1932

Abstract

Lipids are an important class of biomolecules with many roles within cells and tissue. As targets for study, they present several challenges. They are difficult to label, as many labels lack the specificity to the many different lipid species or the labels maybe larger than the lipids themselves, thus severely perturbing the natural chemical environment. Mass spectrometry provides exceptional specificity and is often used to examine lipid extracts from different samples. However, spatial information is lost during extraction. Of the different imaging mass spectrometry methods available, secondary ion mass spectrometry (SIMS) is unique in its ability to analyze very small features, with probe sizes <50 nm available. It also offers high surface sensitivity and 3D imaging capability on a subcellular scale. This article reviews the current capabilities and some remaining challenges associated with imaging the diverse lipids present in cell and tissue samples. We show how the technique has moved beyond show-and-tell, proof-of-principle analysis and is now being used to address real biological challenges. These include imaging the microenvironment of cancer tumors, probing the pathophysiology of traumatic brain injury, or tracking the lipid composition through bacterial membranes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-091619-103512
2020-06-12
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/anchem/13/1/annurev-anchem-091619-103512.html?itemId=/content/journals/10.1146/annurev-anchem-091619-103512&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Singer SJ, Nicolson GL. 1972. The fluid mosaic model of the structure of cell membranes. Science 175:720–31
    [Google Scholar]
  2. 2. 
    Fahy E, Subramaniam S, Brown H, Glass C, Merrill A Jr., Murphy R et al. 2005. A comprehensive classification system for lipids. J. Lipid Res. 46:839–62
    [Google Scholar]
  3. 3. 
    Fahy E, Subramaniam S, Murphy RC, Nishijima M, Raetz CR et al. 2009. Update of the LIPID MAPS comprehensive classification system for lipids. J. Lipid Res. 50:S9–14
    [Google Scholar]
  4. 4. 
    Harayama T, Riezman H. 2018. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 19:281–96
    [Google Scholar]
  5. 5. 
    Yeagle PL. 1985. Cholesterol and the cell membrane. Biochim. Biophys. Acta 822:267–87
    [Google Scholar]
  6. 6. 
    Coskun Ü, Simons K. 2011. Cell membranes: the lipid perspective. Structure 19:1543–48
    [Google Scholar]
  7. 7. 
    Van Meer G, Voelker DR, Feigenson GW 2008. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9:112–24
    [Google Scholar]
  8. 8. 
    Murata N, Los DA. 1997. Membrane fluidity and temperature perception. Plant Physiol 115:875–79
    [Google Scholar]
  9. 9. 
    Martin CE, Hiramitsu K, Kitajima Y, Nozawa Y, Skriver L, Thompson GA Jr 1976. Molecular control of membrane properties during temperature acclimation. Fatty acid desaturase regulation of membrane fluidity in acclimating Tetrahymena cells. Biochemistry 15:5218–27
    [Google Scholar]
  10. 10. 
    Shevchenko A, Simons K. 2010. Lipidomics: coming to grips with lipid diversity. Nat. Rev. Mol. Cell Biol. 11:593–98
    [Google Scholar]
  11. 11. 
    Rouser G, Fleischer S, Yamamoto A 1970. Two dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids 5:494–96
    [Google Scholar]
  12. 12. 
    Christie WW. 1985. Rapid separation and quantification of lipid classes by high performance liquid chromatography and mass (light-scattering) detection. J. Lipid Res. 26:507–12
    [Google Scholar]
  13. 13. 
    Morita S, Terada T. 2015. Enzymatic measurement of phosphatidylglycerol and cardiolipin in cultured cells and mitochondria. Sci. Rep. 5:11737
    [Google Scholar]
  14. 14. 
    Kuerschner L, Moessinger C, Thiele C 2008. Imaging of lipid biosynthesis: how a neutral lipid enters lipid droplets. Traffic 9:338–52
    [Google Scholar]
  15. 15. 
    Schütz GJ, Kada G, Pastushenko VP, Schindler H 2000. Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J 19:892–901
    [Google Scholar]
  16. 16. 
