1932

Abstract

Analogies between placentation, in particular the behavior of trophoblast cells, and cancer have been noted since the beginning of the twentieth century. To what degree these can be explained as a consequence of the evolution of placentation has been unclear. In this review, we conclude that many similarities between trophoblast and cancer cells are shared with other, phylogenetically older processes than placentation. The best candidates for cancer hallmarks that can be explained by the evolution of eutherian placenta are mechanisms of immune evasion. Another dimension of the maternal accommodation of the placenta with an impact on cancer malignancy is the evolution of endometrial invasibility. Species with lower degrees of placental invasion tend to have lower vulnerability to cancer malignancy. We finally identify several areas in which one could expect to see coevolutionary changes in placental and cancer biology but that, to our knowledge, have not been explored.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-020420-031544
2022-02-15
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/animal/10/1/annurev-animal-020420-031544.html?itemId=/content/journals/10.1146/annurev-animal-020420-031544&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Albuquerque TAF, Drummond do Val L, Doherty A, de Magalhaes JP. 2018. From humans to hydra: patterns of cancer across the tree of life. Biol. Rev. 93:1715–34
    [Google Scholar]
  2. 2. 
    Aktipis CA, Boddy AM, Jansen G, Hibner U, Hochberg ME et al. 2015. Cancer across the tree of life: cooperation and cheating in multicellularity. Philos. Trans. R. Soc. Lond. B 370: 1673 20140219
    [Google Scholar]
  3. 3. 
    Blackburn DG, Flemming AF. 2009. Morphology, development, and evolution of fetal membranes and placentation in squamate reptiles. J. Exp. Zool. B 312:579–89
    [Google Scholar]
  4. 4. 
    Stewart JR, Blackburn DG 2015. Viviparity and placentation in lizards. Reproductive Biology and Phylogeny of Lizards and Tuatara JL Rheubert, DS Siegel, SE Trauth 448–563 Boca Raton, FL: CRC
    [Google Scholar]
  5. 5. 
    Van Dyke JU, Brandley MC, Thompson MB. 2014. The evolution of viviparity: Molecular and genomic data from squamate reptiles advance understanding of live birth in amniotes. Reproduction 147:R15–26
    [Google Scholar]
  6. 6. 
    Ross CA. 2015. The trophoblast model of cancer. Nutr. Cancer 67:61–67
    [Google Scholar]
  7. 7. 
    Costanzo V, Bardelli A, Siena S, Abrignani S. 2018. Exploring the links between cancer and placenta development. Open. Biol. 8:180081
    [Google Scholar]
  8. 8. 
    Piechowski J. 2019. Plausibility of trophoblastic-like regulation of cancer tissue. Cancer Manag. Res. 11:5033–46
    [Google Scholar]
  9. 9. 
    Manzo G. 2019. Similarities between embryo development and cancer process suggest new strategies for research and therapy of tumors: a new point of view. Front. Cell Dev. Biol. 7:20
    [Google Scholar]
  10. 10. 
    Lala PK, Nandi P, Hadi A, Halari C. 2021. A crossroad between placental and tumor biology: What have we learnt?. Placenta In press. https://doi.org/10.1016/j.placenta.2021.03.003
    [Crossref] [Google Scholar]
  11. 11. 
    Ferretti C, Bruni L, Dangles-Marie V, Pecking AP, Bellet D. 2007. Molecular circuits shared by placental and cancer cells, and their implications in the proliferative, invasive and migratory capacities of trophoblasts. Hum. Reprod. Update 13:121–41
    [Google Scholar]
  12. 12. 
    Murray MJ, Lessey BA. 1999. Embryo implantation and tumor metastasis: common pathways of invasion and angiogenesis. Semin. Reprod. Endocrinol. 17:275–90
    [Google Scholar]
  13. 13. 
    Perry J, Lins R, Lobie P, Mitchell M 2010. Regulation of invasive growth: Similar epigenetic mechanisms underpin tumor progression and implantation in human pregnancy. Clin. Sci. 118:451–57
    [Google Scholar]
  14. 14. 
