1932

Abstract

T cells are an essential component of the adaptive immune system. Over the last 15 years, a constantly growing toolbox with which to study T cell biology in pigs has allowed detailed investigations on these cells in various viral and bacterial infections. This review provides an overview on porcine CD4, CD8, and γδ T cells and the current knowledge on the differentiation of these cells following antigen encounter. Where available, the responses of these cells to viral infections like porcine reproductive and respiratory syndrome virus, classical swine fever virus, swine influenza A virus, and African swine fever virus are outlined. In addition, knowledge on the porcine T cell response to bacterial infections like and Typhimurium is reviewed. For CD4 T cells, the response to the outlined infections is reflected toward the Th1/Th2/Th17/Tfh/Treg paradigm for functional differentiation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-013120-044226
2022-02-15
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/animal/10/1/annurev-animal-013120-044226.html?itemId=/content/journals/10.1146/annurev-animal-013120-044226&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Meurens F, Summerfield A, Nauwynck H, Saif L, Gerdts V. 2012. The pig: a model for human infectious diseases. Trends Microbiol. 20:50–57
    [Google Scholar]
  2. 2. 
    Hammer SE, Ho C-S, Ando A, Rogel-Gaillard C, Charles M et al. 2020. Importance of the major histocompatibility complex (swine leukocyte antigen) in swine health and biomedical research. Annu. Rev. Anim. Biosci. 8:171–98
    [Google Scholar]
  3. 3. 
    Käser T. 2021. Swine as biomedical animal model for T-cell research—success and potential for transmittable and non-transmittable human diseases. Mol. Immunol. 135:95–115
    [Google Scholar]
  4. 4. 
    Bertho N, Meurens F. 2021. The pig as a medical model for acquired respiratory diseases and dysfunctions: an immunological perspective. Mol. Immunol. 135:254–67
    [Google Scholar]
  5. 5. 
    Bonilla FA, Oettgen HC. 2010. Adaptive immunity. J. Allergy Clin. Immunol. 125:S33–S40
    [Google Scholar]
  6. 6. 
    Gerner W, Talker SC, Koinig HC, Sedlak C, Mair KH, Saalmüller A. 2015. Phenotypic and functional differentiation of porcine αβ T cells: current knowledge and available tools. Mol. Immunol. 66:3–13
    [Google Scholar]
  7. 7. 
    Pescovitz MD, Lunney JK, Sachs DH. 1985. Murine anti-swine T4 and T8 monoclonal antibodies: distribution and effects on proliferative and cytotoxic T cells. J. Immunol. 134:37–44
    [Google Scholar]
  8. 8. 
    Saalmüller A, Reddehase MJ, Bühring HJ, Jonjić S, Koszinowski UH 1987. Simultaneous expression of CD4 and CD8 antigens by a substantial proportion of resting porcine T lymphocytes. Eur. J. Immunol. 17:1297–301
    [Google Scholar]
  9. 9. 
    Saalmüller A, Werner T, Fachinger V 2002. T-helper cells from naive to committed. Vet. Immunol. Immunopathol. 87:137–45
    [Google Scholar]
  10. 10. 
    Vatzia E, Pierron A, Saalmüller A, Mayer E, Gerner W 2019. Deoxynivalenol affects proliferation and expression of activation-related molecules in major porcine T-cell subsets. Toxins 11:11644
    [Google Scholar]
  11. 11. 
    Reutner K, Leitner J, Müllebner A, Ladinig A, Essler SE et al. 2013. CD27 expression discriminates porcine T helper cells with functionally distinct properties. Vet. Res. 44:18
    [Google Scholar]
  12. 12. 
    Zuckermann FA, Husmann RJ. 1996. Functional and phenotypic analysis of porcine peripheral blood CD4/CD8 double-positive T cells. Immunology 87:500–12
    [Google Scholar]
  13. 13. 
    Borghetti P, De Angelis E, Saleri R, Cavalli V, Cacchioli A et al. 2006. Peripheral T lymphocyte changes in neonatal piglets: relationship with growth hormone (GH), prolactin (PRL) and cortisol changes. Vet. Immunol. Immunopathol. 110:17–25
    [Google Scholar]
  14. 14. 
    Grierson SS, King DP, Tucker AW, Donadeu M, Mellencamp MA et al. 2007. Ontogeny of systemic cellular immunity in the neonatal pig: correlation with the development of post-weaning multisystemic wasting syndrome. Vet. Immunol. Immunopathol. 119:254–68
    [Google Scholar]
  15. 15. 
    Inman CF, Laycock GM, Mitchard L, Harley R, Warwick J et al. 2012. Neonatal colonisation expands a specific intestinal antigen-presenting cell subset prior to CD4 T-cell expansion, without altering T-cell repertoire. PLOS ONE 7:e33707
    [Google Scholar]
  16. 16. 
    Talker SC, Käser T, Reutner K, Sedlak C, Mair KH et al. 2013. Phenotypic maturation of porcine NK- and T-cell subsets. Dev. Comp. Immunol. 40:51–68
    [Google Scholar]
  17. 17. 
    Rodríguez-Gómez IM, Talker SC, Käser T, Stadler M, Hammer SE et al. 2016. Expression of T-bet, Eomesodermin and GATA-3 in porcine αβ T cells. Dev. Comp. Immunol. 60:115–26
    [Google Scholar]
  18. 18. 