    Passarelli MK, Ewing AG, Winograd N 2013. Single-cell lipidomics: characterizing and imaging lipids on the surface of individual Aplysia californica neurons with cluster secondary ion mass spectrometry. Anal. Chem. 85:2231–38
    [Google Scholar]
  17. 17. 
    Fletcher JS, Lockyer NP, Vaidyanathan S, Vickerman JC 2007. TOF-SIMS 3D biomolecular imaging of Xenopus laevis oocytes using buckminsterfullerene (C60) primary ions. Anal. Chem. 79:2199–206
    [Google Scholar]
  18. 18. 
    Tian H, Fletcher JS, Thuret R, Henderson A, Papalopulu N et al. 2014. Spatiotemporal lipid profiling during early embryo development of Xenopus laevis using dynamic ToF-SIMS imaging. J. Lipid Res. 55:1970–80
    [Google Scholar]
  19. 19. 
    Robinson MA, Graham DJ, Morrish F, Hockenbery D, Gamble LJ 2016. Lipid analysis of eight human breast cancer cell lines with ToF-SIMS. Biointerphases 11:02A303
    [Google Scholar]
  20. 20. 
    Ren L, Dowlatshahi Pour M, Malmberg P, Ewing AG 2019. Altered lipid composition of secretory cells following exposure to zinc can be correlated to changes in exocytosis. Chem. A Eur. J. 25:5406–11
    [Google Scholar]
  21. 21. 
    Munem M, Zaar O, Nilsson KD, Neittaanmaki N, Paoli J, Fletcher JS 2018. Chemical imaging of aggressive basal cell carcinoma using time-of-flight secondary ion mass spectrometry. Biointerphases 13:03B402
    [Google Scholar]
  22. 22. 
    Touboul D, Roy S, Germain DP, Chaminade P, Brunelle A, Laprévote O 2007. MALDI-TOF and cluster-TOF-SIMS imaging of Fabry disease biomarkers. Int. J. Mass Spectrom. 260:158–65
    [Google Scholar]
  23. 23. 
    Bruinen AL, Fisher GL, Heeren RMA 2017. ToF-SIMS parallel imaging MS/MS of lipid species in thin tissue sections. Imaging Mass Spectrometry: Methods and Protocols LM Cole 165–73 New York: Springer
    [Google Scholar]
  24. 24. 
    Phan NTN, Fletcher JS, Ewing AG 2015. Lipid structural effects of oral administration of methylphenidate in Drosophila brain by secondary ion mass spectrometry imaging. Anal. Chem. 87:4063–71
    [Google Scholar]
  25. 25. 
    Angerer TB, Chakravarty N, Taylor MJ, Nicora CD, Graham DJ et al. 2019. Insights into the histology of planarian flatworm Phagocata gracilis based on location specific, intact lipid information provided by GCIB-ToF-SIMS imaging. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1864:733–43
    [Google Scholar]
  26. 26. 
    Tahallah N, Brunelle A, De La Porte S, Laprévote O 2008. Lipid mapping in human dystrophic muscle by cluster-time-of-flight secondary ion mass spectrometry imaging. J. Lipid Res. 49:438–54
    [Google Scholar]
  27. 27. 
    Touboul D, Brunelle A, Halgand F, De La Porte S, Laprévote O 2005. Lipid imaging by gold cluster time-of-flight secondary ion mass spectrometry: application to Duchenne muscular dystrophy. J. Lipid Res. 46:1388–95
    [Google Scholar]
  28. 28. 
    Davies N, Weibel DE, Blenkinsopp P, Lockyer N, Hill R, Vickerman JC 2003. Development and experimental application of a gold liquid metal ion source. Appl. Surf. Sci. 203:223–27
    [Google Scholar]
  29. 29. 
    Touboul D, Kollmer F, Niehuis E, Brunelle A, Laprévote O 2005. Improvement of biological time-of-flight-secondary ion mass spectrometry imaging with a bismuth cluster ion source. J. Am. Soc. Mass Spectrom. 16:1608–18
    [Google Scholar]
  30. 30. 
    Gunnarsson A, Kollmer F, Sohn S, Höök F, Sjövall P 2010. Spatial-resolution limits in mass spectrometry imaging of supported lipid bilayers and individual lipid vesicles. Anal. Chem. 82:2426–33
    [Google Scholar]
  31. 31. 