    Seluanov A, Gladyshev VN, Vijg J, Gorbunova V. 2018. Mechanisms of cancer resistance in long-lived mammals. Nat. Rev. Cancer 18:433–41
    [Google Scholar]
  15. 15. 
    Caulin AF, Maley CC. 2011. Peto's paradox: evolution's prescription for cancer prevention. Trends Ecol. Evol. 26:175–82
    [Google Scholar]
  16. 16. 
    Salazar-Bañuelos A. 2019. A mathematical solution to Peto's paradox using Polya's urn model: implications for the aetiology of cancer in general. Theory Biosci 138:241–50
    [Google Scholar]
  17. 17. 
    Sulak M, Fong L, Mika K, Chigurupati S, Yon L et al. 2016. TP53 copy number expansion is associated with the evolution of increased body size and an enhanced DNA damage response in elephants. eLife 5:e11994
    [Google Scholar]
  18. 18. 
    Bubanovic I, Najman S. 2004. Failure of anti-tumor immunity in mammals—evolution of the hypothesis. Acta Biotheor 52:57–64
    [Google Scholar]
  19. 19. 
    Buss LW. 1987. The Evolution of Individuality New York: Columbia Univ. Press
  20. 20. 
    Nedelcu AM. 2020. The evolution of multicellularity and cancer: views and paradigms. Biochem. Soc. Trans. 48:1505–18
    [Google Scholar]
  21. 21. 
    Frank SA. 2007. Dynamics of Cancer: Incidence, Inheritance and Evolution Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  22. 22. 
    Boddy AM, Harrison TM, Abegglen LM 2020. Comparative oncology: new insights into an ancient disease. iScience 23:101373
    [Google Scholar]
  23. 23. 
    Enriquez-Navas PM, Wojtkowiak JW, Gatenby RA. 2015. Application of evolutionary principles to cancer therapy. Cancer Res 75:4675–80
    [Google Scholar]
  24. 24. 
    Peto R, Roe FJ, Lee PN, Levy L, Clack J 1975. Cancer and ageing in mice and men. Br. J. Cancer 32:411–26
    [Google Scholar]
  25. 25. 
    Caulin AF, Graham TA, Wang LS, Maley CC 2015. Solutions to Peto's paradox revealed by mathematical modelling and cross-species cancer gene analysis. Philos. Trans. R. Soc. Lond. B 370:167320140222
    [Google Scholar]
  26. 26. 
    Chiari Y, Glaberman S, Lynch VJ 2018. Insights on cancer resistance in vertebrates: reptiles as a parallel system to mammals. Nat. Rev. Cancer 18:525
    [Google Scholar]
  27. 27. 
    Nunney L, Maley CC, Breen M, Hochberg ME, Schiffman JD. 2015. Peto's paradox and the promise of comparative oncology. Philos. Trans. R. Soc. Lond. B 370:167320140177
    [Google Scholar]
  28. 28. 
    Dvorak HF. 2015. Tumors: wounds that do not heal—redux. Cancer Immunol. Res. 3:1–11
    [Google Scholar]
  29. 29. 
    Nancy P, Siewiera J, Rizzuto G, Tagliani E, Osokine I et al. 2018. H3K27me3 dynamics dictate evolving uterine states in pregnancy and parturition. J. Clin. Investig. 128:233–47
    [Google Scholar]
  30. 30. 
    Soares MJ, Varberg KM, Iqbal K. 2018. Hemochorial placentation: development, function, and adaptations. Biol. Reprod. 99:196–211
    [Google Scholar]
  31. 31. 
    Mor G, Cardenas I, Abrahams V, Guller S 2011. Inflammation and pregnancy: the role of the immune system at the implantation site. Ann. N.Y. Acad. Sci. 1221:80–87
    [Google Scholar]
  32. 32. 
    Dekel N, Gnainsky Y, Granot I, Racicot K, Mor G. 2014. The role of inflammation for a successful implantation. Am. J. Reprod. Immunol. 72:141–47
    [Google Scholar]
  33. 33. 
    Stadtmauer DJ, Wagner GP. 2020. Cooperative inflammation: the recruitment of inflammatory signaling in marsupial and eutherian pregnancy. J. Reprod. Immunol. 137:102626
    [Google Scholar]
  34. 34. 