    Stepanova H, Samankova P, Leva L, Sinkora J, Faldyna M. 2007. Early postnatal development of the immune system in piglets: the redistribution of T lymphocyte subsets. Cell. Immunol. 249:73–79
    [Google Scholar]
  19. 19. 
    Juul-Madsen HR, Jensen KH, Nielsen J, Damgaard BM. 2010. Ontogeny and characterization of blood leukocyte subsets and serum proteins in piglets before and after weaning. Vet. Immunol. Immunopathol. 133:95–108
    [Google Scholar]
  20. 20. 
    Hemmink JD, Morgan SB, Aramouni M, Everett H, Salguero FJ et al. 2016. Distinct immune responses and virus shedding in pigs following aerosol, intra-nasal and contact infection with pandemic swine influenza A virus, A(H1N1)09. Vet. Res. 47:103
    [Google Scholar]
  21. 21. 
    Morgan SB, Hemmink JD, Porter E, Harley R, Shelton H et al. 2016. Aerosol delivery of a candidate universal influenza vaccine reduces viral load in pigs challenged with pandemic H1N1 virus. J. Immunol. 196:5014–23
    [Google Scholar]
  22. 22. 
    Talker SC, Koinig HC, Stadler M, Graage R, Klingler E et al. 2015. Magnitude and kinetics of multifunctional CD4+ and CD8β+ T cells in pigs infected with swine influenza A virus. Vet. Res. 46:52
    [Google Scholar]
  23. 23. 
    Talker SC, Stadler M, Koinig H, Mair KH, Rodríguez-Gómez IM et al. 2016. Influenza A virus infection in pigs attracts multifunctional and cross-reactive T cells to the lung. J. Virol. 90:9364–82
    [Google Scholar]
  24. 24. 
    Kick AR, Amaral AF, Cortes LM, Fogle JE, Crisci E et al. 2019. The T-cell response to type 2 porcine reproductive and respiratory syndrome virus (PRRSV). Viruses 11:796
    [Google Scholar]
  25. 25. 
    Kick AR, Wolfe ZC, Amaral AF, Cortes LM, Almond GW et al. 2021. Maternal autogenous inactivated virus vaccination boosts immunity to PRRSV in piglets. Vaccines 9:106
    [Google Scholar]
  26. 26. 
    Amaral AF, Rahman KS, Kick AR, Cortes LM, Robertson J et al. 2020. Mucosal vaccination with UV-inactivated Chlamydia suis in pre-exposed outbred pigs decreases pathogen load and induces CD4 T-cell maturation into IFN-γ+ effector memory cells. Vaccines 8:353
    [Google Scholar]
  27. 27. 
    Gerner W, Denyer MS, Takamatsu HH, Wileman TE, Wiesmüller KH et al. 2006. Identification of novel foot-and-mouth disease virus specific T-cell epitopes in c/c and d/d haplotype miniature swine. Virus Res. 121:223–28
    [Google Scholar]
  28. 28. 
    Koinig HC, Talker SC, Stadler M, Ladinig A, Graage R et al. 2015. PCV2 vaccination induces IFN-γ/TNF-α co-producing T cells with a potential role in protection. Vet. Res. 46:20
    [Google Scholar]
  29. 29. 
    Saalmüller A, Weiland F, Reddehase MJ. 1991. Resting porcine T lymphocytes expressing class II major histocompatibility antigen. Immunobiology 183:102–14
    [Google Scholar]
  30. 30. 
    Fachinger V, Schlapp T, Saalmüller A. 2000. Evidence for a parapox ovis virus-associated superantigen. Eur. J. Immunol. 30:2962–71
    [Google Scholar]
  31. 31. 
    Fouhse JM, Yang K, More-Bayona J, Gao Y, Goruk S et al. 2019. Neonatal exposure to amoxicillin alters long-term immune response despite transient effects on gut-microbiota in piglets. Front. Immunol. 10:2059
    [Google Scholar]
  32. 32. 
    Hlavova K, Stepanova H, Faldyna M. 2014. The phenotype and activation status of T and NK cells in porcine colostrum suggest these are central/effector memory cells. Vet. J. 202:477–82
    [Google Scholar]
  33. 33. 
    Moreno S, Álvarez B, Martínez P, Uenishi H, Revilla C et al. 2013. Analysis of chemokine receptor CCR7 expression on porcine blood T lymphocytes using a CCL19-Fc fusion protein. Dev. Comp. Immunol. 39:207–13
    [Google Scholar]
  34. 34. 
    Revilla C, Chamorro S, Alvarez B, Pérez C, Ezquerra A et al. 2005. Analysis of functional heterogeneity of porcine memory CD4+ T cells. Dev. Comp. Immunol. 29:479–88
    [Google Scholar]
  35. 35. 
    Rodríguez-Carreño MP, López-Fuertes L, Revilla C, Ezquerra A, Alonso F, Dominguez J 2002. Phenotypic characterization of porcine IFN-γ-producing lymphocytes by flow cytometry. J. Immunol. Methods 259:171–79
    [Google Scholar]
  36. 36. 
    Haverson K, Bailey M, Stokes CR 1999. T-cell populations in the pig intestinal lamina propria: memory cells with unusual phenotypic characteristics. Immunology 96:66–73
    [Google Scholar]
  37. 37. 
    Stepanova H, Mensikova M, Chlebova K, Faldyna M 2012. CD4+ and γδTCR+ T lymphocytes are sources of interleukin-17 in swine. Cytokine 58:152–57
    [Google Scholar]
  38. 38. 
