1932

Abstract

High-resolution SIMS analysis can be used to explore a wide range of problems in material science and engineering materials, especially when chemical imaging with good spatial resolution (50–100 nm) can be combined with efficient detection of light elements and precise separation of isotopes and isobaric species. Here, applications of the NanoSIMS instrument in the analysis of inorganic materials are reviewed, focusing on areas of current interest in the development of new materials and degradation mechanisms under service conditions. We have chosen examples illustrating NanoSIMS analysis of grain boundary segregation, chemical processes in cracking, and corrosion of nuclear components. An area where NanoSIMS analysis shows potential is in the localization of light elements, in particular, hydrogen and deuterium. Hydrogen embrittlement is a serious problem for industries where safety is critical, including aerospace, nuclear, and oil/gas, so it is imperative to know where in the microstructure hydrogen is located. By charging the metal with deuterium, to avoid uncertainty in the origin of the hydrogen, the microstructural features that can trap hydrogenic species, such as precipitates and grain and phase boundaries, can be determined by NanoSIMS analysis on a microstructurally relevant scale.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-092019-032524
2020-06-12
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/anchem/13/1/annurev-anchem-092019-032524.html?itemId=/content/journals/10.1146/annurev-anchem-092019-032524&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Honig RE. 1958. Sputtering of surfaces by positive ion beams of low energy. J. Appl. Phys. 29:549–55
    [Google Scholar]
  2. 2. 
    Liebl H. 1967. Ion microprobe mass analyzer. J. Appl. Phys. 38:5277–83
    [Google Scholar]
  3. 3. 
    Castaing R, Slodzian G. 1962. Optique corpusculaire-premiers essais de microanalyse par emission ionique secondaire. C. R. Hebd. Seances Acad. Sci. 255:1893
    [Google Scholar]
  4. 4. 
    Benninghoven A, Okano J, Shimizu R, Werner H 1983. Secondary Ion Mass Spectrometry SIMS IV. Proceedings of the Fourth International Conference, Osaka, Japan, Nov. 13–19 Berlin: Springer-Verlag
  5. 5. 
    Hoppe P, Cohen S, Meibom A 2013. NanoSIMS: technical aspects and applications in cosmochemistry and biological geochemistry. Geostandards Geoanal. Res. 37:111–54
    [Google Scholar]
  6. 6. 
    Malherbe J, Penen F, Isaure M-P, Frank J, Hause G et al. 2016. A new radio frequency plasma oxygen primary ion source on Nano secondary ion mass spectrometry for improved lateral resolution and detection of electropositive elements at single cell level. Anal. Chem. 88:7130–36
    [Google Scholar]
  7. 7. 
    Ludwig T, Stalder R. 2007. A new method to eliminate the influence of in situ contamination in SIMS analysis of hydrogen. J. Anal. Atom. Spectrom. 22:1415–19
    [Google Scholar]
  8. 8. 
    Magee C, Botnick E. 1981. Hydrogen depth profiling using SIMS—problems and their solutions. J. Vac. Sci. Technol. A 19:47–52
    [Google Scholar]
  9. 9. 
    Zhang Z, Moore KL, McMahon G, Morana R, Preuss M 2019. On the role of precipitates in hydrogen trapping and hydrogen embrittlement of a nickel-based superalloy. Corros. Sci. 146:58–69
    [Google Scholar]
  10. 10. 
    Turnbull A, Hutchings R, Ferriss D 1997. Modelling of thermal desorption of hydrogen from metals. Mater. Sci. Eng. A 238:317–28
    [Google Scholar]
  11. 11. 
    Turnbull A, Ballinger R, Hwang I, Morra M, Psaila-Dombrowski M, Gates R 1992. Hydrogen transport in nickel-base alloys. Metall. Trans. A 23:3231–44
    [Google Scholar]
  12. 12. 
    Xu J, Sun X, Liu Q, Chen W 1994. Hydrogen permeation behavior in IN718 and GH761 superalloys. Metall. Mater. Trans. A 25:539–44
    [Google Scholar]
  13. 13. 
    Moore KL, Schröder M, Grovenor CR 2012. Imaging secondary ion mass spectroscopy. Handb. Nanoscopy 1–2:709–44
    [Google Scholar]
  14. 14. 