    Kurczy ME, Piehowski PD, Van Bell CT, Heien ML, Winograd N, Ewing AG 2010. Mass spectrometry imaging of mating Tetrahymena show that changes in cell morphology regulate lipid domain formation. PNAS 107:2751–56
    [Google Scholar]
  32. 32. 
    Ostrowski SG, Van Bell CT, Winograd N, Ewing AG 2004. Mass spectrometric imaging of highly curved membranes during Tetrahymena mating. Science 305:71–73
    [Google Scholar]
  33. 33. 
    Amaya KR, Monroe EB, Sweedler JV, Clayton DF 2007. Lipid imaging in the zebra finch brain with secondary ion mass spectrometry. Int. J. Mass Spectrom. 260:121–27
    [Google Scholar]
  34. 34. 
    Kezutyte T, Desbenoit N, Brunelle A, Briedis V 2013. Studying the penetration of fatty acids into human skin by ex vivo TOF-SIMS imaging. Biointerphases 8:3
    [Google Scholar]
  35. 35. 
    Debois D, Bralet M-P, Le Naour F, Brunelle A, Laprévote O 2009. In situ lipidomic analysis of nonalcoholic fatty liver by cluster TOF-SIMS imaging. Anal. Chem. 81:2823–31
    [Google Scholar]
  36. 36. 
    Cullen P, Fobker M, Tegelkamp K, Meyer K, Kannenberg F et al. 1997. An improved method for quantification of cholesterol and cholesteryl esters in human monocyte-derived macrophages by high performance liquid chromatography with identification of unassigned cholesteryl ester species by means of secondary ion mass spectrometry. J. Lipid Res. 38:401–9
    [Google Scholar]
  37. 37. 
    Lee ES, Shon HK, Lee TG, Kim SH, Moon DW 2013. The regional ratio of cholesteryl palmitate to cholesteryl oleate measured by ToF-SIMS as a key parameter of atherosclerosis. Atherosclerosis 226:378–84
    [Google Scholar]
  38. 38. 
    Lehti S, Sjövall P, Käkelä R, Mäyränpää MI, Kovanen PT, Öörni K 2015. Spatial distributions of lipids in atherosclerosis of human coronary arteries studied by time-of-flight secondary ion mass spectrometry. Am. J. Pathol. 185:1216–33
    [Google Scholar]
  39. 39. 
    McDonnell LA, Heeren RMA. 2007. Imaging mass spectrometry. Mass Spectrom. Rev. 26:606–43
    [Google Scholar]
  40. 40. 
    Benabdellah F, Seyer A, Quinton L, Touboul D, Brunelle A, Laprévote O 2010. Mass spectrometry imaging of rat brain sections: nanomolar sensitivity with MALDI versus nanometer resolution by TOF–SIMS. Anal. Bioanal. Chem. 396:151–62
    [Google Scholar]
  41. 41. 
    Wu KJ, Odom RW. 1996. Matrix-enhanced secondary ion mass spectrometry: a method for molecular analysis of solid surfaces. Anal. Chem. 68:873–82
    [Google Scholar]
  42. 42. 
    Sjövall P, Lausmaa J, Nygren H, Carlsson L, Malmberg P 2003. Imaging of membrane lipids in single cells by imprint-imaging time-of-flight secondary ion mass spectrometry. Anal. Chem. 75:3429–34
    [Google Scholar]
  43. 43. 
    Wong SCC, Hill R, Blenkinsopp P, Lockyer NP, Weibel DE, Vickerman JC 2003. Development of a C60+ ion gun for static SIMS and chemical imaging. Appl. Surf. Sci. 203:219–22
    [Google Scholar]
  44. 44. 
    Jones EA, Fletcher JS, Thompson CE, Jackson DA, Lockyer NP, Vickerman JC 2006. ToF-SIMS analysis of bio-systems: Are polyatomic primary ions the solution. ? Appl. Surf. Sci. 252:6844–54
    [Google Scholar]
  45. 45. 