    Bailey M, Plunkett F, Clarke A, Sturgess D, Haverson K, Stokes C 1998. Activation of T cells from the intestinal lamina propria of the pig. Scand. J. Immunol. 48:177–82
    [Google Scholar]
  39. 39. 
    Schmidt S, Sassu EL, Vatzia E, Pierron A, Lagler J et al. 2020. Vaccination and infection of swine with Salmonella Typhimurium induces a systemic and local multifunctional CD4+ T-cell response. Front. Immunol. 11:603089
    [Google Scholar]
  40. 40. 
    Wiarda JE, Trachsel JM, Bond ZF, Byrne KA, Gabler NK, Loving CL. 2020. Intraepithelial T cells diverge by intestinal location as pigs age. Front. Immunol. 11:1139
    [Google Scholar]
  41. 41. 
    Franzoni G, Kurkure NV, Edgar DS, Everett HE, Gerner W et al. 2013. Assessment of the phenotype and functionality of porcine CD8 T cell responses following vaccination with live attenuated classical swine fever virus (CSFV) and virulent CSFV challenge. Clin. Vaccine Immunol. 20:1604–16
    [Google Scholar]
  42. 42. 
    Stas MR, Koch M, Stadler M, Sawyer S, Sassu EL et al. 2020. NK and T cell differentiation at the maternal-fetal interface in sows during late gestation. Front. Immunol. 11:582065
    [Google Scholar]
  43. 43. 
    Uehlein S, Ding X, Flößer J, Schmidt S, Steitz J et al. 2021. Human-like response of pig T cells to superagonistic anti-CD28 monoclonal antibody. J. Immunol. 201:(10)2473–88
    [Google Scholar]
  44. 44. 
    Tian Y, Babor M, Lane J, Schulten V, Patil VS et al. 2017. Unique phenotypes and clonal expansions of human CD4 effector memory T cells re-expressing CD45RA. Nat. Commun. 8:1473
    [Google Scholar]
  45. 45. 
    Milburn JV, Hoog AM, Winkler S, van Dongen KA, Leitner J et al. 2021. Expression of CD9 on porcine lymphocytes and its relation to T cell differentiation and cytokine production. Dev. Comp. Immunol. 121:104080
    [Google Scholar]
  46. 46. 
    Ebner F, Schwiertz P, Steinfelder S, Pieper R, Zentek J et al. 2017. Pathogen-reactive T helper cell analysis in the pig. Front. Immunol. 8:565
    [Google Scholar]
  47. 47. 
    Sallusto F, Lanzavecchia A. 2009. Heterogeneity of CD4+ memory T cells: functional modules for tailored immunity. Eur. J. Immunol. 39:2076–82
    [Google Scholar]
  48. 48. 
    Zhou L, Chong MMW, Littman DR 2009. Plasticity of CD4+ T cell lineage differentiation. Immunity 30:646–55
    [Google Scholar]
  49. 49. 
    O'Shea JJ, Paul WE 2010. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science 327:1098–102
    [Google Scholar]
  50. 50. 
    Ruterbusch M, Pruner KB, Shehata L, Pepper M. 2020. In vivo CD4+ T cell differentiation and function: revisiting the Th1/Th2 paradigm. Annu. Rev. Immunol. 38:705–25
    [Google Scholar]
  51. 51. 
    Swain SL, McKinstry KK, Strutt TM. 2012. Expanding roles for CD4+ T cells in immunity to viruses. Nat. Rev. Immunol. 12:136–48
    [Google Scholar]
  52. 52. 
    Ebner F, Rausch S, Scharek-Tedin L, Pieper R, Burwinkel M et al. 2014. A novel lineage transcription factor based analysis reveals differences in T helper cell subpopulation development in infected and intrauterine growth restricted (IUGR) piglets. Dev. Comp. Immunol. 46:333–40
    [Google Scholar]
  53. 53. 
    Schäfer A, Zani L, Pikalo J, Hühr J, Sehl J et al. 2021. T-cell responses in domestic pigs and wild boar upon infection with the moderately virulent African swine fever virus strain “Estonia2014. .” Transbound. Emerg. Dis. 68:52733–49
    [Google Scholar]
  54. 54. 
    Kronsteiner B, Bassaganya-Riera J, Philipson C, Viladomiu M, Carbo A et al. 2013. Helicobacter pylori infection in a pig model is dominated by Th1 and cytotoxic CD8+ T cell responses. Infect. Immun. 81:3803–13
    [Google Scholar]
  55. 55. 
    Farber DL, Yudanin NA, Restifo NP. 2014. Human memory T cells: generation, compartmentalization and homeostasis. Nat. Rev. Immunol. 14:24–35
    [Google Scholar]
  56. 56. 
    Meng X-J. 2013. Porcine circovirus type 2 (PCV2): pathogenesis and interaction with the immune system. Annu. Rev. Anim. Biosci. 1:43–64
    [Google Scholar]
  57. 57. 
    Darwich L, Mateu E. 2012. Immunology of porcine circovirus type 2 (PCV2). Virus Res. 164:61–67
    [Google Scholar]
  58. 58. 
    Meerts P, van Gucht S, Cox E, Vandebosch A, Nauwynck HJ. 2005. Correlation between type of adaptive immune response against porcine circovirus type 2 and level of virus replication. Viral Immunol. 18:333–41
    [Google Scholar]
  59. 59. 