    Tarzimoghadam Z, Rohwerder M, Merzlikin SV, Bashir A, Yedra L et al. 2016. Multi-scale and spatially resolved hydrogen mapping in a Ni–Nb model alloy reveals the role of the δ phase in hydrogen embrittlement of alloy 718. Acta Mater 109:69–81
    [Google Scholar]
  15. 15. 
    Motta AT, Capolungo L, Chen L-Q, Cinbiz MN, Daymond MR et al. 2019. Hydrogen in zirconium alloys: a review. J. Nuclear Mater. 518:440–60
    [Google Scholar]
  16. 16. 
    Li K, Aarholt T, Liu J, Hulme H, Garner A et al. 2019. 3D-characterization of deuterium distributions in zirconium oxide scale using high-resolution SIMS. Appl. Surface Sci. 464:311–20
    [Google Scholar]
  17. 17. 
    Hu J, Liu J, Lozano-Perez S, Grovenor C, Christensen M et al. 2019. Hydrogen pickup during oxidation in aqueous environments: the role of nano-pores and nano-pipes in zirconium oxide films. Acta Mater 180:105–15
    [Google Scholar]
  18. 18. 
    Ni N, Lozano-Perez S, Jenkins ML, English C, Smith GDW et al. 2010. Porosity in oxides on zirconium fuel cladding alloys, and its importance in controlling oxidation rates. Scr. Mater. 62:564–67
    [Google Scholar]
  19. 19. 
    Couet A, Borrel L, Liu J, Hu J, Grovenor C 2019. An integrated modeling and experimental approach to study hydrogen pickup mechanism in zirconium alloys. Corros. Sci. 159:108134
    [Google Scholar]
  20. 20. 
    Wilson RG. 1995. SIMS quantification in Si, GaAs, and diamond—an update. Int. J. Mass Spectrom. Ion Process. 143:43–49
    [Google Scholar]
  21. 21. 
    Xu X, Takada K, Watanabe K, Sakaguchi I, Akatsuka K et al. 2011. Self-organized core–shell structure for high-power electrode in solid-state lithium batteries. Chem. Mater. 23:3798–804
    [Google Scholar]
  22. 22. 
    Chung EH, Han HJ, Khan FN, Hong TE, Kim HG et al. 2013. Structural and electrochemical properties of carbon-coated Li4Ti5O12 anodic material obtained using chitosan for potential lithium ion rechargeable battery applications. J. Ceram. Process. Res. 14:304–10
    [Google Scholar]
  23. 23. 
    Shim J-H, Lee J, Han SY, Lee S 2015. Synergistic effects of coating and doping for lithium ion battery cathode materials: synthesis and characterization of lithium titanate-coated LiCoO2 with Mg doping. Electrochim. Acta 186:201–8
    [Google Scholar]
  24. 24. 
    Suzuki Y, Watanabe K, Sakuma S, Imanishi N 2016. Electrochemical performance of an all-solid-state lithium–oxygen battery under humidified oxygen. Solid State Ionics 289:72–76
    [Google Scholar]
  25. 25. 
    Martin AJ, Mitchell S, Kunze K, Weston K, Pérez-Ramírez J 2017. Visualising compositional heterogeneity during the scale up of multicomponent zeolite bodies. Mater. Horizons 4:857–61
    [Google Scholar]
  26. 26. 
    Wang Z, Liu J, Zhou Y, Neeway JJ, Schreiber DK et al. 2016. Nanoscale imaging of Li and B in nuclear waste glass, a comparison of ToF‐SIMS, NanoSIMS, and APT. Surf. Interface Anal. 48:1392–401
    [Google Scholar]
  27. 27. 
    Karlsson L, Nordén H, Odelius H 1988. Non-equilibrium grain boundary segregation of boron in austenitic stainless steel—1. Large scale segregation behaviour. Acta Metall 36:1–12
    [Google Scholar]
  28. 28. 
    Ahmed S, Titchmarsh JM, Kilburn MR, Grovenor CRM 2006. Examination of the influence of boron on the microstructure and properties of low C ferritic steels using NanoSIMS and TEM. Appl. Surface Sci. 252:7062–65
    [Google Scholar]
  29. 29. 