    Smith ZD, Shi J, Gu H, Donaghey J, Clement K et al. 2017. Epigenetic restriction of extraembryonic lineages mirrors the somatic transition to cancer. Nature 549:543–47
    [Google Scholar]
  35. 35. 
    D'Souza AW, Wagner GP. 2014. Malignant cancer and invasive placentation: a case for positive pleiotropy between endometrial and malignancy phenotypes. Evol. Med. Public Health 2014 136–45
    [Google Scholar]
  36. 36. 
    Kshitiz K, Afzal J, Maziarz JD, Hamidzadeh A, Liang C et al. 2019. Evolution of placental invasion and cancer metastasis are causally linked. Nat. Ecol. Evol. 3:1743–53
    [Google Scholar]
  37. 37. 
    Suhail Y, Afzal J, Kshitiz 2021. Evolved resistance to placental invasion secondarily confers increased survival in melanoma patients. J. Clin. Med. 10:4595
    [Google Scholar]
  38. 38. 
    Samstein RM, Arvey A, Josefowicz SZ, Peng X, Reynolds A et al. 2012. Foxp3 exploits a pre-existent enhancer landscape for regulatory T cell lineage specification. Cell 151:153–66
    [Google Scholar]
  39. 39. 
    Griffiths M. 1978. The Biology and Monotremes San Diego, CA: Academic
  40. 40. 
    Grosser O. 1909. Vergleichende Anatomie und Entwicklungsgeschichte der Eihäute und der Placenta Vienna: W. Braumüller
  41. 41. 
    Mossman HW. 1987. Vertebrate Fetal Membranes New Brunswick, NJ: Rutgers Univ. Press
  42. 42. 
    Griffith OW, Chavan AR, Protopapas S, Maziarz J, Romero R, Wagner GP. 2017. Embryo implantation evolved from an ancestral inflammatory attachment reaction. PNAS 114:E6566–E75
    [Google Scholar]
  43. 43. 
    Selwood L. 2000. Marsupial egg and embryo coats. Cells Tissues Organs 166:208–19
    [Google Scholar]
  44. 44. 
    Hansen VL, Faber LS, Salehpoor AA, Miller RD. 2017. A pronounced uterine pro-inflammatory response at parturition is an ancient feature in mammals. Proc. Biol. Sci. 284:186520171694
    [Google Scholar]
  45. 45. 
    Griffith OW, Chavan AR, Pavlicev M, Protopapas S, Callahan R et al. 2019. Endometrial recognition of pregnancy occurs in the grey short-tailed opossum (Monodelphis domestica). Proc. Biol. Sci. 286:20190691
    [Google Scholar]
  46. 46. 
    Enders AC, Enders RK. 1969. The placenta of the four-eye opossum (Philander opossum). Anat. Rec. 165:431–49
    [Google Scholar]
  47. 47. 
    Hughes RL. 1974. Morphological studies on implantation in marsupials. J. Reprod. Fertil. 39:173–86
    [Google Scholar]
  48. 48. 
    Tyndale-Biscoe CH, Renfree MB. 1987. Reproductive Physiology of Marsupials Cambridge, UK: Cambridge Univ. Press
  49. 49. 
    Nilsson MA, Churakov G, Sommer M, Tran NV, Zemann A et al. 2010. Tracking marsupial evolution using archaic genomic retroposon insertions. PLOS Biol 8:e1000436
    [Google Scholar]
  50. 50. 
    Wildman DE, Chen C, Erez O, Grossman LI, Goodman M, Romero R. 2006. Evolution of the mammalian placenta revealed by phylogenetic analysis. PNAS 103:3203–8
    [Google Scholar]
  51. 51. 
    Mess A, Carter AM. 2006. Evolutionary transformation of fetal membrane characters in Eutheria with special reference to Afrotheria. J. Exp. Zool. Part. B 306B:2140–63
    [Google Scholar]
  52. 52. 
    Elliot MG, Crespi BJ. 2009. Phylogenetic evidence for early hemochorial placentation in Eutheria. Placenta 30:949–67
    [Google Scholar]
  53. 53. 
