Elf J, Li G-W, Xie XS 2007. Probing transcription factor dynamics at the single-molecule level in a living cell. Science 316:1191–94
    [Google Scholar]
  46. 46. 
    Landgraf D, Okumus B, Chien P, Baker TA, Paulsson J 2012. Segregation of molecules at cell division reveals native protein localization. Nat. Methods 9:480–82
    [Google Scholar]
  47. 47. 
    Bindels DS, Haarbosch L, van Weeren L, Postma M, Wieser KE et al. 2017. mScarlet: a bright monomeric red fluorescent protein for cellular imaging. Nat. Methods 14:53–56
    [Google Scholar]
  48. 48. 
    Bajar BT, Wang ES, Lam AJ, Kim BB, Jacobs CL et al. 2016. Improving brightness and photostability of green and red fluorescent proteins for live cell imaging and FRET reporting. Sci. Rep. 6:20889
    [Google Scholar]
  49. 49. 
    Shaner NC, Patterson GH, Davidson MW 2007. Advances in fluorescent protein technology. J. Cell Sci. 120:4247–60
    [Google Scholar]
  50. 50. 
    Shaner NC, Lambert GG, Chammas A, Ni Y, Cranfill PJ et al. 2013. A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nat. Methods 10:407–9
    [Google Scholar]
  51. 51. 
    Wang L, Jackson WC, Steinbach PA, Tsien RY 2004. Evolution of new nonantibody proteins via iterative somatic hypermutation. PNAS 101:16745–49
    [Google Scholar]
  52. 52. 
    Piatkevich KD, Malashkevich VN, Morozova KS, Nemkovich NA, Almo SC, Verkhusha VV 2013. Extended Stokes shift in fluorescent proteins: chromophore-protein interactions in a near-infrared TagRFP675 variant. Sci. Rep. 3:1847
    [Google Scholar]
  53. 53. 
    Dean KM, Palmer AE. 2014. Advances in fluorescence labeling strategies for dynamic cellular imaging. Nat. Chem. Biol. 10:512–23
    [Google Scholar]
  54. 54. 
    Shcherbakova DM, Sengupta P, Lippincott-Schwartz J, Verkhusha VV 2014. Photocontrollable fluorescent proteins for superresolution imaging. Annu. Rev. Biophys. 43:303–29
    [Google Scholar]
  55. 55. 
    Zhang M, Fu Z, Xu P 2016. Extending the spatiotemporal resolution of super-resolution microscopies using photomodulatable fluorescent proteins. J. Innov. Opt. Health Sci. 9:1630009
    [Google Scholar]
  56. 56. 
    Li L, Atef A, Piatek A, Ali Z, Piatek M et al. 2013. Characterization and DNA-binding specificities of Ralstonia TAL-like effectors. Mol. Plant 6:1318–30
    [Google Scholar]
  57. 57. 
    Knott GJ, Doudna JA. 2018. CRISPR-Cas guides the future of genetic engineering. Science 361:866–69
    [Google Scholar]
  58. 58. 
    Davis KM, Pattanayak V, Thompson DB, Zuris JA, Liu DR 2015. Small molecule-triggered Cas9 protein with improved genome-editing specificity. Nat. Chem. Biol. 11:316–18
    [Google Scholar]
  59. 59. 
    Wang J, Guo J, Dou L, Wang R, Song Y et al. 2019. A novel fluorescence sensor towards hydrazine in living cells. Chem. Res. Chin. Univ. 35:570–76
    [Google Scholar]
  60. 60. 
    Lukinavicius G, Umezawa K, Olivier N, Honigmann A, Yang G et al. 2013. A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. Nat. Chem. 5:132–39
    [Google Scholar]
  61. 61. 
    Grimm JB, English BP, Chen J, Slaughter JP, Zhang Z et al. 2015. A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat. Methods 12:244–50
    [Google Scholar]
  62. 62. 
    Cui L, Li C-C, Tang B, Zhang C-Y 2018. Advances in the integration of quantum dots with various nanomaterials for biomedical and environmental applications. Analyst 143:2469–78
    [Google Scholar]
  63. 63. 
    Zhang L-J, Xia L, Xie H-Y, Zhang Z-L, Pang D-W 2019. Quantum dot based biotracking and biodetection. Anal. Chem. 91:532–47
    [Google Scholar]
  64. 64. 
    Gupta R, Peveler WJ, Lix K, Algar WR 2019. Comparison of semiconducting polymer dots and semiconductor quantum dots for smartphone-based fluorescence assays. Anal. Chem. 91:10955–60
    [Google Scholar]
  65. 65. 