    Fletcher JS, Rabbani S, Henderson A, Lockyer NP, Vickerman JC 2011. Three-dimensional mass spectral imaging of HeLa-M cells—sample preparation, data interpretation and visualisation. Rapid Commun. Mass Spectrom. 25:925–32
    [Google Scholar]
  46. 46. 
    Breitenstein D, Rommel CE, Stolwijk J, Wegener J, Hagenhoff B 2008. The chemical composition of animal cells reconstructed from 2D and 3D ToF-SIMS analysis. Appl. Surf. Sci. 255:1249–56
    [Google Scholar]
  47. 47. 
    Debois D, Brunelle A, Laprévote O 2007. Attempts for molecular depth profiling directly on a rat brain tissue section using fullerene and bismuth cluster ion beams. Int. J. Mass Spectrom. 260:115–20
    [Google Scholar]
  48. 48. 
    Fletcher JS, Lockyer NP, Vickerman JC 2011. Molecular SIMS imaging; spatial resolution and molecular sensitivity: Have we reached the end of the road? Is there light at the end of the tunnel?. Surf. Interface Anal. 43:253–56
    [Google Scholar]
  49. 49. 
    Sjövall P, Johansson B, Lausmaa J 2006. Localization of lipids in freeze-dried mouse brain sections by imaging TOF-SIMS. Appl. Surf. Sci. 252:6966–74
    [Google Scholar]
  50. 50. 
    Yamada I, Matsuo J, Toyoda N, Kirkpatrick A 2001. Materials processing by gas cluster ion beams. Mater. Sci. Eng. R Rep. 34:231–95
    [Google Scholar]
  51. 51. 
    Bich C, Havelund R, Moellers R, Touboul D, Kollmer F et al. 2013. Argon cluster ion source evaluation on lipid standards and rat brain tissue samples. Anal. Chem. 85:7745–52
    [Google Scholar]
  52. 52. 
    Fletcher JS, Rabbani S, Barber AM, Lockyer NP, Vickerman JC 2013. Comparison of C60 and GCIB primary ion beams for the analysis of cancer cells and tumour sections. Surf. Interface Anal. 45:273–76
    [Google Scholar]
  53. 53. 
    Shon HK, Yoon S, Moon JH, Lee TG 2016. Improved mass resolution and mass accuracy in TOF-SIMS spectra and images using argon gas cluster ion beams. Biointerphases 11:02A321
    [Google Scholar]
  54. 54. 
    Angerer TB, Blenkinsopp P, Fletcher JS 2015. High energy gas cluster ions for organic and biological analysis by time-of-flight secondary ion mass spectrometry. Int. J. Mass Spectrom. 377:591–98
    [Google Scholar]
  55. 55. 
    Sämfors S, Ståhlman M, Klevstig M, Borén J, Fletcher JS 2017. Localised lipid accumulation detected in infarcted mouse heart tissue using ToF-SIMS. Int. J. Mass Spectrom. 437:77–86
    [Google Scholar]
  56. 56. 
    Angerer TB, Magnusson Y, Landberg G, Fletcher JS 2016. Lipid heterogeneity resulting from fatty acid processing in the human breast cancer microenvironment identified by GCIB-ToF-SIMS imaging. Anal. Chem. 88:11946–54
    [Google Scholar]
  57. 57. 
    Hannestad JK, Höök F, Sjövall P 2018. Nanometer-scale molecular organization in lipid membranes studied by time-of-flight secondary ion mass spectrometry. Biointerphases 13:03B408
    [Google Scholar]
  58. 58. 
    Szakal C, Ugelow MS, Gorham JM, Konicek AR, Holbrook RD 2014. Visualizing nanoparticle dissolution by imaging mass spectrometry. Anal. Chem. 86:3517–24
    [Google Scholar]
  59. 59. 
    Parry S, Winograd N. 2005. High-resolution TOF-SIMS imaging of eukaryotic cells preserved in a trehalose matrix. Anal. Chem. 77:7950–57
    [Google Scholar]
  60. 60. 