    Priester WA, Mantel N. 1971. Occurrence of tumors in domestic animals. Data from 12 United States and Canadian colleges of veterinary medicine. J. Natl. Cancer Inst. 47:1333–44
    [Google Scholar]
  54. 54. 
    Effron M, Griner L, Benirschke K. 1977. Nature and rate of neoplasia found in captive wild mammals, birds, and reptiles at necropsy. J. Natl. Cancer Inst. 59:185–98
    [Google Scholar]
  55. 55. 
    Ratcliffe HL. 1933. Incidence and nature of tumors in captive wild mammals and birds. Am. J. Cancer 17:116–35
    [Google Scholar]
  56. 56. 
    Boddy AM, Abegglen LM, Pessier AP, Aktipis A, Schiffman JD et al. 2020. Lifetime cancer prevalence and life history traits in mammals. Evol. Med. Public Health 2020:1187–95
    [Google Scholar]
  57. 57. 
    Shepard A, Kissil JL 2020. The use of non-traditional models in the study of cancer resistance—the case of the naked mole rat. Oncogene 39:5083–97
    [Google Scholar]
  58. 58. 
    Delaney MA, Ward JM, Walsh TF, Chinnadurai SK, Kerns K et al. 2016. Initial case reports of cancer in naked mole-rats (Heterocephalus glaber). Vet. Pathol. 53:691–96
    [Google Scholar]
  59. 59. 
    Wagner GP, Kshitiz, Levchenko A 2020. Comments on Boddy et al. 2020: Available data suggest positive relationship between placental invasion and malignancy. Evol. Med. Public Health 2020:1211–14
    [Google Scholar]
  60. 60. 
    Liu Y, Fan X, Wang R, Lu X, Dang YL et al. 2018. Single-cell RNA-seq reveals the diversity of trophoblast subtypes and patterns of differentiation in the human placenta. Cell Res 28:819–32
    [Google Scholar]
  61. 61. 
    Jiang T, Shi T, Zhang H, Hu J, Song Y et al. 2019. Tumor neoantigens: from basic research to clinical applications. J. Hematol. Oncol. 12:93
    [Google Scholar]
  62. 62. 
    Louwen F, Muschol-Steinmetz C, Reinhard J, Reitter A, Yuan J 2012. A lesson for cancer research: placental microarray gene analysis in preeclampsia. Oncotarget 3:759–73
    [Google Scholar]
  63. 63. 
    Wilson RL, Jones HN. 2021. Targeting the dysfunctional placenta to improve pregnancy outcomes based on lessons learned in cancer. Clin. Ther. 43:246–64
    [Google Scholar]
  64. 64. 
    West RC, Bouma GJ, Winger QA. 2018. Shifting perspectives from “oncogenic” to oncofetal proteins: how these factors drive placental development. Reprod. Biol. Endocrinol. 16:101
    [Google Scholar]
  65. 65. 
    Hanahan D, Weinberg RA. 2000. The hallmarks of cancer. Cell 100:57–70
    [Google Scholar]
  66. 66. 
    Cooper EL. 1985. Comparative immunology. Am. Zool. 25:649–64
    [Google Scholar]
  67. 67. 
    Boehm T, Swann JB. 2014. Origin and evolution of adaptive immunity. Annu. Rev. Anim. Biosci. 2:259–83
    [Google Scholar]
  68. 68. 
    Ruben LN, Clothier RH, Balls M. 2007. Cancer resistance in amphibians. Altern. Lab. Anim. 35:463–70
    [Google Scholar]
  69. 69. 
    Chavan AR, Griffith OW, Wagner GP 2017. The inflammation paradox in the evolution of mammalian pregnancy: turning a foe into a friend. Curr. Opin. Genet. Dev. 47:24–32
    [Google Scholar]
  70. 70. 
    Chavan AR, Griffith OW, Stadtmauer DJ, Maziarz J, Pavlicev M et al. 2021. Evolution of embryo implantation was enabled by the origin of decidual stromal cells in eutherian mammals. Mol. Biol. Evol. 38:1060–74
    [Google Scholar]
  71. 71. 