    Wu Y, Ruan H, Zhao R, Dong Z, Li W et al. 2018. Ultrastable fluorescent polymer dots for stimulated emission depletion bioimaging. Adv. Opt. Mater. 6:1800333
    [Google Scholar]
  66. 66. 
    Liu Y, Lu Y, Yang X, Zheng X, Wen S et al. 2017. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature 543:229–33
    [Google Scholar]
  67. 67. 
    Chen C, Wang F, Wen S, Su QP, Wu MCL et al. 2018. Multi-photon near-infrared emission saturation nanoscopy using upconversion nanoparticles. Nat. Commun. 9:3290
    [Google Scholar]
  68. 68. 
    Howarth M, Ting AY. 2008. Imaging proteins in live mammalian cells with biotin ligase and monovalent streptavidin. Nat. Protoc. 3:534–45
    [Google Scholar]
  69. 69. 
    Theile CS, Witte MD, Blom AEM, Kundrat L, Ploegh HL, Guimaraes CP 2013. Site-specific N-terminal labeling of proteins using sortase-mediated reactions. Nat. Protoc. 8:1800–7
    [Google Scholar]
  70. 70. 
    Liu DS, Nivon LG, Richter F, Goldman PJ, Deerinck TJ et al. 2014. Computational design of a red fluorophore ligase for site-specific protein labeling in living cells. PNAS 111:E4551–59
    [Google Scholar]
  71. 71. 
    Saurabh S, Perez AM, Comerci CJ, Shapiro L, Moerner WE 2016. Super-resolution imaging of live bacteria cells using a genetically directed, highly photostable fluoromodule. J. Am. Chem. Soc. 138:10398–401
    [Google Scholar]
  72. 72. 
    Gautier A, Juillerat A, Heinis C, Correa IR Jr., Kindermann M et al. 2008. An engineered protein tag for multiprotein labeling in living cells. Chem. Biol. 15:128–36
    [Google Scholar]
  73. 73. 
    Benke A, Olivier N, Gunzenhaeuser J, Manley S 2012. Multicolor single molecule tracking of stochastically active synthetic dyes. Nano Lett 12:2619–24
    [Google Scholar]
  74. 74. 
    Lang K, Chin JW. 2014. Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins. Chem. Rev. 114:4764–806
    [Google Scholar]
  75. 75. 
    Cheng M, Zhang W, Yuan J, Luo W, Li N et al. 2014. Single-molecule dynamics of site-specific labeled transforming growth factor type II receptors on living cells. Chem. Commun. 50:14724–27
    [Google Scholar]
  76. 76. 
    Kask P, Palo K, Ullmann D, Gall K 1999. Fluorescence-intensity distribution analysis and its application in biomolecular detection technology. PNAS 96:13756–61
    [Google Scholar]
  77. 77. 
    Saffarian S, Li Y, Elson EL, Pike LJ 2007. Oligomerization of the EGF receptor investigated by live cell fluorescence intensity distribution analysis. Biophys. J. 93:1021–31
    [Google Scholar]
  78. 78. 
    Ji W, Xu PY, Li ZZ, Lu JZ, Liu L et al. 2008. Functional stoichiometry of the unitary calcium-release-activated calcium channel. PNAS 105:13668–73
    [Google Scholar]
  79. 79. 
    Kasai RS, Suzuki KGN, Prossnitz ER, Koyama-Honda I, Nakada C et al. 2011. Full characterization of GPCR monomer-dimer dynamic equilibrium by single molecule imaging. J. Cell Biol. 192:463–80
    [Google Scholar]
  80. 80. 
    Levitz J, Habrian C, Bharill S, Fu Z, Vafabakhsh R, Isacoff EY 2016. Mechanism of assembly and cooperativity of homomeric and heteromeric metabotropic glutamate receptors. Neuron 92:143–59
    [Google Scholar]
  81. 81. 
    Qu WF, Du MY, Yang FF, Mai ZH, Zhang CS et al. 2019. Gaussian FRET two-hybrid assays for determining the stoichiometry of hetero-oligomeric complexes in single living cells. Biochem. Biophys. Res. Commun. 512:492–97
    [Google Scholar]
  82. 82. 
    Ziegler CS, Bouchab L, Tramier M, Durand D, Fieschi F et al. 2019. Quantitative live-cell imaging and 3D modeling reveal critical functional features in the cytosolic complex of phagocyte NADPH oxidase. J. Biol. Chem. 294:3824–36
    [Google Scholar]
  83. 83. 