    Carado A, Passarelli MK, Kozole J, Wingate JE, Winograd N, Loboda AV 2008. C60 secondary ion mass spectrometry with a hybrid-quadrupole orthogonal time-of-flight mass spectrometer. Anal. Chem. 80:7921–29
    [Google Scholar]
  61. 61. 
    Morales-Soto N, Dunham SJB, Baig NF, Ellis JF, Madukoma CS et al. 2018. Spatially dependent alkyl quinolone signaling responses to antibiotics in Pseudomonas aeruginosa swarms. J. Biol. Chem. 293:9544–52
    [Google Scholar]
  62. 62. 
    Smith DF, Robinson EW, Tolmachev AV, Heeren RMA, Paša-Tolić L 2011. C60 secondary ion Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 83:9552–56
    [Google Scholar]
  63. 63. 
    Fletcher JS, Rabbani S, Henderson A, Blenkinsopp P, Thompson SP et al. 2008. A new dynamic in mass spectral imaging of single biological cells. Anal. Chem. 80:9058–64
    [Google Scholar]
  64. 64. 
    Fisher GL, Bruinen AL, Ogrinc Potočnik N, Hammond JS, Bryan SR et al. 2016. A new method and mass spectrometer design for TOF-SIMS parallel imaging MS/MS. Anal. Chem. 88:6433–40
    [Google Scholar]
  65. 65. 
    Passarelli MK, Pirkl A, Moellers R, Grinfeld D, Kollmer F et al. 2016. The 3D OrbiSIMS-label-free metabolic imaging with subcellular lateral resolution and high mass-resolving power. Nat. Methods 14:1178–83
    [Google Scholar]
  66. 66. 
    Fletcher JS, Kotze HL, Armitage EG, Lockyer NP, Vickerman JC 2013. Evaluating the challenges associated with time-of-fight secondary ion mass spectrometry for metabolomics using pure and mixed metabolites. Metabolomics 9:535–44
    [Google Scholar]
  67. 67. 
    Phan NTN, Munem M, Ewing AG, Fletcher JS 2017. MS/MS analysis and imaging of lipids across Drosophila brain using secondary ion mass spectrometry. Anal. Bioanal. Chem. 409:3923–32
    [Google Scholar]
  68. 68. 
    Shi Y, Johnson J, Wang B, Chen B, Fisher GL et al. 2019. Mass spectrometric imaging reveals temporal and spatial dynamics of bioactive lipids in arteries undergoing restenosis. J. Proteome Res. 18:1669–78
    [Google Scholar]
  69. 69. 
    Sämfors S, Ewing AG, Fletcher JS 2018. Benefits of NaCl addition for ToF-SIMS analysis including the discrimination of diacylglyceride and triacylglyceride ions. Rapid Commun. Mass Spectrom. 32:1473–80
    [Google Scholar]
  70. 70. 
    Lanekoff I, Kurczy ME, Hill R, Fletcher JS, Vickerman JC et al. 2010. Time of flight mass spectrometry imaging of samples fractured in situ with a spring-loaded trap system. Anal. Chem. 82:6652–59
    [Google Scholar]
  71. 71. 
    Hill R, Blenkinsopp P, Thompson S, Vickerman J, Fletcher JS 2011. A new time-of-flight SIMS instrument for 3D imaging and analysis. Surf. Interface Anal. 43:506–9
    [Google Scholar]
  72. 72. 
    Angerer TB, Pour MD, Malmberg P, Fletcher JS 2015. Improved molecular imaging in rodent brain with time-of-flight-secondary ion mass spectrometry using gas cluster ion beams and reactive vapor exposure. Anal. Chem. 87:4305–13
    [Google Scholar]
  73. 73. 
    Angerer TB, Mohammadi AS, Fletcher JS 2016. Optimizing sample preparation for anatomical determination in the hippocampus of rodent brain by ToF-SIMS analysis. Biointerphases 11:02A319
    [Google Scholar]
  74. 74. 
    Le MUT, Son JG, Shon HK, Park JH, Lee SB, Lee TG 2018. Comparison between thaw-mounting and use of conductive tape for sample preparation in ToF-SIMS imaging of lipids in Drosophila microRNA-14 model. Biointerphases 13:03B414
    [Google Scholar]
  75. 75. 