    Carter AM, Enders AC. 2004. Comparative aspects of trophoblast development and placentation. Reprod. Biol. Endocrin. 2:46
    [Google Scholar]
  72. 72. 
    Chavan AR, Wagner GP. 2016. The fetal-maternal interface of the nine-banded armadillo: Endothelial cells of maternal sinus are partially replaced by trophoblast. Zool. Lett. 2:11
    [Google Scholar]
  73. 73. 
    Enders AC. 1960. Development and structure of the villous haemochorial placenta of the nine-banded armadillo (Dasypus novemcinctus). J. Anat. 94:34–45
    [Google Scholar]
  74. 74. 
    Velicky P, Knofler M, Pollheimer J. 2016. Function and control of human invasive trophoblast subtypes: intrinsic versus maternal control. Cell Adh. Migr. 10:154–62
    [Google Scholar]
  75. 75. 
    Albrecht ED, Pepe GJ 2020. Regulation of uterine spiral artery remodeling: a review. Reprod. Sci. 27:1932–42
    [Google Scholar]
  76. 76. 
    Dunleavey JM, Dudley AC. 2012. Vascular mimicry: concepts and implications for anti-angiogenic therapy. Curr. Angiogenes 1:133–38
    [Google Scholar]
  77. 77. 
    Vander Heiden MG, Cantley LC, Thompson CB. 2009. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–33
    [Google Scholar]
  78. 78. 
    Flint TR, Jones JO, Ferrer M, Colucci F, Janowitz T. 2018. A comparative analysis of immune privilege in pregnancy and cancer in the context of checkpoint blockade immunotherapy. Semin. Oncol. 45:170–75
    [Google Scholar]
  79. 79. 
    Ferreira LMR, Meissner TB, Tilburgs T, Strominger JL 2017. HLA-G: at the interface of maternal-fetal tolerance. Trends Immunol 38:272–86
    [Google Scholar]
  80. 80. 
    Durr S, Kindler V. 2013. Implication of indolamine 2,3 dioxygenase in the tolerance toward fetuses, tumors, and allografts. J. Leukoc. Biol. 93:681–87
    [Google Scholar]
  81. 81. 
    Zhang YH, Sun HX. 2020. Immune checkpoint molecules in pregnancy: focus on regulatory T cells. Eur. J. Immunol. 50:160–69
    [Google Scholar]
  82. 82. 
    Stadtmauer DJ, Wagner GP. 2020. The primacy of maternal innovations to the evolution of embryo implantation. Integr. Comp. Biol. 60:742–52
    [Google Scholar]
  83. 83. 
    Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ et al. 1998. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281:1191–93
    [Google Scholar]
  84. 84. 
    Mellor AL, Munn DH. 2001. Tryptophan catabolism prevents maternal T cells from activating lethal anti-fetal immune responses. J. Reprod. Immunol. 52:5–13
    [Google Scholar]
  85. 85. 
    Sedlmayr P, Blaschitz A. 2012. Placental expression of indoleamine 2,3-dioxygenase. Wien. Med. Wochenschr. 162:214–19
    [Google Scholar]
  86. 86. 
    Munn DH, Mellor AL. 2007. Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J. Clin. Investig. 117:1147–54
    [Google Scholar]
  87. 87. 
    Uyttenhove C, Pilotte L, Theate I, Stroobant V, Colau D et al. 2003. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat. Med. 9:1269–74
    [Google Scholar]
  88. 88. 
    Opitz CA, Litzenburger UM, Sahm F, Ott M, Tritschler I et al. 2011. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 478:197–203
    [Google Scholar]
  89. 89. 
    Sabapatha A, Gercel-Taylor C, Taylor DD. 2006. Specific isolation of placenta-derived exosomes from the circulation of pregnant women and their immunoregulatory consequences. Am. J. Reprod. Immunol. 56:345–55
    [Google Scholar]
  90. 90. 
    Schust DJ, Bonney EA, Sugimoto J, Ezashi T, Roberts RM et al. 2021. The immunology of syncytialized trophoblast. Int. J. Mol. Sci. 22:41767
    [Google Scholar]
  91. 91. 