    Steiner E, Balmelli C, Gerber H, Summerfield A, McCullough K. 2009. Cellular adaptive immune response against porcine circovirus type 2 in subclinically infected pigs. BMC Vet. Res. 5:45
    [Google Scholar]
  60. 60. 
    Stenfeldt C, Diaz-San Segundo F, de Los Santos T, Rodriguez LL, Arzt J 2016. The pathogenesis of foot-and-mouth disease in pigs. Front. Vet. Sci. 3:41
    [Google Scholar]
  61. 61. 
    Blanco E, Garcia-Briones M, Sanz-Parra A, Gomes P, De Oliveira E et al. 2001. Identification of T-cell epitopes in nonstructural proteins of foot-and-mouth disease virus. J. Virol. 75:3164–74
    [Google Scholar]
  62. 62. 
    Blanco E, McCullough KC, Summerfield A, Fiorini J, Andreu D et al. 2000. Interspecies major histocompatibility complex-restricted Th cell epitope on foot-and-mouth disease virus capsid protein VP4. J. Virol. 74:4902–7
    [Google Scholar]
  63. 63. 
    de León P, Cañas-Arranz R, Defaus S, Torres E, Forner M et al. 2020. Swine T-cells and specific antibodies evoked by peptide dendrimers displaying different FMDV T-cell epitopes. Front. Immunol. 11:621537
    [Google Scholar]
  64. 64. 
    Cubillos C, de la Torre BG, Jakab A, Clementi G, Borras E et al. 2008. Enhanced mucosal immunoglobulin A response and solid protection against foot-and-mouth disease virus challenge induced by a novel dendrimeric peptide. J. Virol. 82:7223–30
    [Google Scholar]
  65. 65. 
    Ganges L, Crooke HR, Bohórquez JA, Postel A, Sakoda Y et al. 2020. Classical swine fever virus: the past, present and future. Virus Res. 289:198151
    [Google Scholar]
  66. 66. 
    Susa M, König M, Saalmüller A, Reddehase MJ, Thiel HJ. 1992. Pathogenesis of classical swine fever: B-lymphocyte deficiency caused by hog cholera virus. J. Virol. 66:1171–75
    [Google Scholar]
  67. 67. 
    Sánchez-Cordón PJ, Romanini S, Salguero FJ, Núñez A, Bautista MJ et al. 2002. Apoptosis of thymocytes related to cytokine expression in experimental classical swine fever. J. Comp. Pathol. 127:239–48
    [Google Scholar]
  68. 68. 
    Pauly T, König M, Thiel HJ, Saalmüller A. 1998. Infection with classical swine fever virus: effects on phenotype and immune responsiveness of porcine T lymphocytes. J. Gen. Virol. 79:31–40
    [Google Scholar]
  69. 69. 
    Graham SP, Everett HE, Haines FJ, Johns HL, Sosan OA et al. 2012. Challenge of pigs with classical swine fever viruses after C-strain vaccination reveals remarkably rapid protection and insights into early immunity. PLOS ONE 7:e29310
    [Google Scholar]
  70. 70. 
    Graham SP, Haines FJ, Johns HL, Sosan O, La Rocca SA et al. 2012. Characterisation of vaccine-induced, broadly cross-reactive IFN-γ secreting T cell responses that correlate with rapid protection against classical swine fever virus. Vaccine 30:2742–48
    [Google Scholar]
  71. 71. 
    Loving CL, Osorio FA, Murtaugh MP, Zuckermann FA. 2015. Innate and adaptive immunity against Porcine Reproductive and Respiratory Syndrome Virus. Vet. Immunol. Immunopathol. 167:1–14
    [Google Scholar]
  72. 72. 
    Lunney JK, Fang Y, Ladinig A, Chen N, Li Y et al. 2016. Porcine reproductive and respiratory syndrome virus (PRRSV): pathogenesis and interaction with the immune system. Annu. Rev. Anim. Biosci. 4:129–54
    [Google Scholar]
  73. 73. 
    Bautista EM, Molitor TW. 1997. Cell-mediated immunity to porcine reproductive and respiratory syndrome virus in swine. Viral Immunol. 10:83–94
    [Google Scholar]
  74. 74. 
    Xiao Z, Batista L, Dee S, Halbur P, Murtaugh MP. 2004. The level of virus-specific T-cell and macrophage recruitment in porcine reproductive and respiratory syndrome virus infection in pigs is independent of virus load. J. Virol. 78:5923–33
    [Google Scholar]
  75. 75. 
    Mokhtar H, Pedrera M, Frossard J-P, Biffar L, Hammer SE et al. 2016. The non-structural protein 5 and matrix protein are antigenic targets of T cell immunity to genotype 1 porcine reproductive and respiratory syndrome viruses. Front. Immunol. 7:40
    [Google Scholar]
  76. 76. 
    Holzer B, Martini V, Edmans M, Tchilian E. 2019. T and B cell immune responses to influenza viruses in pigs. Front. Immunol. 10:98
    [Google Scholar]
  77. 77. 
    Khatri M, Dwivedi V, Krakowka S, Manickam C, Ali A et al. 2010. Swine influenza H1N1 virus induces acute inflammatory immune responses in pig lungs: a potential animal model for human H1N1 influenza virus. J. Virol. 84:11210–18
    [Google Scholar]
  78. 78. 