    Valle N, Drillet J, Pic A, Migeon HN 2011. Nano‐SIMS investigation of boron distribution in steels. Surf. Interface Anal. 43:573–75
    [Google Scholar]
  30. 30. 
    Seol JB, Lim NS, Lee BH, Renaud L, Park CG 2011. Atom probe tomography and nano secondary ion mass spectroscopy investigation of the segregation of boron at austenite grain boundaries in 0.5 wt.% carbon steels. Metals Mater. Int. 17:413–16
    [Google Scholar]
  31. 31. 
    Jeong H-J, Kim M-J, Kim D-W, Suh D-W, Oh J-K, Han HN 2015. Transformation plasticity in boron-bearing low carbon steel. Metals Mater. Int. 21:799–804
    [Google Scholar]
  32. 32. 
    Kontis P, Yusof HAM, Pedrazzini S, Danaie M, Moore KL et al. 2016. On the effect of boron on grain boundary character in a new polycrystalline superalloy. Acta Mater 103:688–99
    [Google Scholar]
  33. 33. 
    Wang YC, Schreiber DK, Neeway JJ, Thevuthasan S, Evans JE et al. 2014. NanoSIMS imaging alteration layers of a leached SON68 glass via a FIB‐made wedged crater. Surf. Interface Anal. 46:233–37
    [Google Scholar]
  34. 34. 
    Kumar P, Pfeffer M, Willsch B, Eibl O, Yedra L et al. 2017. Direct imaging of dopant distributions across the Si-metallization interfaces in solar cells: correlative nano-analytics by electron microscopy and NanoSIMS. Solar Energy Mater. Solar Cells 160:398–409
    [Google Scholar]
  35. 35. 
    Lorenzo F, Aebersold AB, Morales-Masis M, Ledinský M, Escrig S et al. 2017. Direct imaging of dopant distribution in polycrystalline ZnO films. ACS Appl. Mater. Interfaces 9:7241–48
    [Google Scholar]
  36. 36. 
    Li Y, Choi P, Borchers C, Westerkamp S, Goto S et al. 2011. Atomic-scale mechanisms of deformation-induced cementite decomposition in pearlite. Acta Mater 59:3965–77
    [Google Scholar]
  37. 37. 
    Valle N, Drillet J, Bouaziz O, Migeon HN 2006. Study of the carbon distribution in multi-phase steels using the NanoSIMS 50. Appl. Surface Sci. 252:7051–53
    [Google Scholar]
  38. 38. 
    Seol J-B, Lee BH, Choi P, Lee SG, Park CG 2013. Combined nano-SIMS/AFM/EBSD analysis and atom probe tomography, of carbon distribution in austenite/ε-martensite high-Mn steels. Ultramicroscopy 132:248–57
    [Google Scholar]
  39. 39. 
    Fortuna E, Sikorski K, Kurzydlowski KJ 2004. Experimental studies of oxygen and carbon segregation at the interfacial boundaries of a 90W–7Ni–3Fe tungsten heavy alloy. Mater. Charact. 52:323–29
    [Google Scholar]
  40. 40. 
    Matsuda Y, Anada H, Bishop HE 1994. 18O tracer study of the oxidation of zircaloy-4 in steam. Surf. Interface Anal 21:349–55
    [Google Scholar]
  41. 41. 
    Yardley SS, Moore KL, Ni N, Wei JF, Lyon S et al. 2013. An investigation of the oxidation behaviour of zirconium alloys using isotopic tracers and high resolution SIMS. J. Nuclear Mater. 443:436–43
    [Google Scholar]
  42. 42. 
    Quadakkers WJ, Holzbrecher H, Briefs KG, Beske H 1989. Differences in growth mechanisms of oxide scales formed on ODS and conventional wrought alloys. Oxid. Metals 32:67–88
    [Google Scholar]
  43. 43. 
    Tsai SC, Huntz AM, Dolin C 1996. Growth mechanism of Cr2O3 scales: oxygen and chromium diffusion, oxidation kinetics and effect of yttrium. Mater. Sci. Eng. A 212:6–13
    [Google Scholar]
  44. 44. 