    Chung I, Akita R, Vandlen R, Toomre D, Schlessinger J, Mellman I 2010. Spatial control of EGF receptor activation by reversible dimerization on living cells. Nature 464:783–87
    [Google Scholar]
  84. 84. 
    Zhang W, Yuan JH, Yang Y, Xu L, Wang QA et al. 2010. Monomeric type I and type III transforming growth factor-β receptors and their dimerization revealed by single-molecule imaging. Cell Res 20:1216–23
    [Google Scholar]
  85. 85. 
    Huang T, David L, Mendoza V, Yang Y, Villarreal M et al. 2011. TGF-β signalling is mediated by two autonomously functioning TβRI:TβRII pairs. EMBO J 30:1263–76
    [Google Scholar]
  86. 86. 
    Sun YH, Li N, Zhang ML, Zhou W, Yuan JH et al. 2016. Single-molecule imaging reveals the stoichiometry change of β2-adrenergic receptors by a pharmacological biased ligand. Chem. Commun. 52:7086–89
    [Google Scholar]
  87. 87. 
    Zhang ML, He KM, Wu JM, Li N, Yuan JH et al. 2017. Single-molecule imaging reveals the stoichiometry change of epidermal growth factor receptor during transactivation by β2-adrenergic receptor. Sci. China Chem. 60:1310–17
    [Google Scholar]
  88. 88. 
    Cai X, Bai B, Zhang R, Wang C, Chen J 2017. Apelin receptor homodimer-oligomers revealed by single-molecule imaging and novel G protein-dependent signaling. Sci. Rep. 7:40335
    [Google Scholar]
  89. 89. 
    Renz M, Daniels BR, Vamosi G, Arias IM, Lippincott-Schwartz J 2012. Plasticity of the asialoglycoprotein receptor deciphered by ensemble FRET imaging and single-molecule counting PALM imaging. PNAS 109:E2989–97
    [Google Scholar]
  90. 90. 
    Calebiro D, Rieken F, Wagner J, Sungkaworn T, Zabel U et al. 2013. Single-molecule analysis of fluorescently labeled G-protein-coupled receptors reveals complexes with distinct dynamics and organization. PNAS 110:743–48
    [Google Scholar]
  91. 91. 
    Comps-Agrar L, Kniazeff J, Norskov-Lauritsen L, Maurel D, Gassmann M et al. 2011. The oligomeric state sets GABAB receptor signalling efficacy. EMBO J 30:2336–49
    [Google Scholar]
  92. 92. 
    Xiao H, Zhang JS, Xu ZH, Feng YA, Zhang ML et al. 2016. Metformin is a novel suppressor for transforming growth factor (TGF)-β1. Sci. Rep. 6:28597
    [Google Scholar]
  93. 93. 
    Yang Y, Xu YC, Xia T, Chen FJ, Zhang CL et al. 2011. A single-molecule study of the inhibition effect of Naringenin on transforming growth factor-β ligand-receptor binding. Chem. Commun. 47:5440–42
    [Google Scholar]
  94. 94. 
    Yildiz A, Forkey JN, McKinney SA, Ha T, Goldman YE, Selvin PR 2003. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300:2061–65
    [Google Scholar]
  95. 95. 
    Mortensen KI, Churchman LS, Spudich JA, Flyvbjerg H 2010. Optimized localization analysis for single-molecule tracking and super-resolution microscopy. Nat. Methods 7:377–81
    [Google Scholar]
  96. 96. 
    Smith CS, Stallinga S, Lidke KA, Rieger B, Grunwald D 2015. Probability-based particle detection that enables threshold-free and robust in vivo single-molecule tracking. Mol. Biol. Cell 26:4057–62
    [Google Scholar]
  97. 97. 
    Gu LS, Sheng Y, Chen Y, Chang H, Zhang YD et al. 2014. High-density 3D single molecular analysis based on compressed sensing. Biophys. J. 106:2443–49
    [Google Scholar]
  98. 98. 
    Zhu L, Zhang W, Elnatan D, Huang B 2012. Faster STORM using compressed sensing. Nat. Methods 9:721–23
    [Google Scholar]
  99. 99. 
    Rossy J, Cohen E, Gaus K, Owen DM 2014. Method for co-cluster analysis in multichannel single-molecule localisation data. Histochem. Cell Biol. 141:605–12
    [Google Scholar]
  100. 100. 
    Pageon SV, Nicovich PR, Mollazade M, Tabarin T, Gaus K 2016. Clus-DoC: a combined cluster detection and colocalization analysis for single-molecule localization microscopy data. Mol. Biol. Cell 27:3627–36
    [Google Scholar]
  101. 101. 