    Edmans M, McNee A, Porter E, Vatzia E, Paudyal B et al. 2020. Magnitude and kinetics of T cell and antibody responses during H1N1pdm09 infection in inbred Babraham pigs and outbred pigs. Front. Immunol. 11:604913
    [Google Scholar]
  79. 79. 
    Kappes MA, Sandbulte MR, Platt R, Wang C, Lager KM et al. 2012. Vaccination with NS1-truncated H3N2 swine influenza virus primes T cells and confers cross-protection against an H1N1 heterosubtypic challenge in pigs. Vaccine 30:280–88
    [Google Scholar]
  80. 80. 
    Holzer B, Morgan SB, Matsuoka Y, Edmans M, Salguero FJ et al. 2018. Comparison of heterosubtypic protection in ferrets and pigs induced by a single-cycle influenza vaccine. J. Immunol. 200:4068–77
    [Google Scholar]
  81. 81. 
    Tungatt K, Dolton G, Morgan SB, Attaf M, Fuller A et al. 2018. Induction of influenza-specific local CD8 T-cells in the respiratory tract after aerosol delivery of vaccine antigen or virus in the Babraham inbred pig. PLOS Pathog. 14:e1007017
    [Google Scholar]
  82. 82. 
    Martini V, Hinchcliffe M, Blackshaw E, Joyce M, McNee A et al. 2020. Distribution of droplets and immune responses after aerosol and intra-nasal delivery of influenza virus to the respiratory tract of pigs. Front. Immunol. 11:594470
    [Google Scholar]
  83. 83. 
    Martini V, Paudyal B, Chrun T, McNee A, Edmans M et al. 2021. Simultaneous aerosol and intramuscular immunization with influenza vaccine induces powerful protective local T cell and systemic antibody immune responses in pigs. J. Immunol. 206:652–63
    [Google Scholar]
  84. 84. 
    Wan YY. 2014. GATA3: a master of many trades in immune regulation. Trends Immunol. 35:233–42
    [Google Scholar]
  85. 85. 
    Roepstorff A, Mejer H, Nejsum P, Thamsborg SM 2011. Helminth parasites in pigs: new challenges in pig production and current research highlights. Vet. Parasitol. 180:72–81
    [Google Scholar]
  86. 86. 
    Kringel H, Iburg T, Dawson H, Aasted B, Roepstorff A 2006. A time course study of immunological responses in Trichuris suis infected pigs demonstrates induction of a local type 2 response associated with worm burden. Int. J. Parasitol. 36:915–24
    [Google Scholar]
  87. 87. 
    Myhill LJ, Stolzenbach S, Hansen TVA, Skovgaard K, Stensvold CR et al. 2018. Mucosal barrier and Th2 immune responses are enhanced by dietary inulin in pigs infected with Trichuris suis. Front. Immunol. 9:2557
    [Google Scholar]
  88. 88. 
    Dawson HD, Beshah E, Nishi S, Solano-Aguilar G, Morimoto M et al. 2005. Localized multigene expression patterns support an evolving Th1/Th2-like paradigm in response to infections with Toxoplasma gondii and Ascaris suum. Infect. Immun. 73:1116–28
    [Google Scholar]
  89. 89. 
    Solano-Aguilar G, Shea-Donohue T, Madden KB, Quinoñes A, Beshah E et al. 2018. Bifidobacterium animalis subspecies lactis modulates the local immune response and glucose uptake in the small intestine of juvenile pigs infected with the parasitic nematode Ascaris suum. Gut Microbes 9:422–36
    [Google Scholar]
  90. 90. 
    Steenhard NR, Kringel H, Roepstorff A, Thamsborg SM, Jungersen G. 2007. Parasite-specific IL-4 responses in Ascaris suum and Trichuris suis-infected pigs evaluated by ELISPOT. Parasite Immunol. 29:535–38
    [Google Scholar]
  91. 91. 
    Harnett W. 2014. Secretory products of helminth parasites as immunomodulators. Mol. Biochem. Parasitol. 195:130–36
    [Google Scholar]
  92. 92. 
    Singh AK, Prasad KN, Prasad A, Tripathi M, Gupta RK, Husain N. 2013. Immune responses to viable and degenerative metacestodes of Taenia solium in naturally infected swine. Int. J. Parasitol. 43:1101–7
    [Google Scholar]
  93. 93. 
    Wang N, Bai X, Tang B, Yang Y, Wang X et al. 2020. Primary characterization of the immune response in pigs infected with Trichinella spiralis. Vet. Res. 51:17
    [Google Scholar]
  94. 94. 
    Raphael I, Nalawade S, Eagar TN, Forsthuber TG. 2015. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine 74:5–17
    [Google Scholar]
  95. 95. 
    Sedlak C, Patzl M, Saalmüller A, Gerner W. 2014. CD2 and CD8α define porcine γδ T cells with distinct cytokine production profiles. Dev. Comp. Immunol. 45:97–106
    [Google Scholar]
  96. 96. 
    Kiros TG, van Kessel J, Babiuk LA, Gerdts V. 2011. Induction, regulation and physiological role of IL-17 secreting helper T-cells isolated from PBMC, thymus, and lung lymphocytes of young pigs. Vet. Immunol. Immunopathol. 144:448–54
    [Google Scholar]
  97. 97. 