    Tian H, Sparvero LJ, Amoscato AA, Bloom A, Bayir H et al. 2017. Gas cluster ion beam time-of-flight secondary ion mass spectrometry high-resolution imaging of cardiolipin speciation in the brain: identification of molecular losses after traumatic injury. Anal. Chem. 89:4611–19
    [Google Scholar]
  76. 76. 
    Tian H, Sparvero LJ, Amoscato AA, Bloom A, Bayır H et al. 2017. Gas cluster ion beam time-of-flight secondary ion mass spectrometry high-resolution imaging of cardiolipin speciation in the brain: identification of molecular losses after traumatic injury. Anal. Chem. 89:4611–19
    [Google Scholar]
  77. 77. 
    Thompson CE, Ellis J, Fletcher JS, Goodacre R, Henderson A et al. 2006. ToF-SIMS studies of Bacillus using multivariate analysis with possible identification and taxonomic applications. Appl. Surf. Sci. 252:6719–22
    [Google Scholar]
  78. 78. 
    Fletcher JS, Henderson A, Jarvis RM, Lockyer NP, Vickerman JC, Goodacre R 2006. Rapid discrimination of the causal agents of urinary tract infection using ToF-SIMS with chemometric cluster analysis. Appl. Surf. Sci. 252:6869–74
    [Google Scholar]
  79. 79. 
    Vaidyanathan S, Fletcher JS, Goodacre R, Lockyer NP, Micklefield J, Vickerman JC 2008. Subsurface biomolecular imaging of Streptomyces coelicolor using secondary ion mass spectrometry. Anal. Chem. 80:1942–51
    [Google Scholar]
  80. 80. 
    Wehrli PM, Angerer TB, Farewell A, Fletcher JS, Gottfries J 2016. Investigating the role of the stringent response in lipid modifications during the stationary phase in E. coli by direct analysis with time-of-flight-secondary ion mass spectrometry. Anal. Chem. 88:8680–88
    [Google Scholar]
  81. 81. 
    Nilsson KD, Palm M, Hood J, Sheriff J, Farewell A, Fletcher JS 2019. Chemical changes on, and through, the bacterial envelope in Escherichia coli mutants exhibiting impaired plasmid transfer identified using time-of-flight secondary ion mass spectrometry. Anal. Chem. 91:11355–61
    [Google Scholar]
  82. 82. 
    Tian H, Sparvero LJ, Blenkinsopp P, Amoscato AA, Watkins SC et al. 2019. Secondary-ion mass spectrometry images cardiolipins and phosphatidylethanolamines at the subcellular level. Angew. Chem. 131:3188–93
    [Google Scholar]
  83. 83. 
    Sheraz née Rabbani S, Barber A, Fletcher JS, Lockyer NP, Vickerman JC 2013. Enhancing secondary ion yields in time of flight-secondary ion mass spectrometry using water cluster primary beams. Anal. Chem. 85:5654–58
    [Google Scholar]
  84. 84. 
    Sheraz S, Barber A, Berrueta Razo I, Fletcher JS, Lockyer NP, Vickerman JC 2014. Prospect of increasing secondary ion yields in ToF-SIMS using water cluster primary ion beams. Surf. Interface Anal. 46:51–53
    [Google Scholar]
  85. 85. 
    Razo IB, Sheraz S, Henderson A, Lockyer NP, Vickerman JC 2015. Mass spectrometric imaging of brain tissue by time-of-flight secondary ion mass spectrometry—How do polyatomic primary beams C60+, Ar2000+, water-doped Ar2000+ and (H2O)6000+ compare. ? Rapid Commun. Mass Spectrom. 29:1851–62
    [Google Scholar]
  86. 86. 
    Mouhib T, Delcorte A, Poleunis C, Bertrand P 2010. Organic secondary ion mass spectrometry: signal enhancement by water vapor injection. J. Am. Soc. Mass Spectrom. 21:2005–10
    [Google Scholar]
  87. 87. 