    Malkusch S, Endesfelder U, Mondry J, Gelléri M, Verveer PJ, Heilemann M 2012. Coordinate-based colocalization analysis of single-molecule localization microscopy data. Histochem. Cell Biol. 137:1–10
    [Google Scholar]
  102. 102. 
    Levet F, Julien G, Galland R, Butler C, Beghin A et al. 2019. A tessellation-based colocalization analysis approach for single-molecule localization microscopy. Nat. Commun. 10:2379
    [Google Scholar]
  103. 103. 
    Eryilmaz M, Schmitt E, Krufczik M, Theda F, Lee JH et al. 2018. Localization microscopy analyses of MRE11 clusters in 3D-conserved cell nuclei of different cell lines. Cancers 10:25
    [Google Scholar]
  104. 104. 
    Rossboth B, Arnold AM, Ta H, Platzer R, Kellner F et al. 2018. TCRs are randomly distributed on the plasma membrane of resting antigen-experienced T cells. Nat. Immunol. 19:821–27
    [Google Scholar]
  105. 105. 
    Robson A, Burrage K, Leake MC 2013. Inferring diffusion in single live cells at the single-molecule level. Philos. Trans. R. Soc. B 368:20120029
    [Google Scholar]
  106. 106. 
    Persson F, Linden M, Unoson C, Elf J 2013. Extracting intracellular diffusive states and transition rates from single-molecule tracking data. Nat. Methods 10:265–69
    [Google Scholar]
  107. 107. 
    Monnier N, Barry Z, Park HY, Su KC, Katz Z et al. 2015. Inferring transient particle transport dynamics in live cells. Nat. Methods 12:838–40
    [Google Scholar]
  108. 108. 
    Haas KR, Yang H, Chu JW 2013. Fisher information metric for the Langevin equation and least informative models of continuous stochastic dynamics. J. Chem. Phys. 139:121931
    [Google Scholar]
  109. 109. 
    Serag MF, Abadi M, Habuchi S 2014. Single-molecule diffusion and conformational dynamics by spatial integration of temporal fluctuations. Nat. Commun. 5:5123
    [Google Scholar]
  110. 110. 
    Ma XY, Wang Q, Jiang YX, Xiao ZY, Fang XH, Chen YG 2007. Lateral diffusion of TGF-β type I receptor studied by single-molecule imaging. Biochem. Biophys. Res. Commun. 356:67–71
    [Google Scholar]
  111. 111. 
    Xiao ZY, Ma XY, Jiang YX, Zhao ZL, Lai B et al. 2008. Single-molecule study of lateral mobility of epidermal growth factor receptor 2/HER2 on activation. J. Phys. Chem. B 112:4140–45
    [Google Scholar]
  112. 112. 
    Chung SH, Kennedy RA. 1991. Forward-backward nonlinear filtering technique for extracting small biological signals from noise. J. Neurosci. Methods 40:71–86
    [Google Scholar]
  113. 113. 
    Knight AE, Molloy JE. 1999. Coupling ATP hydrolysis to mechanical work. Nat. Cell Biol. 1:E87–89
    [Google Scholar]
  114. 114. 
    Xu JC, Qin GG, Luo F, Wang LN, Zhao R et al. 2019. Automated stoichiometry analysis of single-molecule fluorescence imaging traces via deep learning. J. Am. Chem. Soc. 141:6976–85
    [Google Scholar]
  115. 115. 
    Messina TC, Kim HY, Giurleo JT, Talaga DS 2006. Hidden Markov model analysis of multichromophore photobleaching. J. Phys. Chem. B 110:16366–76
    [Google Scholar]
  116. 116. 
    Yuan JH, He KM, Cheng M, Yu JQ, Fang XH 2014. Analysis of the steps in single-molecule photobleaching traces by using the hidden Markov model and maximum-likelihood clustering. Chem. Asian J. 9:2303–8
    [Google Scholar]
  117. 117. 
    Meijering E, Dzyubachyk O, Smal I 2012. Methods for cell and particle tracking. Methods Enzymol 504:183–200
    [Google Scholar]
  118. 118. 
    Chenouard N, Smal I, de Chaumont F, Maska M, Sbalzarini IF et al. 2014. Objective comparison of particle tracking methods. Nat. Methods 11:281–89
    [Google Scholar]
  119. 119. 
    Sergé A, Bertaux N, Rigneault H, Marguet D 2008. Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes. Nat. Methods 5:687–94
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-091619-094308
Loading
/content/journals/10.1146/annurev-anchem-091619-094308
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error