    Brogaard L, Klitgaard K, Heegaard PMH, Hansen MS, Jensen TK, Skovgaard K. 2015. Concurrent host-pathogen gene expression in the lungs of pigs challenged with Actinobacillus pleuropneumoniae. BMC Genom. 16:417
    [Google Scholar]
  98. 98. 
    Sassu EL, Ladinig A, Talker SC, Stadler M, Knecht C et al. 2017. Frequency of Th17 cells correlates with the presence of lung lesions in pigs chronically infected with Actinobacillus pleuropneumoniae. Vet. Res. 48:4
    [Google Scholar]
  99. 99. 
    Dubreuil JD, Isaacson RE, Schifferli DM. 2016. Animal enterotoxigenic Escherichia coli. EcoSal Plus 7: https://doi.org/10.1128/ecosalplus.ESP-0006-2016
    [Crossref] [Google Scholar]
  100. 100. 
    Luo Y, Van Nguyen U, de la Fe Rodriguez PY, Devriendt B, Cox E 2015. F4+ ETEC infection and oral immunization with F4 fimbriae elicits an IL-17-dominated immune response. Vet. Res. 46:121
    [Google Scholar]
  101. 101. 
    Bescucci DM, Moote PE, Ortega Polo R, Uwiera RRE, Inglis GD. 2020. Salmonella enterica serovar Typhimurium temporally modulates the enteric microbiota and host responses to overcome colonization resistance in swine. Appl. Environ. Microbiol. 86:21e01569–20
    [Google Scholar]
  102. 102. 
    Schmidt S, Kreutzmann H, Stadler M, Mair KH, Stas MR et al. 2021. T-cell cytokine response in Salmonella Typhimurium-vaccinated versus infected pigs. Vaccines 9:845
    [Google Scholar]
  103. 103. 
    Käser T, Pasternak JA, Delgado-Ortega M, Hamonic G, Lai K et al. 2017. Chlamydia suis and Chlamydia trachomatis induce multifunctional CD4 T cells in pigs. Vaccine 35:91–100
    [Google Scholar]
  104. 104. 
    Lorenzen E, Follmann F, Bøje S, Erneholm K, Olsen AW et al. 2015. Intramuscular priming and intranasal boosting induce strong genital immunity through secretory IgA in minipigs infected with Chlamydia trachomatis. Front. Immunol. 6:628
    [Google Scholar]
  105. 105. 
    Crotty S. 2019. T follicular helper cell biology: a decade of discovery and diseases. Immunity 50:1132–48
    [Google Scholar]
  106. 106. 
    Meyerholz DK, Lambertz AM, Reznikov LR, Ofori-Amanfo GK, Karp PH et al. 2016. Immunohistochemical detection of markers for translational studies of lung disease in pigs and humans. Toxicol. Pathol. 44:434–41
    [Google Scholar]
  107. 107. 
    Ugolini M, Gerhard J, Burkert S, Jensen KJ, Georg P et al. 2018. Recognition of microbial viability via TLR8 drives TFH cell differentiation and vaccine responses. Nat. Immunol. 19:386–96
    [Google Scholar]
  108. 108. 
    Sakaguchi S, Miyara M, Costantino CM, Hafler DA. 2010. FOXP3+ regulatory T cells in the human immune system. Nat. Rev. Immunol. 10:490–500
    [Google Scholar]
  109. 109. 
    Käser T, Gerner W, Hammer SE, Patzl M, Saalmüller A 2008. Phenotypic and functional characterisation of porcine CD4+CD25high regulatory T cells. Vet. Immunol. Immunopathol. 122:153–58
    [Google Scholar]
  110. 110. 
    Käser T, Gerner W, Hammer SE, Patzl M, Saalmüller A 2008. Detection of Foxp3 protein expression in porcine T lymphocytes. Vet. Immunol. Immunopathol. 125:92–101
    [Google Scholar]
  111. 111. 
    Käser T, Gerner W, Saalmüller A. 2011. Porcine regulatory T cells: mechanisms and T-cell targets of suppression. Dev. Comp. Immunol. 35:1166–72
    [Google Scholar]
  112. 112. 
    Savage PA, Klawon DEJ, Miller CH. 2020. Regulatory T cell development. Annu. Rev. Immunol. 38:421–53
    [Google Scholar]
  113. 113. 
    Whibley N, Tucci A, Powrie F 2019. Regulatory T cell adaptation in the intestine and skin. Nat. Immunol. 20:386–96
    [Google Scholar]
  114. 114. 
    Shevach EM, Thornton AM. 2014. tTregs, pTregs, and iTregs: similarities and differences. Immunol. Rev. 259:88–102
    [Google Scholar]
  115. 115. 
    Käser T, Mair KH, Hammer SE, Gerner W, Saalmüller A 2015. Natural and inducible Tregs in swine: Helios expression and functional properties. Dev. Comp. Immunol. 49:323–31
    [Google Scholar]
  116. 116. 
    Wang Z, Navarro-Alvarez N, Shah JA, Zhang H, Huang Q et al. 2016. Porcine Treg depletion with a novel diphtheria toxin-based anti-human CCR4 immunotoxin. Vet. Immunol. Immunopathol. 182:150–58
    [Google Scholar]
  117. 117. 
    Doster AR, Subramaniam S, Yhee JY, Kwon BJ, Yu CH et al. 2010. Distribution and characterization of IL-10-secreting cells in lymphoid tissues of PCV2-infected pigs. J. Vet. Sci. 11:177–83
    [Google Scholar]
  118. 118. 