    Falk-Windisch H, Malmberg P, Sattari M, Svensson J-E, Froitzheim J 2018. Determination of the oxide scale growth mechanism using 18O-tracer experiments in combination with transmission electron microscopy and nanoscale secondary ion mass spectrometry. Mater. Char. 136:128–33
    [Google Scholar]
  45. 45. 
    Nagasawa T, Hanamura K. 2017. Microstructure-scaled active sites imaging of a solid oxide fuel cell composite cathode. J. Power Sources 367:57–62
    [Google Scholar]
  46. 46. 
    Nagasawa T, Hanamura K. 2019. Investigation of oxide ion flux at cathode/electrolyte interface in solid oxide fuel cell. J. Power Sources 412:695–700
    [Google Scholar]
  47. 47. 
    Li G, Li L, Hao J, Zheng J, Tian W, Li X 2016. Investigation of oxygen diffusion behavior in terbium using 18O2 isotopic tracking by high resolution SIMS. Mater. Lett. 176:253–56
    [Google Scholar]
  48. 48. 
    Preuss M, Frankel P, Lozano-Perez S, Hudson D, Polatidis E et al. 2012. Studies regarding corrosion mechanisms in zirconium alloys. Zirconium in the Nuclear Industry: 16th International Symposium M Limbäck, P Barbéris 649–81 West Conshohocken, PA: ASTM Int.
    [Google Scholar]
  49. 49. 
    Motta AT, Couet A, Comstock RJ 2015. Corrosion of zirconium alloys used for nuclear fuel cladding. Annu. Rev. Mater. Res. 45:311–43
    [Google Scholar]
  50. 50. 
    Liu J, Yu H, Karamched P, Hu J, He G et al. 2019. Mechanism of the α-Zr to hexagonal-ZrO transformation and its impact on the corrosion performance of nuclear Zr alloys. Acta Mater 179:328–41
    [Google Scholar]
  51. 51. 
    Ni N, Hudson D, Wei J, Wang P, Lozano-Perez S et al. 2012. How the crystallography and nanoscale chemistry of the metal/oxide interface develops during the aqueous oxidation of zirconium cladding alloys. Acta Mater 60:7132–49
    [Google Scholar]
  52. 52. 
    Sayers J, Lozano-Perez S, Nicholls RJ, Ortner S 2019. A high-resolution characterization of the oxide-metal interface in Zircaloy-4 and its relation to the oxidation and hydrogen pickup mechanisms. J. Nuclear Mater. 525:72–82
    [Google Scholar]
  53. 53. 
    Fiducia TA, Li K, Munshi AH, Barth K, Sampath WS et al. 2018. 3D distributions of chlorine and sulphur impurities in a thin-film cadmium telluride solar cell. MRS Adv 3:3287–92
    [Google Scholar]
  54. 54. 
    Fiducia TAM, Mendis BG, Li K, Grovenor CRM, Munshi AH et al. 2019. Understanding the role of selenium in defect passivation for highly efficient selenium-alloyed cadmium telluride solar cells. Nat. Energy 4:504–11
    [Google Scholar]
  55. 55. 
    Kranz L, Gretener C, Perrenoud J, Jaeger D, Gerstl SS et al. 2014. Tailoring impurity distribution in polycrystalline CdTe solar cells for enhanced minority carrier lifetime. Adv. Energy Mater. 4:1301400
    [Google Scholar]
  56. 56. 
    Ohta N, Takada K, Sakaguchi I, Zhang L, Ma R et al. 2007. LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries. Electrochem. Commun. 9:1486–90
    [Google Scholar]
  57. 57. 
    Wang X, Li X, Zhang L, Yoon Y, Weber PK et al. 2009. N-doping of graphene through electrothermal reactions with ammonia. Science 324:768–71
    [Google Scholar]
  58. 58. 
    Nazabal V, Starecki F, Doualan JL, Němec P, Camy P et al. 2016. Luminescence at 2.8 μm: Er3+-doped chalcogenide micro-waveguide. Opt. Mater. 58:390–97
    [Google Scholar]
  59. 59. 