    Hauer MH, Gasser SM. 2017. Chromatin and nucleosome dynamics in DNA damage and repair. Genes Dev 31:2204–21
    [Google Scholar]
  92. 92. 
    Coorens THH, Oliver TRW, Sanghvi R, Sovio U, Cook E et al. 2021. Inherent mosaicism and extensive mutation of human placentas. Nature 592:80–85
    [Google Scholar]
  93. 93. 
    Zhan T, Rindtorff N, Boutros M. 2017. Wnt signaling in cancer. Oncogene 36:111461–73
    [Google Scholar]
  94. 94. 
    Xie Y, Su N, Yang J, Tan Q, Huang S et al. 2020. FGF/FGFR signaling in health and disease. Signal Transduct. Target Ther. 5:181
    [Google Scholar]
  95. 95. 
    Carlson BM. 2014. Human Embryology and Developmental Biology Philadelphia: Elsevier
  96. 96. 
    Selwood L, Johnson MH. 2006. Trophoplast and hypoblast in the monotreme, marsupial and eutherian mammal: evolution and origins. BioEssays 28:128–45
    [Google Scholar]
  97. 97. 
    Morrison JT, Bantilan NS, Wang VN, Nellett KM, Cruz YP. 2013. Expression patterns of Oct4, Cdx2, Tead4, and Yap1 proteins during blastocyst formation in embryos of the marsupial, Monodelphis domestica Wagner. Evol. Dev 15:171–85
    [Google Scholar]
  98. 98. 
    Niwa H, Sekita Y, Tsend-Ayush E, Grutzner F. 2008. Platypus Pou5f1 reveals the first steps in the evolution of trophectoderm differentiation and pluripotency in mammals. Evol. Dev. 10:671–82
    [Google Scholar]
  99. 99. 
    Erkenbrack EM, Maziarz JD, Griffith OW, Liang C, Chavan AR et al. 2018. The mammalian decidual cell evolved from a cellular stress response. PLOS Biol 16:e2005594
    [Google Scholar]
  100. 100. 
    Wagner GP, Erkenbrack EM, Love AC. 2019. Stress-induced evolutionary innovation: a mechanism for the origin of cell types. BioEssays 41:e1800188
    [Google Scholar]
  101. 101. 
    Nedelcu AM, Michod RE. 2020. Stress responses co-opted for specialized cell types during the early evolution of multicellularity: The role of stress in the evolution of cell types can be traced back to the early evolution of multicellularity. BioEssays 42:e2000029
    [Google Scholar]
  102. 102. 
    Schaap P. 2021. From environmental sensing to developmental control: cognitive evolution in dictyostelid social amoebas. Philos. Trans. R. Soc. Lond. B 376:20190756
    [Google Scholar]
  103. 103. 
    Swafford AJM, Oakley TH. 2019. Light-induced stress as a primary evolutionary driver of eye origins. Integr. Comp. Biol. 59:739–50
    [Google Scholar]
  104. 104. 
    Ramsey EM. 1982. The Placenta: Human and Animal Santa Barbara, CA: Praeger Inc.
  105. 105. 
    Wooding FBP, Burton GJ. 2008. Comparative Placentation Berlin/Heidelberg, Ger: Springer
  106. 106. 
    Boyerinas B, Park SM, Shomron N, Hedegaard MM, Vinther J et al. 2008. Identification of let-7–regulated oncofetal genes. Cancer Res 68:2587–91
    [Google Scholar]
  107. 107. 
    Erenpreisa J, Salmina K, Anatskaya O, Cragg MS 2020. Paradoxes of cancer: survival at the brink. Semin. Cancer Biol. In press. https://doi.org/10.1016/j.semcancer.2020.12.009
    [Crossref] [Google Scholar]
  108. 108. 
    Gascard P, Tlsty TD. 2016. Carcinoma-associated fibroblasts: orchestrating the composition of malignancy. Genes Dev 30:1002–19
    [Google Scholar]
  109. 109. 