    Crisci E, Ballester M, Domínguez J, Segalés J, Montoya M. 2010. Increased numbers of myeloid and lymphoid IL-10 producing cells in spleen of pigs with naturally occurring postweaning multisystemic wasting syndrome. Vet. Immunol. Immunopathol. 136:305–10
    [Google Scholar]
  119. 119. 
    Richmond O, Cecere TE, Erdogan E, Meng XJ, Piñeyro P et al. 2015. The PD-L1/CD86 ratio is increased in dendritic cells co-infected with porcine circovirus type 2 and porcine reproductive and respiratory syndrome virus, and the PD-L1/PD-1 axis is associated with anergy, apoptosis, and the induction of regulatory T-cells in porcine lymphocytes. Vet. Microbiol. 180:223–29
    [Google Scholar]
  120. 120. 
    Silva-Campa E, Mata-Haro V, Mateu E, Hernández J. 2012. Porcine reproductive and respiratory syndrome virus induces CD4+CD8+CD25+Foxp3+ regulatory T cells (Tregs). Virology 430:73–80
    [Google Scholar]
  121. 121. 
    Nedumpun T, Sirisereewan C, Thanmuan C, Techapongtada P, Puntarotairung R et al. 2018. Induction of porcine reproductive and respiratory syndrome virus (PRRSV)-specific regulatory T lymphocytes (Treg) in the lungs and tracheobronchial lymph nodes of PRRSV-infected pigs. Vet. Microbiol. 216:13–19
    [Google Scholar]
  122. 122. 
    Silva-Campa E, Flores-Mendoza L, Reséndiz M, Pinelli-Saavedra A, Mata-Haro V et al. 2009. Induction of T helper 3 regulatory cells by dendritic cells infected with porcine reproductive and respiratory syndrome virus. Virology 387:373–79
    [Google Scholar]
  123. 123. 
    Wongyanin P, Buranapraditkun S, Chokeshai-Usaha K, Thanawonguwech R, Suradhat S 2010. Induction of inducible CD4+CD25+Foxp3+ regulatory T lymphocytes by porcine reproductive and respiratory syndrome virus (PRRSV). Vet. Immunol. Immunopathol. 133:170–82
    [Google Scholar]
  124. 124. 
    Rodríguez-Gómez IM, Käser T, Gómez-Laguna J, Lamp B, Sinn L et al. 2015. PRRSV-infected monocyte-derived dendritic cells express high levels of SLA-DR and CD80/86 but do not stimulate PRSSV-naïve regulatory T cells to proliferate. Vet. Res. 46:54
    [Google Scholar]
  125. 125. 
    Müllebner A, Sassu EL, Ladinig A, Frömbling J, Miller I et al. 2018. Actinobacillus pleuropneumoniae triggers IL-10 expression in tonsils to mediate colonisation and persistence of infection in pigs. Vet. Immunol. Immunopathol. 205:17–23
    [Google Scholar]
  126. 126. 
    Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A 1999. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401:708–12
    [Google Scholar]
  127. 127. 
    Mahnke YD, Brodie TM, Sallusto F, Roederer M, Lugli E 2013. The who's who of T-cell differentiation: human memory T-cell subsets. Eur. J. Immunol. 43:2797–809
    [Google Scholar]
  128. 128. 
    Sallusto F, Geginat J, Lanzavecchia A. 2004. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu. Rev. Immunol. 22:745–63
    [Google Scholar]
  129. 129. 
    Pritchard GH, Kedl RM, Hunter CA. 2019. The evolving role of T-bet in resistance to infection. Nat. Rev. Immunol. 19:398–410
    [Google Scholar]
  130. 130. 
    Franzoni G, Kurkure NV, Essler SE, Pedrera M, Everett HE et al. 2013. Proteome-wide screening reveals immunodominance in the CD8 T cell response against classical swine fever virus with antigen-specificity dependent on MHC class I haplotype expression. PLOS ONE 8:e84246
    [Google Scholar]
  131. 131. 
    Pauly T, Elbers K, König M, Lengsfeld T, Saalmüller A, Thiel HJ. 1995. Classical swine fever virus-specific cytotoxic T lymphocytes and identification of a T cell epitope. J. Gen. Virol. 76:3039–49
    [Google Scholar]
  132. 132. 
    Ferrari L, Martelli P, Saleri R, de Angelis E, Cavalli V et al. 2013. Lymphocyte activation as cytokine gene expression and secretion is related to the porcine reproductive and respiratory syndrome virus (PRRSV) isolate after in vitro homologous and heterologous recall of peripheral blood mononuclear cells (PBMC) from pigs vaccinated and exposed to natural infection. Vet. Immunol. Immunopathol. 151:193–206
    [Google Scholar]
  133. 133. 
    Lohse L, Nielsen J, Eriksen L. 2004. Temporary CD8+ T-cell depletion in pigs does not exacerbate infection with porcine reproductive and respiratory syndrome virus (PRRSV). Viral Immunol 17:594–603
    [Google Scholar]
  134. 134. 
    Patch JR, Pedersen LE, Toka FN, Moraes M, Grubman MJ et al. 2011. Induction of foot-and-mouth disease virus-specific cytotoxic T cell killing by vaccination. Clin. Vaccine Immunol. 18:280–88
    [Google Scholar]
  135. 135. 