    Ogino T, Williams JR, Watanabe K, Sakaguchi I, Hishita S et al. 2014. Effect of crystalline polarity on microstructure and optoelectronic properties of gallium-doped zinc oxide films deposited onto glass substrates. Thin Solid Films 552:56–61
    [Google Scholar]
  60. 60. 
    Sidiroglou F, Huntington ST, Roberts A, Stern R, Fletcher IR, Baxter GW 2006. Simultaneous multidopant investigation of rare-earth-doped optical fibers by an ion microprobe. Opt. Lett. 31:3258–60
    [Google Scholar]
  61. 61. 
    Ha MG, Jeong J-S, Han K-R, Kim Y, Yang H-S et al. 2012. Characterizations and optical properties of Sm3+-doped Sr2SiO4 phosphors. Ceram. Int. 38:5521–26
    [Google Scholar]
  62. 62. 
    Ha MG, Byeon MR, Hong TE, Bae JS, Kim Y et al. 2012. Sm3+-doped CaTiO3 phosphor: synthesis, structure, and photoluminescent properties. Ceram. Int. 38:1365–70
    [Google Scholar]
  63. 63. 
    Haigh S, Kovac P, Prikhna T, Savchuk YM, Kilburn M et al. 2005. Chemical interactions in Ti doped MgB2 superconducting bulk samples and wires. Supercond. Sci. 18:1190
    [Google Scholar]
  64. 64. 
    Briant C, Banerji S. 1978. Intergranularfailure in steel: the role of grain-boundary composition. Int. Metals Rev. 23:164–99
    [Google Scholar]
  65. 65. 
    Williams T, Stoneham A, Harries D 1976. The segregation of boron to grain boundaries in solution-treated Type 316 austenitic stainless steel. Metal Sci 10:14–19
    [Google Scholar]
  66. 66. 
    Lejcek P. 2010. Grain Boundary Segregation in Metals New York: Springer Sci. Bus. Media
  67. 67. 
    Ott N, Yan Y, Ramamurthy S, Kairy S, Birbilis N 2016. Auger electron spectroscopy analysis of grain boundary microchemistry in an Al–Cu–Li alloy. Scr. Mater. 119:17–20
    [Google Scholar]
  68. 68. 
    Lozano-Perez S, Schröder M, Yamada T, Terachi T, English CA, Grovenor CRM 2008. Using NanoSIMS to map trace elements in stainless steels from nuclear reactors. Appl. Surface Sci. 255:1541–43
    [Google Scholar]
  69. 69. 
    Valle N, Drillet J, Pic A, Migeon H-N 2011. Nano-SIMS investigation of boron distribution in steels. Surf. Interface Anal. 43:573–75
    [Google Scholar]
  70. 70. 
    Jeong EH, Park S-G, Kim SH, Do Kim Y 2015. Evaluation of the effect of B and N on the microstructure of 9Cr–2W steel during an aging treatment for SFR fuel cladding tubes. J. Nuclear Mater. 467:527–33
    [Google Scholar]
  71. 71. 
    Schreiber DK, Olszta MJ, Saxey DW, Kruska K, Moore K et al. 2013. Examinations of oxidation and sulfidation of grain boundaries in alloy 600 exposed to simulated pressurized water reactor primary water. Microscopy Microanal 19:676–87
    [Google Scholar]
  72. 72. 
    Alam T, Felfer PJ, Chaturvedi M, Stephenson LT, Kilburn MR, Cairney JM 2012. Segregation of B, P, and C in the Ni-based superalloy, inconel 718. Metall. Mater. Trans. A 43:2183–91
    [Google Scholar]
  73. 73. 
    Christien F, Downing C, Moore KL, Grovenor CRM 2012. Quantification of grain boundary equilibrium segregation by NanoSIMS analysis of bulk samples. Surf. Interface Anal. 44:377–87
    [Google Scholar]
  74. 74. 
    Zhu K, Magar C, Huang MX 2017. Abnormal relationship between Ms temperature and prior austenite grain size in Al-alloyed steels. Scr. Mater. 134:11–14
    [Google Scholar]
  75. 75. 