    Conlan XA, Lockyer NP, Vickerman JC 2006. Is proton cationization promoted by polyatomic primary ion bombardment during time-of-flight secondary ion mass spectrometry analysis of frozen aqueous solutions. ? Rapid Commun. Mass Spectrom. 20:1327–34
    [Google Scholar]
  88. 88. 
    Piwowar AM, Fletcher JS, Kordys J, Lockyer NP, Winograd N, Vickerman JC 2010. Effects of cryogenic sample analysis on molecular depth profiles with TOF-secondary ion mass spectrometry. Anal. Chem. 82:8291–99
    [Google Scholar]
  89. 89. 
    Sheraz S, Tian H, Vickerman JC, Blenkinsopp P, Winograd N, Cumpson P 2019. Enhanced ion yields using high energy water cluster beams for secondary ion mass spectrometry analysis and imaging. Anal. Chem. 91:9058–68
    [Google Scholar]
  90. 90. 
    Chandra S, Ausserer WA, Morrison H 1987. Evaluation of matrix effects in ion microscopic analysis of freeze-fractured, freeze-dried cultured cells. J. Microsc. 148:223–39
    [Google Scholar]
  91. 91. 
    Chandra S, Morrison GH. 1995. Imaging ion and molecular transport at subcellular resolution by secondary ion mass spectrometry. Int. J. Mass Spectrom. Ion Process. 143:161–76
    [Google Scholar]
  92. 92. 
    Chandra S, Morrison GH. 1997. Evaluation of fracture planes and cell morphology in complementary fractures of cultured cells in the frozen-hydrated state by field-emission secondary electron microscopy: feasibility for ion localization and fluorescence imaging studies. J. Microsc. 186:232–45
    [Google Scholar]
  93. 93. 
    Chandra S, Smith DR, Morrison GH 2000. Subcellular imaging by dynamic SIMS ion microscopy. Anal. Chem. 72:104A–14A
    [Google Scholar]
  94. 94. 
    Levi-Setti R, Gavrilov KL, Neilly ME, Strick R, Strissel PL 2006. High resolution SIMS imaging of cations in mammalian cell mitosis, and in Drosophila polytene chromosomes. Appl. Surf. Sci. 252:6907–16
    [Google Scholar]
  95. 95. 
    Zhang DS, Piazza V, Perrin BJ, Rzadzinska AK, Poczatek JC et al. 2012. Multi-isotope imaging mass spectrometry reveals slow protein turnover in hair-cell stereocilia. Nature 481:520–24
    [Google Scholar]
  96. 96. 
    Wedlock LE, Kilburn MR, Liu R, Shaw JA, Berners-Price SJ, Farrell NP 2013. NanoSIMS multi-element imaging reveals internalisation and nucleolar targeting for a highly-charged polynuclear platinum compound. Chem. Commun. 49:6944–46
    [Google Scholar]
  97. 97. 
    Angelo M, Bendall SC, Finck R, Hale MB, Hitzman C et al. 2014. Multiplexed ion beam imaging of human breast tumors. Nat. Med. 20:436–42
    [Google Scholar]
  98. 98. 
    Frisz JF, Klitzing HA, Lou K, Hutcheon ID, Weber PK et al. 2013. Sphingolipid domains in the plasma membranes of fibroblasts are not enriched with cholesterol. J. Biol. Chem. 288:16855–61
    [Google Scholar]
  99. 99. 
    Yeager AN, Weber PK, Kraft ML 2016. Three-dimensional imaging of cholesterol and sphingolipids within a Madin-Darby canine kidney cell. Biointerphases 11:02A309
    [Google Scholar]
  100. 100. 
    Lanekoff I, Sjövall P, Ewing AG 2011. Relative quantification of phospholipid accumulation in the PC12 cell plasma membrane following phospholipid incubation using TOF-SIMS imaging. Anal. Chem. 83:5337–43
    [Google Scholar]
  101. 101. 
    Philipsen MH, Sämfors S, Malmberg P, Ewing AG 2018. Relative quantification of deuterated omega-3 and-6 fatty acids and their lipid turnover in PC12 cell membranes using TOF-SIMS. J. Lipid Res. 59:2098–107
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-091619-103512
Loading
/content/journals/10.1146/annurev-anchem-091619-103512
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error