    Pedersen LE, Breum , Riber U, Larsen LE, Jungersen G. 2014. Identification of swine influenza virus epitopes and analysis of multiple specificities expressed by cytotoxic T cell subsets. Virol. J. 11:163
    [Google Scholar]
  136. 136. 
    Baratelli M, Pedersen LE, Trebbien R, Larsen LE, Jungersen G et al. 2017. Identification of cross-reacting T-cell epitopes in structural and non-structural proteins of swine and pandemic H1N1 influenza A virus strains in pigs. J. Gen. Virol. 98:895–99
    [Google Scholar]
  137. 137. 
    Takamatsu HH, Denyer MS, Lacasta A, Stirling CM, Argilaguet JM et al. 2013. Cellular immunity in ASFV responses. Virus Res 173:110–21
    [Google Scholar]
  138. 138. 
    Hühr J, Schäfer A, Schwaiger T, Zani L, Sehl J et al. 2020. Impaired T-cell responses in domestic pigs and wild boar upon infection with a highly virulent African swine fever virus strain. Transbound. Emerg. Dis. 67:3016–32
    [Google Scholar]
  139. 139. 
    Mueller SN, Mackay LK. 2016. Tissue-resident memory T cells: local specialists in immune defence. Nat. Rev. Immunol. 16:79–89
    [Google Scholar]
  140. 140. 
    van Gisbergen KPJM, Zens KD, Münz C. 2021. T cell memory in tissues. Eur. J. Immunol. 51:1310–24
    [Google Scholar]
  141. 141. 
    Masopust D, Soerens AG. 2019. Tissue-resident T cells and other resident leukocytes. Annu. Rev. Immunol. 37:521–46
    [Google Scholar]
  142. 142. 
    Hayashi Y, Okutani M, Ogawa S, Tsukahara T, Inoue R. 2018. Generation of anti-porcine CD69 monoclonal antibodies and their usefulness to evaluate early activation of cellular immunity by flow cytometric analysis. Anim. Sci. J. 89:825–32
    [Google Scholar]
  143. 143. 
    Vlasova AN, Chattha KS, Kandasamy S, Siegismund CS, Saif LJ. 2013. Prenatally acquired vitamin A deficiency alters innate immune responses to human rotavirus in a gnotobiotic pig model. J. Immunol. 190:4742–53
    [Google Scholar]
  144. 144. 
    Holderness J, Hedges JF, Ramstead A, Jutila MA 2013. Comparative biology of γδ T cell function in humans, mice, and domestic animals. Annu. Rev. Anim. Biosci. 1:99–124
    [Google Scholar]
  145. 145. 
    Mair KH, Sedlak C, Käser T, Pasternak A, Levast B et al. 2014. The porcine innate immune system: an update. Dev. Comp. Immunol. 45:321–43
    [Google Scholar]
  146. 146. 
    Stepanova K, Sinkora M. 2013. Porcine γδ T lymphocytes can be categorized into two functionally and developmentally distinct subsets according to expression of CD2 and level of TCR. J. Immunol. 190:2111–20
    [Google Scholar]
  147. 147. 
    Rodríguez-Gómez IM, Talker SC, Käser T, Stadler M, Reiter L et al. 2019. Expression of T-Bet, eomesodermin, and GATA-3 correlates with distinct phenotypes and functional properties in porcine γδ T cells. Front. Immunol. 10:396
    [Google Scholar]
  148. 148. 
    Le Page L, Gillespie A, Schwartz JC, Prawits LM, Schlerka A et al. 2021. Subpopulations of swine γδ T cells defined by TCRγ and WC1 gene expression. Dev. Comp. Immunol. 125:104214
    [Google Scholar]
  149. 149. 
    Sedlak C, Patzl M, Saalmüller A, Gerner W. 2014. IL-12 and IL-18 induce interferon-γ production and de novo CD2 expression in porcine γδ T cells. Dev. Comp. Immunol. 47:115–22
    [Google Scholar]
  150. 150. 
    Hammer SE, Leopold M, Prawits L-M, Mair KH, Schwartz JC et al. 2020. Development of a RACE-based RNA-Seq approach to characterize the T-cell receptor repertoire of porcine γδ T cells. Dev. Comp. Immunol. 105:103575
    [Google Scholar]
  151. 151. 
    Baldwin CL, Damani-Yokota P, Yirsaw A, Loonie K, Teixeira AF, Gillespie A. 2021. Special features of γδ T cells in ruminants. Mol. Immunol. 134:161–69
    [Google Scholar]
  152. 152. 
    Olin MR, Batista L, Xiao Z, Dee SA, Murtaugh MP 2005. γδ Lymphocyte response to porcine reproductive and respiratory syndrome virus. Viral Immunol. 18:490–99
    [Google Scholar]
  153. 153. 
    Oura CA, Denyer MS, Takamatsu H, Parkhouse RM. 2005. In vivo depletion of CD8+ T lymphocytes abrogates protective immunity to African swine fever virus. J. Gen. Virol. 86:2445–50
    [Google Scholar]
  154. 154. 
    Schwartz JC, Hemmink JD, Graham SP, Tchilian E, Charleston B et al. 2018. The major histocompatibility complex homozygous inbred Babraham pig as a resource for veterinary and translational medicine. HLA 92:40–43
    [Google Scholar]
/content/journals/10.1146/annurev-animal-013120-044226
Loading
/content/journals/10.1146/annurev-animal-013120-044226
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error