    Robertson SA, Care AS, Moldenhauer LM. 2018. Regulatory T cells in embryo implantation and the immune response to pregnancy. J. Clin. Investig. 128:4224–35
    [Google Scholar]
  110. 110. 
    Wing JB, Tanaka A, Sakaguchi S. 2019. Human FOXP3+ regulatory T cell heterogeneity and function in autoimmunity and cancer. Immunity 50:302–16
    [Google Scholar]
  111. 111. 
    Kobayashi N, Hiraoka N, Yamagami W, Ojima H, Kanai Y et al. 2007. FOXP3+ regulatory T cells affect the development and progression of hepatocarcinogenesis. Clin. Cancer Res. 13:902–11
    [Google Scholar]
  112. 112. 
    Saleh R, Elkord E. 2020. FoxP3+ T regulatory cells in cancer: prognostic biomarkers and therapeutic targets. Cancer Lett 490:174–85
    [Google Scholar]
  113. 113. 
    Gellersen B, Brosens JJ. 2014. Cyclic decidualization of the human endometrium in reproductive health and failure. Endocr. Rev. 35:851–905
    [Google Scholar]
  114. 114. 
    Knofler M, Haider S, Saleh L, Pollheimer J, Gamage T, James J 2019. Human placenta and trophoblast development: key molecular mechanisms and model systems. Cell. Mol. Life Sci. 76:3479–96
    [Google Scholar]
  115. 115. 
    Samuel CA, Perry JS. 1972. The ultrastructure of pig trophoblast transplanted to an ectopic site in the uterine wall. J. Anat. 113:139–49
    [Google Scholar]
  116. 116. 
    Rastrelli M, Tropea S, Rossi CR, Alaibac M. 2014. Melanoma: epidemiology, risk factors, pathogenesis, diagnosis and classification. In Vivo 28:1005–11
    [Google Scholar]
  117. 117. 
    Pandey MK, Tripathi RM, Tripathi SM, Raghuvasnshi PDS, Gupta N. 2016. Benign melanocytoma in a non-descript cow: a case report. Indian J. Anim. Res. 50:4632–33
    [Google Scholar]
  118. 118. 
    Novin A, Suhail Y, Ajeti V, Goyal R, Wali K et al. 2021. Diversity in cancer invasion phenotypes indicates specific stroma regulated programs. Hum. Cell 34:111–21
    [Google Scholar]
  119. 119. 
    Pollheimer J, Vondra S, Baltayeva J, Beristain AG, Knofler M. 2018. Regulation of placental extravillous trophoblasts by the maternal uterine environment. Front. Immunol. 9:2597
    [Google Scholar]
  120. 120. 
    Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M et al. 2020. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 20:174–86
    [Google Scholar]
  121. 121. 
    Summers K, da Silva J, Farwell M. 2002. Intragenomic conflict and cancer. Med. Hypotheses 59:170–79
    [Google Scholar]
  122. 122. 
    Crespi BJ, Summers K. 2006. Positive selection in the evolution of cancer. Biol. Rev. Cambridge Philos. Soc. 81:407–24
    [Google Scholar]
  123. 123. 
    Haig D. 2015. Maternal-fetal conflict, genomic imprinting and mammalian vulnerabilities to cancer. Philos. Trans. R. Soc. Lond. B 370:167320140178
    [Google Scholar]
  124. 124. 
    Haig D. 1993. Genetic conflicts in human pregnancy. Q. Rev. Biol. 68:495–532
    [Google Scholar]
  125. 125. 
    Michod RE, Roze D. 2001. Cooperation and conflict in the evolution of multicellularity. Heredity 86:1–7
    [Google Scholar]
  126. 126. 
    Trivers RL. 1974. Parent-offspring conflict. Am. Zool. 14:249–64
    [Google Scholar]
  127. 127. 
    Haig D 2015. Fertile soil or no man's land: cooperation and conflict in the placental bed. Placental Bed Disorders: Basic Science and Its Translation to Obstetrics R Rijneborg, I Brosens, R Romero 165–73 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
/content/journals/10.1146/annurev-animal-020420-031544
Loading
/content/journals/10.1146/annurev-animal-020420-031544
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error