    Jo M-G, Madakashira PP, Suh J-Y, Han HN 2016. Effect of oxygen and nitrogen on microstructure and mechanical properties of vanadium. Mater. Sci. Eng. A 675:92–98
    [Google Scholar]
  76. 76. 
    Bai MW, Jiang HB, Chen Y, Chen YQ, Grovenor C et al. 2016. Migration of sulphur in thermal barrier coatings during heat treatment. Mater. Des. 97:364–71
    [Google Scholar]
  77. 77. 
    Lozano-Perez S, Kilburn MR, Yamada T, Terachi T, English CA, Grovenor CRM 2008. High-resolution imaging of complex crack chemistry in reactor steels by NanoSIMS. J. Nuclear Mater. 374:61–68
    [Google Scholar]
  78. 78. 
    Pedrazzini S, Child D, Aarholt T, Ball C, Dowd M et al. 2018. On the effect of environmental exposure on dwell fatigue performance of a fine-grained nickel-based superalloy. Metall. Mater. Trans. A 49:3908–22
    [Google Scholar]
  79. 79. 
    Németh A, Crudden D, Armstrong D, Collins D, Li K et al. 2017. Environmentally-assisted grain boundary attack as a mechanism of embrittlement in a nickel-based superalloy. Acta Mater 126:361–71
    [Google Scholar]
  80. 80. 
    Gillen C, Garner A, Tejland P, Frankel P 2019. High resolution crystallographic and chemical characterisation of iodine induced stress corrosion crack tips formed in irradiated and non-irradiated zirconium alloys. J. Nuclear Mater. 519:166–72
    [Google Scholar]
  81. 81. 
    Hörnqvist M, Viskari L, Moore KL, Stiller K 2014. High-temperature crack growth in a Ni-base superalloy during sustained load. Mater. Sci. Eng. A 609:131–40
    [Google Scholar]
  82. 82. 
    Viskari L, Hörnqvist M, Moore KL, Cao Y, Stiller K 2013. Intergranular crack tip oxidation in a Ni-base superalloy. Acta Mater 61:3630–39
    [Google Scholar]
  83. 83. 
    Solano-Alvarez W, Pickering E, Peet MJ, Moore K, Jaiswal J et al. 2016. Soft novel form of white-etching matter and ductile failure of carbide-free bainitic steels under rolling contact stresses. Acta Mater 121:215–26
    [Google Scholar]
  84. 84. 
    Soldi L, Gossé S, Laplace A, Bonnaillie P, Schorne-Pinto J, Roskosz M 2019. Experimental study and thermodynamic modelling of the Cu-Fe-Si-U sub-systems. J. Alloys Comp. 799:239–46
    [Google Scholar]
  85. 85. 
    Crum J, Maio V, McCloy J, Scott C, Riley B et al. 2014. Cold crucible induction melter studies for making glass ceramic waste forms: a feasibility assessment. J. Nuclear Mater. 444:481–92
    [Google Scholar]
  86. 86. 
    Sessegolo L, Verney-Carron A, Saheb M, Remusat L, Gonzalez-Cano A et al. 2018. Long-term weathering rate of stained-glass windows using H and O isotopes. NPJ Mater. Degrad. 2:17
    [Google Scholar]
  87. 87. 
    Weisz DG, Jacobsen B, Marks NE, Knight KB, Isselhardt BH et al. 2017. Deposition of vaporized species onto glassy fallout from a near-surface nuclear test. Geochim. Cosmochim. Acta 201:410–26
    [Google Scholar]
  88. 88. 
    Pierce EM, Rodriguez EA, Calligan LJ, Shaw WJ, McGrail BP 2008. An experimental study of the dissolution rates of simulated aluminoborosilicate waste glasses as a function of pH and temperature under dilute conditions. Appl. Geochem. 23:2559–73
    [Google Scholar]
  89. 89. 
    Marceau RK, Gutierrez-Urrutia I, Herbig M, Moore KL, Lozano-Perez S, Raabe D 2013. Multi-scale correlative microscopy investigation of both structure and chemistry of deformation twin bundles in Fe–Mn–C steel. Microsc. Microanal. 19:1581–85
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-092019-032524
Loading
/content/journals/10.1146/annurev-anchem-092019-032524
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error